N

N

Electing an Eventual Leader in an Asynchronous Shared
Memory System

Antonio Fernandez, Ernesto Jiménez, Michel Raynal

» To cite this version:

Antonio Ferndndez, Ernesto Jiménez, Michel Raynal. Electing an Eventual Leader in an Asynchronous
Shared Memory System. [Research Report] PI 1821, 2006, pp.19. inria-00109424

HAL 1d: inria-00109424
https://inria.hal.science/inria-00109424
Submitted on 24 Oct 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00109424
https://hal.archives-ouvertes.fr

ISSN 1166-8687

PUBLICATION
INTERNE
N° 1821

Oszg/
&
43
(@)
@
%
3

S
S
2)

<

ELECTING AN EVENTUAL LEADER
IN AN ASYNCHRONOUS SHARED MEMORY SYSTEM

A.FERNANDEZ E.JIMENEZ M.RAYNAL

m |RISA

CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCE

Electing an Eventual L eader
in an Asynchronous Shared Memory System

s * . . ** *kx
A. Fernandez E. Jiménez M. Raynal

Systémes communicants

Publication interne n ° 1821 — Novembre 2006 — 19 pages

Abstract: This paper considers the problem of electing an eventual leader in an asynchronous shared memory
system. While this problem has received a lot of attention in message-passing systems, very few solutions have been
proposed for shared memory systems. As an eventual leader cannot be elected in a pure asynchronous system prone to
process crashes, the paper first proposes to enrich the asynchronous system model with an additional assumption. That
assumption, denoted AWB, requires that after some time (1) there is a process whose write accesses to some shared
variables are timely, and (2) the timers of the other processes are asymptotically well-behaved. The asymptotically
well-behaved timer notion is a new notion that generalizes and weakens the traditional notion of timers whose durations
are required to monotonically increase when the values they are set to increase. Then, the paper presents two A WB-
based algorithms that elect an eventual leader. Both algorithms are independent of the value of ¢ (the maximal number
of processes that may crash). The first algorithm enjoys the following noteworthy properties: after some time only
the elected leader has to write the shared memory, and all but one shared variables have a bounded domain, be the
execution finite or infinite. This algorithm is consequently optimal with respect to the number of processes that have
to write the shared memory. The second algorithm enjoys the following property: all the shared variables have a
bounded domain. This is obtained at the following additional price: all the processes are required to forever write the
shared memory. A theorem is proved that states this price has to be paid by any algorithm that elects an eventual leader
in a bounded shared memory model. This second algorithm is consequently optimal with respect to the number of
processes that have to write in such a constrained memory model. In a very interesting way, these algorithms show an
inherent tradeoff relating the number of processes that have to write the shared memory and the bounded/unbounded
attribute of that memory.

Key-words: Access cost, Asynchronous system, Bounded memory, Eventual leader, Fault-tolerance, Omega, Pro-
cess crash, Shared memory, System model, Timer.

(Résumé : tsvp)

" LADyYR, GSyC, Universidad Rey Juan Carlos, 28933 Méstoles, Spain, anto@gsyc . escet .urjc.es
The work of this author was done while on leave at IRISA, supported by the Spanish MEC under grant PR-2006-0193.
" EUI, Universidad Politécnica de Madrid, 28031 Madrid, Spain, ernes@eui .upm.es.
The work of A. Fernandez and E. Jiménez was partially supported by the Spanish MEC under grants TIN2005-09198-C02-01, TIN2004-07474-
C02-02, and TIN2004-07474-C02-01, and the Comunidad de Madrid under grant S-0505/T1C/0285.
" IRISA, Université de Rennes 1, Campus de Beaulieu, 35042, Rennes Cedex, France, raynaleirisa.fr

ks

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(umr 6074) Université de Rennes 1 — Insa de Rennes et en Automatique — unité de recherche de Rennes

Election d’un leader dansun systeme a mémoir e par tagée asynchrone

Résumeé: Ce rapport présente un protocole d’élection d’un leader inéluctable dans un systéme asynchrone a mémoire
partagée dans lequel un nombre quelconque de processus peuvent crasher.

Motsclés: Systemes asynchrones, Tolérance aux fautes, Crash de processus, Oracle oméga, Mémoire partagée,
Leader inéluctable, Chien de garde.

1 Introduction

Equipping an asynchronous system with an oracle An asynchronous system is characterized by the absence of
a bound on the time it takes for a process to proceed from a step of its algorithm to the next one. Combined with
process failures, such an absence of a bound can make some synchronization or coordination problems impossible to
solve (even when the processes communicate through a reliable communication medium). The most famous of these
“impossible” asynchronous problems is the well-known consensus problem [8]. Intuitively, this impossibility comes
from the fact that a process cannot safely distinguish a crashed process from a very slow process.

One way to address and circumvent these impossibilities consists on enriching the underlying asynchronous sys-
tems with an appropriate oracle [26]. More precisely, in a system prone to process failures, such an oracle (sometimes
called failure detector) provides each process with hints on which processes are (or are not) faulty. According to the
quality of these hints, several classes of oracles can be defined [5]. So, given an asynchronous system prone to process
failures equipped with an appropriate oracle, it becomes possible to solve a problem that is, otherwise, impossible to
solve in a purely asynchronous system. This means that an oracle provides processes with additional computability
power.

Fundamental issues related to oracles for asynchronous systems Two fundamental questions can be associated
with oracles. The first is more on the theoretical side and concerns their computability power. Given a problem (or a
family of related problems), which is the weakest oracle that allows solving that problem in an asynchronous system
where processes can experience a given type of failures? Intuitively, an oracle O ,, is the weakest for solving a problem
P if itallows solving that problem, and any other oracle O ,,,, that allows solving P provides hints on failures that are at
least as accurate as the ones provided by O, (this means that the properties defining O,,,, imply the ones defining O,
but not necessarily vice-versa). It has been shown that, in asynchronous systems prone to process crash failures, the
class of eventual leader oracles is the weakest for solving asynchronous consensus, be these systems message-passing
systems [6] or shared memory systems [19]*. It has also been shown that, for the same type of process failures, the
class of perfect failure detectors (defined in [5]) is the weakest for solving asynchronous interactive consistency [14].

The second important question is on the algorithm/protocol side and concerns the implementation of oracles (fail-
ure detectors) that are designed to equip an asynchronous system. Let us first observe that no such oracle can be
implemented on top of a purely asynchronous system (otherwise the problem it allows solving could be solved in
a purely asynchronous system without additional computability power). So, this fundamental question translates as
follows. First, find “reasonably weak” behavioral assumptions that, when satisfied by the underlying asynchronous
system, allow implementing the oracle. “Reasonably weak” means that, although they cannot be satisfied by all the
runs, the assumptions are actually satisfied in “nearly all” the runs of the asynchronous system. Second, once such
assumptions have been stated, design efficient algorithms that implement correctly the oracle in all the runs satisfying
the assumptions.

Content of the paper Considering the asynchronous shared memory model where any number of processes can
crash, this paper addresses the construction of eventual leader oracles [6]. Such an oracle (usually denoted 2) 2 provides
the processes with a primitive leader() that returns a process identity, and satisfies the following “eventual” property
in each run R: There is a time after which all the invocations of leader() return the same identity, that is the identity
of a process that does not crash in the run R.

As already indicated, such an oracle is the weakest to solve the consensus problem in an asynchronous system
where processes communicate through single-writer/multi-readers (1WnR) atomic registers and are prone to crash
failures [19].

The paper has two main contributions.

o It first proposes a behavioral assumption that is particularly weak. This assumption is the following one. In each
run, there are a finite (but unknown) time 7 and a process p (not a priori known) that does not crash in that run,
such that after 7:

et us also notice that the Paxos fault-tolerant state machine replication algorithm [16] is based on the € abstraction. For the interested reader,
an introduction to the family of Paxos algorithms can be found in [12].
2Without ambiguity and according to the context, € is used to denote either the class of eventual leader oracles, or an oracle of that class.

PIn°1821

— (1) There is a bound A (not necessarily known) such that any two consecutive accesses to some shared
variables issued by p are separated by at most A time units, and

— (2) Each correct process ¢ # p has a timer that is asymptotically well-behaved. Intuitively, this notion
expresses the fact that eventually the duration that elapses before a timer expires has to increase when the
timeout parameter increases.

It is important to see that the timers can behave arbitrarily during arbitrarily long (but finite) periods. Moreover,
as we will see in the formal definition, their duration are not required to strictly increase according to their
timeout periods. After some time, they have only to be lower-bounded by some monotonously increasing
function.

It is noteworthy to notice that no process (but p) is required to have any synchronous behavior. Only their timers
have to eventually satisfy some (weak) behavioral property.

e The paper then presents two algorithms that construct an €2 oracle in all the runs that satisfy the previous
behavioral assumptions, and associated lower bounds. All the algorithms use atomic 1WnR atomic registers.
The algorithms, that are of increasing difficulty, are presented incrementally.

— In the first algorithm, all (but one of) the shared variables have a bounded domain (the size of which
depends on the run). More specifically, this means that, be the execution finite or infinite, even the timeout
values stop increasing forever.

Moreover, after some time, there is a single process that writes the shared memory. The algorithm is
consequently write-efficient. It is even write-optimal as at least one process has to write the shared memory
to inform the other processes that the current leader is still alive.

— The second algorithm improves the first one in the sense that all the (local and shared) variables are
bounded. This nice property is obtained by using two boolean flags for each pair of processes. These flags
allow each process p to inform each other process ¢ that it has read some value written by q.

— Lower bound results are proved for the considered model. Two theorems are proved that state (1) the
process that is eventually elected has to forever write the shared memory, and (2) any process (but the
eventual leader) has to forever read from the shared memory. Another theorem shows that, if the shared
memory is bounded, then all the processes have to forever write into the shared memory. There theorems
show that both the algorithms presented in the paper are optimal with respect to these criteria.

Why shared memory-based €2 algorithms are important Some distributed systems are made up of computers
that communicate through a network of attached disks. These disks constitute a storage area network (SAN) that
implements a shared memory abstraction. As commodity disks are cheaper than computers, such architectures are
becoming more and more attractive for achieving fault-tolerance. The €2 algorithms presented in this paper are suited
to such systems [1, 4, 10, 18].

Related work As far as we know, a single shared memory 2 algorithm has been proposed so far [13]. This algorithm
considers that the underlying system satisfies the following behavioral assumption: there is a time 7 after which there
are a lower bound and an upper bound for any process to execute a local step, or a shared memory access. This as-
sumption defines an eventually synchronous shared memory system. It is easy to see that thus is a stronger assumption
than the assumption previously defined here.

The implementation of 2 in asynchronous message-passing systems is an active research area. Two main ap-
proaches have been been investigated: the timer-based approach and the message pattern-based approach.

The timer-based approach relies on the addition of timing assumptions [7]. Basically, it assumes that there are
bounds on process speeds and message transfer delays, but these bounds are not known and hold only after some finite
but unknown time. The algorithms implementing €2 in such “augmented” asynchronous systems are based on timeouts
(e.g., [2, 3, 17]). They use successive approximations to eventually provide each process with an upper bound on
transfer delays and processing speed. They differ mainly on the “quantity” of additional synchrony they consider, and
on the message cost they require after a leader has been elected.

Irisa

Among the protocols based on this approach, a protocol presented in [2] is particularly attractive, as it considers a
relatively weak additional synchrony requirement. Let ¢ be an upper bound on the number of processes that may crash
(1 <t < n, where n is the total number of processes). This assumption is the following: the underlying asynchronous
system, which can have fair lossy channels, is required to have a correct process p that is a Gt-source. This means that
p has t output channels that are eventually timely: there is a time after which the transfer delays of all the messages
sent on such a channel are bounded (let us notice that this is trivially satisfied if the receiver has crashed). Notice that
such a <t-source is not known in advance and may never be explicitly known. It is also shown in [2] that there is no
leader protocol if the system has only < (¢ — 1)-sources. A versatile adaptive timer-based approach has been developed
in [20].

The message pattern-based approach, introduced in [21], does not assume eventual bounds on process and com-
munication delays. It considers that there is a correct process p and a set @) of ¢ processes (with p ¢), moreover Q)
can contain crashed processes) such that, each time a process ¢ € () broadcasts a query, it receives a response from p
among the first (n — ¢) corresponding responses (such a response is called a winning response). It is easy to see that
this assumption does not prevent message delays to always increase without bound. Hence, it is incomparable with
the synchrony-related ©t-source assumption. This approach has been applied to the construction of an €2 algorithm in
[23].

A hybrid algorithm that combines both types of assumption is developed in [24]. More precisely, this algorithm
considers that each channel eventually is timely or satisfies the message pattern, without knowing in advance which
assumption it will satisfy during a particular run. The aim of this approach is to increase the assumption coverage,
thereby improving fault-tolerance [25].

Roadmap The paper is made up of 5 sections. Section 2 presents the system model and the additional behavioral
assumption. Then, Sections 3 and 4 present in an incremental way the two algorithms implementing an €2 oracle, and
show they are optimal with respect to the number of processes that have to write or read the shared memory. Finally,
Section 5 provides concluding remarks.

2 BaseModd, Eventual Leader and Additional Behavioral Assumption

2.1 Baseasynchronous shared memory model

The system consists of n, n > 1, processes denoted p1, ... ,p,. The integer i denotes the identity of p;. (Sometimes
a process is also denoted p, g or .) A process can fail by crashing, i.e., prematurely halting. Until it possibly crashes,
a process behaves according to its specification, namely, it executes a sequence of steps as defined by its algorithm.
After it has crashed, a process executes no more steps. By definition, a process is faulty during a run if it crashes
during that run; otherwise it is correct in that run. There is no assumption on the maximum number ¢ of processes that
may crash, which means that up to n — 1 process may crash in a run.

The processes communicate by reading and writing a memory made up of atomic registers (also called shared
variables in the following). Each register is one-writer/multi-reader (1WnR). “1WnR” means that a single process
can write into it, but all the processes can read it. (Let us observe that using 1WnR atomic registers is particularly
suited for cached-based distributed shared memory.) The only process allowed to write an atomic register is called its
owner. Atomic means that, although read and write operations on the same register may overlap, each (read or write)
operation appears to take effect instantaneously at some point of the time line between its invocation and return events
(this is called the linearization point of the operation) [15]. Uppercase letters are used for the identifiers of the shared
registers. These registers are structured into arrays. As an example, PROGRESS]|i] denotes a shared register that can
be written only by p;, and read by any process.

Some shared registers are critical, while other shared registers are not. A critical register is a an atomic register
on which some constraint can be imposed by the additional assumptions that allow implementing an eventual leader.
This attribute allows restricting the set of registers involved in these assumptions.

A process can have local variables. They are denoted with lowercase letters, with the process identity appearing as
a subscript. As an example, candidates; denotes a local variable of p;.

This base model is characterized by the fact that there is no assumption on the execution speed of one process with
respect to another. This is the classical asynchronous crash prone shared memory model. It is denoted .AS ,,[(}] in the
following

PIn°1821

2.2 Eventual leader service

The notion of eventual leader oracle has been informally presented in the introduction. It is an entity that provides
each process with a primitive leader() that returns a process identity each time it is invoked. A unique correct leader
is eventually elected but there is no knowledge of when the leader is elected. Several leaders can coexist during an
arbitrarily long period of time, and there is no way for the processes to learn when this “anarchy” period is over. The
leader oracle, denoted €2, satisfies the following property [6]:

e Validity: The value returned by a leader() invocation is a process identity.

e Eventual Leadership®: There is a finite time and a correct process p; such that, after that time, every leader()
invocation returns .

e Termination: Any leader() invocation issued by a correct process terminates.

The (2 leader abstraction has been introduced and formally developed in [6] where it is shown to be the weakest, in
terms of information about failures, to solve consensus in asynchronous systems prone to process crashes (assuming
a majority of correct processes). Several Q2-based consensus protocols have been proposed (e.g., [11, 16, 22] for
message-passing systems, and [9] for shared memory systems)*.

2.3 Additional behavioral assumption

Underlyingintuition Asalready indicated, 2 cannot be implemented in pure asynchronous systems such as .AS ,, [0].
So, we consider the system is no longer fully asynchronous: its runs satisfy the following assumption denoted AWB
(for asymptotically well-behaved). The resulting system is consequently denoted AS ,[AWB].

Each process p; is equipped with a timer denoted timer;. The intuition that underlies AWB is that, once a process
pe is defined as being the current leader, it should not to be demoted by a process p; that believes p, has crashed.
To that end, constraints have to be defined on the behavior of both p, and p;. The constraint on py, is to force it to
“regularly” inform the other processes that it is still alive. The constraint on a process p; is to prevent it to falsely
suspect that p, has crashed.

There are several ways to define runs satisfying the previous constraints. As an example, restricting the runs to be
“eventually synchronous” would work but is much more constraining than what is necessary. The aim of the AWB
additional assumption is to state constraints that are “as weak as possible”®. It appears that requiring the timers to
be eventually monotonous is stronger than necessary (as we are about to see, this is a particular case of the AWB
assumption). The AWB assumption is made up of two parts AWB, and AWDB, that we present now. AWB; is on
the existence of a process whose behavior has to satisfy a synchrony property. AWB 5 is on the timers of the other
processes. AWB, and AWB- are “matching” properties.

Theassumption AWB; The AWB; assumption requires that eventually a process does not behave in a fully asyn-
chronous way. It is defined as follows.

AWBy1: There are a time 791, a bound A, and a correct process p¢ (101, A and py may be never explicitly
known) such that, after 741, any two consecutive accesses issued by p, to (its own) critical registers, are
completed in at most A time units.

This property means that, after some arbitrary (but finite) time, the speed of p, is lower-bounded, i.e., its behavior is
partially synchronous (let us notice that, while there is a lower bound, no upper bound is required on the speed of p ¢,
except the fact that it is not +o0).

3This property refers to a notion of global time. This notion is not accessible to the processes.

41t is important to notice that, albeit it can be rewritten using © (first introduced in 1992), the original version of Paxos, that dates back to 1989,
was not explicitly defined with this formalism.

50f course, the notion of “as weak as possible” has to be taken with its intuitive meaning. This means that, when we want to implement Q
in a shared memory system, we know neither an assumption weaker than AWB, nor the answer to the question: Is AWB the weakest additional
assumption?

Irisa

The assumption AWB- In order to define AWB,, we first introduce a function f() with monotonicity properties
that will be used to define an asymptotic behavior. That function takes two parameters, a time = and a duration z, and
returns a duration. It is defined as follows. There are two (possibly unknown) bounded values = ¢ and 74 such that:
° (fl) VTQ,Tl 1Ty > T > T#, sz,l'l X > T > Tf. f(Tz,l’g) > f(Tl,l'l). (After some pOint, f() is not
decreasing with respect to 7 and x).
e (f2)lim, 4o f(77,7) = +00. (Eventually, f() always increases®.)

We are now in order to define the notion of asymptotically well-behaved timer. Considering the timer timer ; of a
process p; and a run R, let 7 be a real time at which the timer is set to a value x, and 7' be the finite real time at which
that timer expires. Let Tr(7,x) = 7" — 7, for each = and 7. Then timer timer; is asymptotically well-behaved in a
run R, if there is a function fr(), as defined above, such that:

o B)YVr:7>71p,Vo:a> s fr(r,x) < Tgr(r,).

This constraint states the fact that, after some point, the function T'r() is always above the function fz(). It is
important to observe that, after (¢, z), the function Tz (7, z) is not required to be non-decreasing, it can increase
and decrease. Its only requirement is to always dominate f z(). (See Figure 1.)

AWB-: The timer of each correct process (except possibly p¢) is asymptotically well-behaved.

When we consider AWB, it is important to notice that any process (but p, constrained by a speed lower bound)
can behave in a fully asynchronous way. Moreover, the local clocks used to implement the timers are required to be
neither synchronized, nor accurate with respect to real-time.

Figure 1: T'r() asymptotically dominates f ()

3 AnQalgorithm for AS,,[AWDB]
3.1 Principlesof thealgorithm

The first algorithm implementing €2 in AS ,,| AWB] that we present, relies on a very simple idea that has been used in
several algorithms that build 2 in message-passing systems. Each process p; handles a set (candidates;) containing
the processes that (from its point of view) are candidates for being the leader. When it suspects one of its candidates
pj to have crashed, p; makes public the fact that it suspects p; once more. (This is done by p; increasing the shared
register SUSPICIONS]i, j].)

Finally, a process p; defines its current leader as the least suspected process among its current candidates. As
several processes can be equally suspected, p; uses the function lexmin(X) that outputs the lexicographically small-
est pair in the set parameter X, where X is the set of (number of suspicions, process identity) pairs defined from
candidate;, and (a,i) < (b,7) iff (a <b) V (a=b A i < j).

61f the image of f() is the set of natural numbers, then this condition can be replaced by & > x1 = flryyx2) > f(rp,21).

PIn°1821

3.2 Description of thealgorithm
The algorithm, based on the principles described just above, that builds © in AS ,,[AWB] is depicted in Figure 2.

Shared variables The variables shared by the processes are the following:

e SUSPICIONS([1..n,1..n] is an array of natural registers. SUSPICIONS|[j, k] = x means that, up to now, p ;
has suspected « times the process pj, to have crashed. The entries SUSPICIONSj, k], 1 < k < n can be
written only by p;.

e PROGRESS|1..n] is an array of natural registers. Only p; can write PROGRESS([i]. (It does it only when it
considers it is the leader.)

e STOPI1..n]isan array of boolean registers. Only p; can write STOP][i]. Itsets itto false to indicate it considers
itself as leader, and sets it to ¢rue to indicate it stops considering it is the leader.

The initial values of the previous shared variables can be arbitrary 7. To improve efficiency, we consider that the natural
integer variables are initialized to 0 and the boolean variables to true.

Each shared register PROGRESS[k] or STOP[k], 1 < k < n is critical. Differently, none of the registers
SUSPICIONSJj, k], 1 < j, k < n, is critical. This means that, for a process py, involved in the assumption AWB,
only the accesses to its registers PROGRESS[k] and STOP|k] are concerned.

Let us observe that, as the shared variables PROGRESS[i], STOP[i] and SUSPICIONS[i, k], 1 < k < n, are
written only by p;, that process can save their values in local memory and, when it has to read any of them, it can read
instead its local copy. (We do not do it in our description of the algorithms to keep simpler the presentation.)

Process behavior The algorithm is made up of three tasks. Each local variable candidate; is initialized to any set
of process identities containing i.

The task 7'1 implements the leader() primitive. As indicated, p; determines the least suspected among the pro-
cesses it considers as candidates (lines 2-4), and returns its identity (line 5).

The task 7°2 is an infinite loop. When it considers it is the leader, (line 7), p; repeatedly increases PROGRESS]i]
to inform the other processes that it is still alive (lines 7-10). If it discovers it is no longer leader, p; sets STOPJi] to
true (line 11) to inform the other processes it is no longer competing to be leader.

Each process p; has a local timer (denoted timer;), and manages a local variable last ;[k] where it saves the greatest
value that it has ever read from PROGRESS[k]. The task T'3 is executed each time that timer expires (line 13). Then,
p; executes the following statements with respect to each process p (but itself, see line 14). First, p; checks if p; did
some progress since the previous timer expiration (line 17). Then, it does the following.

e If PROGRESS|k] has progressed, p; considers py, as a candidate to be leader. To that end it adds % to the local
set candidates; (line 18). (It also updates last;[k], line 19.)

e |f PROGRESS[k] has not progressed, p; checks the value of STOP[k] (line 20). If it is true, p, voluntarily
demoted itself from being a candidate. Consequently, p; suppresses & from its local set candidates; (line 21).
If STOP[K] is false and py, is candidate from p;’s point of view (line 22), p, suspects p;, to have crashed (line
23) and suppresses it from candidates; (line 24).

Then, p; resets its local timer (line 27). Let us observe that no variable of the array SUSPICIONS can decrease and
such an entry is increased each time a process is suspected by another process. Thanks to the properties, we will see
in the proof that max({ SUSPICIONS|i, k] }1<kr<n) + 1 can be used as the next timeout value. Note that to compute
this value only variables owned by p; are accessed.

3.3 Proof of thealgorithm

Lemmal Let py be a faulty process and p; a correct process. Eventually, the predicate k ¢ candidates; remains
true forever.

"This means that the algorithm is self-stabilizing with respect to the shared variables. Whatever their initial values, it converges in a finite number
of steps towards a common leader, as soon as the additional assumption is satisfied.

Irisa

task 7'1:

(1) when leader() isinvoked:

(2) for_each k € candidates; do

3) susp;[k] < X1< <, SUSPICIONS]|j, k] end_for;
(4) let (_7Z) = IeX_min({(SU/Spi [k]7k)}k€candidatesi);
(5) return(¢)

task 172:

(6) repeat_forever

(7) while(leader() = ¢) do

(8) PROGRESS]i] + PROGRESS|i] + 1,
9) if STOP/i] then STOP[i] < false end_if
(10) end_while;

(11) if (- STOPJi]) then STOP[i] + true end_if
(12) end._repeat

task 7'3:

(13) when timer; expires:

(14) for.each k € {1,...,n} \ {i} do

(15) stop_k; < STOPIk];

(16) progress_k; <+ PROGRESS|[k];
17) if (progress_k; # last;[k]) then

(18) candidates; < candidates; U {k};

(19) last; [k] < progress_k;

(20) elseif (stop-k;) then

(21) candidates; < candidates; \ {k}

(22) else.if (k € candidates;) then

(23) SUSPICIONS|i, k] < SUSPICIONS[i, k] + 1;
(24) candidates; <« candidates; \ {k}

(25) end_if

(26) end_for;

@7) set timer; to max({SUSPICIONS[i,k]}1 <k<n) + 1

Figure 2: Write-efficient, all variables are 1WMR, bounded except a single entry of PROGRESS

Proof Let us consider a time 7 at which p;. has crashed. After 7, p, never increases PROGRESS|k]. So, there is
atime 7' > 7 after which the test progress_k; # last;[k] (line 17) is always false. It then follows from the lines
20-24 that, if k£ was in candidates;, it is suppressed from this set. Moreover, as from now on we have last ;[k] =
PROGRESS|[k] forever, it follows from line 17 that k& can never be again added to candidates ;. O7emma 1

Givenarun R and a process p,, let M, denote the largest value of ¥ < j<, SUSPICIONS|j,]. If there is no such
value (i.e., £1<;<, SUSPICIONS|[j, x] grows forever), let M, = +oc. Finally, let B be the set of correct processes
pe Such that M, # +oo (B stands for “bounded”).

Lemma 2 Let us assume that the behavioral assumption AWB is satisfied. Then, B # ().

Proof Let p; be a process that satisfies assumption AWB; . (Hence, p; is a correct process.) We show i € B.

Let us first observe that the task 7'3 of a process never executes the body of the for loop (lines 14-26) for that
process, from which it follows that SUSPICIONS]i,] is never increased. Let us now consider a faulty process p ;.
Clearly, after p; crashes, SUSPICIONS|j,i] is no longer increased.

So, the rest of the proof consists in showing that SUSPICIONS|j, i] remains bounded for any correct process p ;.
Let S be the sequence of write operations issued by p; at the lines 8 (write into PROGRESS(i]), and 11 (write into
STOPIi])®. We consider two cases.

e S isfinite.
As p; is correct, its last write operation in the sequence S is done at line 11, and that operation writes true into
STOPIJi]. Let T be the time at which p; issued this last write operation. Since, after r, PROGRESS]i] is no

8 et us notice that the write operations into S7°OP[i] at line 9 do not appear in the definition of S.

PIn°1821

longer increased and STOPYJi] is always equal to ¢rue, it follows that there is a time 7’ > 7 after which, when
p; executes line 17 with k = 1, the test is always negative, while when it executes 20, the test is always positive.
It follows that after 7/, p; never executes line 23 with k& = 4, from which we conclude that SUSPICIONS|j,]
is bounded.

e S is infinite.
Due to the assumption AWB1, there are a time 19; and a bound A such that, after 791, any two consecutive
operations on its critical registers issued by p; are completed in at most A time units. Observe that, after 71,
two updates of PROGRESS([i] (line 8) that are adjacent in S are completed in at most 3A time units®. Similarly,
after 7o1, an update of PROGRESS]i] (line 8) followed in S by an update of STOP][i] at line 11, is completed
in at most 3A time units.
Figure 3 shows a possible execution after 7o;. L8 and L11 represents consecutive updates of the 1WnR atomic

registers PROGRESS|i] and STOPYi] at line 8 and line 11, respectively. The update of STOP]i] at line 9 is
indicated with a black dot, and the area with stripes shows the interval during which the value of STOP[i] is

false.
1701 <3A 0 <3A <3A <3A
L8 L8 L8L8 L11 L8 L8L8 L11

Figure 3: Illustrating the sequence S

By assumption AWB, we have that the timer of p; is asymptotically well-behaved and for each run R there is
a corresponding function f (), and parameters =y and 7. Let zo > x ¢ be a finite value such that fr(7¢,2z0) =
A’ > 3A. Assumption (f2) implies that such a value of z o always exists.

If SUSPICIONS]j,] never reaches x, itis bounded and the lemma follows. So, let us consider that SUSPICIONS]j, i
reaches xo. There is then a time after which timer; is always set to a value greater than z, (line 27). Let

71 > 7y be a time at which timer; is set to such a value. Then, for any 7 > 7, and any = > x, we have that
Tr(r,2) > fr(1,2) > fr(T,20) = A’, from assumptions (f3) and (f1), and the above paragraph, respec-

tively.

Let us now consider any two consecutive executions of the lines 15 to 25 by p; with k£ = 1 that start at time

7 > max(701,71). Let us notice that, by the definition of 7, these two executions are separated by at least A’

time units. We claim that in the second such execution SUSPICIONS|j,] is not increased. Since this holds for

any two executions and any time 7, the lemma follows. We consider two cases:

— In the second execution, the value of STOPYi] that is read by p; (line 15) is true. In that case, indepen-
dently of the result of the test at line 17, SUSPICIONS]j,] will not be incremented in that execution,
because of the test at line 20.

— Inthe second execution, the value of STOP[i] that is read by p ; (line 15) is false. When this read operation
takes effect, task T2 of process p; was either between two updates of PROGRESS]i] (line 8) adjacent in
S, or between an update of PROGRESS[i] and an update of STOPJi] at line 11, both adjacentin S. In
either case, the value of PROGRESS]i] was updated at most 3A time units before the read of STOPYi]
by p; takes effect. Since the latest update of last ;[¢] was done at least A’ time units before, and A’ > 3A,
the value read in progress_k; and the value in last ;[i] are different. Then, the test at line 17 evaluates to
true and SUSPICIONS]j, i] is not incremented.

9Counting A for the first execution of line 8, A for the possible accesses of STOPYJi] at line 9, and A for the second execution of line
8. Let us notice that we do not count the time of a read operation at these lines. As indicated in Section 3.2, this is because, as the critical
variables PROGRESS|[i] and STOP]i| are written only by p;, that process can manage local copies and read these local copies instead of
reading the corresponding critical variables. The important point here is the determination of an upper bound for the time that can elapse between
the completion of two consecutive write operations on the critical variables of . The same remark applies to the computation of the next time
duration, where A times units are counted for each of the lines 8, 9, and 11.

Irisa

IjLemma 2
Let (Mg, ¢) = lexmin({M,,x) | x € B}).
Lemma 3 There is a single process p, and it is correct.

Proof The lemma follows directly from the following observations: B does not contain faulty processes (definition),
B # () (Lemma 2), and no two processes have the same identity (initial assumption). O Lemma 3

Lemma4 There is a time after which p, permanently executes the loop defined by the lines 7-10 of task 7°2.

Proof Due to Lemma 1, for each faulty process py, there is a time after which the predicate k ¢ candidate, remains
forever true. So, after that time the faulty processes do not compete with p, to become leader (line 4). This constitutes
observation O1.

Let us now consider a correct process p;. It follows from the definition of B that we have the following: (1) if i €
B, eventually X1 < j<, SUSPICIONS|j,i] = M; > My; (2) if i ¢ B, eventually ¥1<;<, SUSPICIONS([j,i] > M,.
This constitutes observation O2.

It follows from the previous observations O1 and O2, and the fact that we always have = € candidate , for any
process p,., that after some finite time, each evaluation of the predicate leader() = ¢ (line 7), returns true to p,.
Consequently, there is a time after which p, permanently executes the lines 7-10 of task 7°2. O7Lemma 4

Theorem 1 There is a time after which a correct process is elected as the eventual common leader.

Proof We show that p, is the eventual common leader. From Lemma 3 p, is unique and correct. Moreover, due the
definitions of the bound M, and the set B, there is a finite time 7 after which, for each correct process p;, i # £, we
have (Z1<j<,SUSPICIONS|j,i],i) > (M;,¢). Moreover, due to Lemma 1, there is a time after which, for each
correct process p; and each faulty process p, we have k ¢ candidate;. 1t follows from these observations, that proving
the theorem amounts to show that eventually the predicate ¢ € candidate; remains permanently true at each correct
process p;.

Let us notice that the predicate x € candidate, is always true for any process p,.. This follows from the fact that
initially = belongs to candidate,, and then p, does not execute the tasks 7°3 for £ = z, and consequently cannot
withdraw z from candidate, . It follows that we always have ¢ € candidate,. So, let us examine the case i # /.

It follows from Lemma 4 that there is a time 7 after which p, remains permanently in the while loop of task 7°2.
Let 7 > 7 be a time at which we have ¥, <<, SUSPICIONS|[j, (] = My, and p, has executed line 9 (i.e., STOP[{]
remains false forever).

After 7/, because p, is forever increasing PROGRESS|[¢), the test of line 17 eventually evaluates to true and (if
not already done) p; adds ¢ to candidate;. We claim that, after that time, the task 7°3 of p; is always executing the
lines 18-19, from which it follows that £ remains forever in candidate ;.

Proof of the claim. Let us assume by contradiction that the test of line 17 is false when evaluated by p ;. It follows
that ¢ is withdrawn from candidate;, and this occurs at line 24. (It cannot occur at line 21 because after we always
have STOP[{] = false.) But line 23 is executed before 24, from which we conclude that SUSPICIONS]i, £] has been
increased, which means that we have now X <<, SUSPICIONS|j, (] = M, + 1, contradicting the definition of the
bound M,. End of the proof of the claim. O Theorem 1

Theorem 2 Let p, be the eventual common leader. All shared variables (but PROGRESS|(]) are bounded.

Proof Let us consider a time 7 after which the eventual common leader has been elected. Due to Theorem 1, such
a time does exist. After 7, as it is not the leader, no process py, k # ¢, can execute the while loop of task 72, and
consequently PROGRESS|[k] is no longer increased.

It follows from the fact that PROGRESS[k] is no longer increased that, after some time, for any p ;, we have
lastj[k] = PROGRESS[k]. Consequently, after that time, the test of line 17 is never satisfied and, if & belongs to
candidates;, it is suppressed from this set and never added again. It follows that, as far as SUSPICIONS|j, k] is
concerned, line 23 is no longer executed, which means that SUSPICIONS|j, k] is no longer increased.

The fact that, for any j, SUSPICIONS|j, £] is bounded has been proved in Lemma 2. O Theorem 2

PIn°1821

Theorem 3 After a finite time, only one process (the eventual common leader) writes forever into the shared memory.
Moreover, it always writes the same shared variable.

Proof After an eventual common leader p, had been elected, that leader executes permanently the while loop of task
T2 and consequently forever increases PROGRESS|[(]. After it has entered the loop it sets STOP[{] to false, and we
can conclude from line 9 that it will not longer write STOP[/].

The fact that, after some time, no variable SUSPICIONS|j, k] (1 < j, k < n) is written, follows directly from the
combined effect of (1) the fact that each of these variables is bounded (Theorem 2), and (2) each write increases its
value. The same reasoning applies to each variable PROGRESS|[k] for k # (.

Let us now consider a STOP[k] variable, k # £. As, after the eventual common leader p, has been elected, p,
no longer executes the body of the while loop of task 7°2, it follows that STOP[k] cannot be written at line 9. Let us
now consider the write at line 11. If STOP[k] is equal to false, py, sets it to true. Then task 72 of p; always finds
STOP|k] equal to true at line 11, and consequently never updates it again. O Theorem 3

3.4 Optimality Results

Let .4 be any algorithm that implements Q in AS,,|AWB] with up to ¢ faulty processes. We have the following lower
bounds.

Lemmab5 Let R be any run of A with less than ¢ faulty processes and let p, be the leader chosen in R. Then p, must
write forever in the shared memory in R.

Proof Assume, by way of contradiction, that p, stops writing in the shared memory in run R at time 7. Consider
another run R’ of A in which all processes behave like in R except p,, which behaves exactly like in R until time
7 + 1, and crashes at that time. Since at most ¢ processes crash in R’, by definition of 4, eventually a leader must
be elected. In fact, in R’ all the processes except p, behave exactly like in R and elect p, as their (permanent) leader.
These processes cannot distinguish R’ from R and cannot detect the crash of p,. Hence, in R algorithm 4 does not
satisfy the Eventual Leadership property of €2, which is a contradiction. Therefore, p , cannot stop writing in the shared
memory. ULemma 5

Lemma6 Let R be any run of A with less than ¢ faulty processes and let p, be the leader chosen in R. Then every
correct process p;, i 7 £, must read forever from the shared memory in R.

Proof Assume, by way of contradiction, that a correct process p; stops reading from the shared memory in run R at
time 7. Let 7’ be the time at which p; chooses permanently p, as leader. Consider another run R’ of A in which p,
behaves exactly like in R until time max(r,7') + 1, and crashes at that time. Since at most ¢ processes crash in R’,
by definition of .4, a leader must be eventually elected. In R’, we make p; to behave exactly like in R. As it stopped
reading the shared memory at time 7, p; cannot distinguish R’ from R and cannot detect the crash of p,. Hence in R’,
p; elects p, as its (permanent) leader at time 7/. Hence, in R’ algorithm A does not satisfy the Eventual Leadership
property of €2, which is a contradiction. Therefore, p; cannot stop reading from the shared memory. O Lemma 6

The following theorem follows immediately from the previous lemmas.

Theorem 4 The algorithm described in Figure 2 is optimal in with respect to the number of processes that have to
write the shared memory. It is quasi-optimal with respect to the number of processes that have to read the shared
memory.

The “quasi-optimality” comes from the fact that the algorithm described in Figure 2 requires that each process (includ-
ing the leader) reads forever the shared memory (all the processes have to read the array SUSPICIONS|1..n,1..n]).

3.5 Discussion

Using multi-writer/multi-reader (nWnR) atomic registers If we allow nWnR atomic variables, each column
SUSPICIONS]|x, j] can be replaced by a single SUSPICIONS]j]. Consequently vectors of nWnR atomic variables
can be used instead of matrices of 1WnR atomic variables.

Irisa

Eliminating the local clocks The timers (and consequently the local clocks used to implement them) can be elimi-
nated if we consider that each execution of the statement timer; < timer; — 1 takes at least one time unit. The code
of task 7'3 becomes then the following:

task T'3: timer; < 1;
while (true) do timer; < timer; — 1;
if (timer; = 0) then Line 14 until Line 26 of Figure 2 or 5;
timer; < max({SUSPICIONS[i, k]}1<k<n) + 1
end_if
end_while.

4 An Q algorithm for AS,[AWB] with Bounded Variables Only

41 A Lower Bound Result

This section shows that any algorithm that implements 2 in AS,,[AWB] with only bounded memory requires all
correct processes to read and write the shared memory forever. As we will see, it follows from this lower bound that
the algorithm described in Figure 5 is optimal with respect to this criterium.

Let A be an algorithm that implements 2 in AS ,[AWB] such that, in every run R of A, the number of shared
memory bits used is bounded by a value S g (which may depend on the run). This means that in any run there is time
after which no new memory positions are used, and each memory position has bounded number of bits. To make the
result stronger, we also assume that .4 knows ¢ (maximum number of processes that can fail in any run of A).

Theorem 5 The algorithm 4 has runs in which at least ¢ + 1 processes write forever in the shared memory.

Proof To prove the claim we construct a run R of 4 such that:
1. Ris fault free,
2. Process p; is synchronous while the rest of processes are asynchronous, and

3. There is an infinite sequence of times 79 < 73 < 72 < ... such that, Vi > 0, in the interval (7;,_1, ;] some
process changes its leader or at least ¢ + 1 processes write in the shared memory.

Clearly, since a leader must be eventually elected in R and the number of processes is finite, due to Item 3, there is a
set of at least ¢ 4+ 1 processes that write in the shared memory forever.

For simplicity, let us define 7o = 0. This will be the base case. Then, for i > 0 let us assume R is already
constructed up to time ;. We construct now interval (7;_1,7;]. This interval is constructed differently depending
on which of the following two cases occurs.

o If at time 7;,_; the leader of some process p; is an asynchronous process py. (i.e., & # 1), we first consider a
run R; that behaves exactly like R up to time 7;_;. Then, after that time all processes advance synchronously
(e.g., one step per time unit), except p, which crashes at time 7;_; + 1. By Eventual Leadership, there is a time
T > T;—1 In R; at which no process considers py, as its leader. Then, let us define 7; = 7 + 1 and make R to
behave in the interval (r;_1,7;] as follows. All processes except p;, behave in this interval exactly like in the
interval (7;_1,7;] of R;. Process p;, does not crash, but is stopped at time 7;_; + 1 and does not execute any
step until the end of the interval. This behavior is possible since p, is asynchronous. Then, we have that in the
interval (7;_1, 7;] some process changed its leader. This ends the first case.

e The second case occurs when at time 7;_; in R the leader of all processes is the synchronous process pi. As
before we now consider an auxiliary run R; that behaves exactly like R up to time 7;,_;. After that time all
processes advance synchronously (e.g., one step per time unit) in R ;. If some process p; changes its leader in
R; at some time 7 > 7;_1, then we define ; = 7 + 1 and make the interval (7;_1, ;] of R behave exactly as
interval (7;_1, 7;] of R;.

Otherwise, if no process changes its leader in R; after 7;,_,, we have from Lemma 5 that p, writes in the shared
memory forever. Let us assume by way of contradiction that there is a time = > 7;_ after which at most ¢t — 1
other processes write forever in the shared memory in R;. Since the shared memory is bounded, some state

PIn°1821

(understood as the value of all its bits) S of the shared memory must occur infinitely often in R ; after 7. (First
line in Figure 4 where the state S is described with an area with stripes.)

Let us consider now a run R which behaves exactly like R; up to time 7 > 7 at which the shared memory is
in state S (second line in Figure 4). Then, at that time the (up to ¢) processes that were writing in the shared
memory (including p,) crash in R}. The rest of the processes advance synchronously (and hence the AWB
assumption holds in R!) until the smallest time 7"/ > 7' at which some process changes its leader or some
process writes in the shared memory. This must eventually occur by Eventual Leadership, since the leader of all
the processes at time 7' has crashed in R}. Note that in the interval (7', 7"") all read operations find the shared
memory in state S.

Consider now another run R} in which the up to ¢ processes (including p1) that write forever in R; behave like
they do in that run, while the rest of processes (let us denote this set of processes by L) behave like in R ; up to
time 7’ (last line in Figure 4.) After 7/, the processes in L are delayed (note that they are all asynchronous) so
that every time they read form the shared memory they find it in state S (see Figure 4). From the behavior of
the processes in L in run R} and the fact that they cannot distinguish run R} from run R}, we have that there is
atime 7" > 7' at which some process in L changes its leader or writes in the shared memory in run R. Then,
we define 7; = 7" 4+ 1 and make interval (7;_1, 7;] of R behave exactly like that interval in R/

- / e

-1 T T
R == g |
1
anges or
to the shared memory
Rg ——
szv - AL

Figure 4: Illustrating the runs R;, R} and R/

Figure 4 summarizes the previous reasonning. In the first run R ;, after 7, only ¢ processes write forever. The
same state S (depicted by the area with stripes) occurs repeatedly forever. In the run R, these ¢ processes
crash in state S (they crash at the time marked with a cross). The read operations from the other processes are
indicated with black dots. In the run R, the same processes as in R} read while the system in the state .S.

|:]Theorem 5

The system model defined in this paper assumes ¢ = n — 1. Hence the following corollary.

Corollary 1 Any algorithm that implements €2 in AS ,,[AWB] with bounded shared memory has runs in which all
processes write the shared memory forever.

4.2 An algorithm with only bounded variables

Principles and description As already indicated, we are interested here in an algorithm whose variables are all
bounded. To attain this goal, we use a hand-shaking mechanism. More precisely, we replace the shared array
PROGRESS[1..n] and all the local arrays last;[1..n], 1 < i < n, by two shared matrices of 1WnR boolean val-
ues, denoted PROGRESS[1..n,1..n] and LAST[1..n,1..n].

The hand-shaking mechanism works a follows. Given a pair of processes p; and pr, PROGRESS][i, k] and
LASTTIi, k] are used by these processes to send signals to each other. More precisely, to signal p that it is alive,
p; Sets PROGRESS|i, k] equal to ~LASTYi, k]. In the other direction, p;, indicates that it has seen this “signal” by
cancelling it, namely, it resets LAST[i, k] equal to PROGRESS(i, k]. 1t follows from the essence of the hand-shaking

Irisa

mechanism that both p; and p;, have to write shared variables, but as shown by Corollary 1, this is the price that has to
be paid to have bounded shared variables.

Using this simple technique, we obtain the algorithm described in Figure 5. In order to capture easily the parts that
are new or modified with respect to the previous algorithm, the line number of the new statements are suffixed with
the letter R (so the line 8 of the previous protocol is replaced by three new lines, while each of the lines 16, 17 and 19
is replaced by a single line). This allows a better understanding of the common principles on which both algorithms
rely.

task T'1:

(1) when leader() isinvoked:

(2) for_each k € candidates; do

©)] susp;[k] < X1< <, SUSPICIONS]|j, k] end_for;
(4) let (_7Z) = IeX_min({(SU/Spi [k]yk)}kecandidatesi);
(5) return(¢)

task T2:
(6) repeat_forever
(7) while (leader() = 7) do

(8.R1) for_each k € {1,...,n} \ {i} do

(8.R2) PROGRESS[i,k] < ~LASTI[i, k]
(8.R3) end_for;

9) if STOP/i] then STOP[i] < false end_if

(10) end_whileg;
(11) if (-~ STOP[i]) then STOPJi] «+ true end.if
(12) end_repeat

task 7'3:

(13) when timer; expires:

(14) for_each k € {1,...,n} \ {7} do

(15) stop_k; <~ STOPIk];

(16.R1) progress_k; < PROGRESS|[k,1];
(17.R1) if (progress-k; # LASTk,i]) then
(18) candidates; < candidates; U {k};
(19.R1) LASTI[k,i] < progress_k;

(20) dseif (stop.k;) then

(21) candidates; < candidates; \ {k}

(22) else.if (k € candidates;) then

(23) SUSPICIONS|i, k] < SUSPICIONS[i, k] + 1;
(24) candidates; <« candidates; \ {k}

(25) end_if

(26) end_for;

(27) set timer; to max({SUSPICIONS[i, k]}1<<n) + 1

Figure 5: All variables are IWMR and bounded

Proof of the algorithm The statement of the lemmas 1, 2, 3 and 4, and Theorem 1 are still valid when the
shared array PROGRESS[1..n] and the local arrays last;[1..n], 1 < i < n are replaced by the shared matrices
PROGRESS[1..n,1..n]and LAST[1..n,1..n].

As far as their proofs are concerned, the proofs of the lemmas 3 and 4 given in Section 3.3 are verbatim the same.
The proofs of the lemmas 1 and 2, and the proof of Theorem 1 have to be slightly modified to suit to the new context.
Basically, they differ from their counterparts of Section 3.3 in the way they establish the property that, after some time,
no correct process p; misses an “alive” signal from a process that satisfies the assumption AWB ;. (More specifically,
the sentence “there is a time after which PROGRESS|k] does no longer increase” has to be replaced by the sentence
“‘there is a time after which PROGRESS|k, i] remains forever equal to LAST[k,]”.) As they are very close to the
previous ones and tedious, we don’t detail these proofs. (According to the usual sentence, “They are left as an exercise
to the reader™.)

PIn°1821

The same reasoning as the one done in the proof of the Theorem 2 shows that each shared variable SUSPICIONS|j, k],
< j,k < n, is bounded. Combined with the fact that the variables PROGRESS|j, k] and LAST[j, k] are boolean,
we obtain the following theorem.

Theorem 6 All the variables used in the algorithm described in Figure 5 are bounded.
The following theorem is the counterpart of Theorem 3.

Theorem 7 Let p, be the process elected as the eventual common leader, and p;, ¢ # £, any correct process. There is
a time after which the only variables that are written are PROGRESS|(,] (written by p,) and LASTI¢,] (written

by p;).

Proof The proof that the variables PROGRESS|(, j], 1 < j < n, are infinitely often written, and the proof that there
is a time after which the variables STOP[j], 1 < j < n, and the variables SUSPICIONS|j, k], 1 < j,k < n, are no
longer written is the same as the proof done in Theorem 3.

The fact that there is a time after which PROGRESS|z,j], 1 < z,j < n, z # £, are no longer written follows
from the fact that, after p, has been elected, no process p,. executes the body of the while loop of task 7°2.

Let us now consider any variable LAST [z, y], = # £. As, after p, has been elected, no correct process p,., « # ¢,
updates PROGRESS|[z,y] (at line 8.R2), it follows that there is a time after which LAST [z, y] = PROGRESS|x, y]
remains forever true for 1 < z,y < n and = # (. Consequently, after a finite time, the test of line 17.R1 is always
false for p,,, © # ¢, and LAST |z, y] is no longer written. O heorem 7

Finally, the next theorem follows directly from Corollary 1.

Theorem 8 The 2 algorithm described in Figure 5 is optimal wit respect the number of processes that have to write
the shared memory.

5 Conclusion

This paper has addressed the problem of electing an eventual leader in an asynchronous shared memory system. It has
three main contributions.

e The first contribution is the statement of an assumption (a property denoted AW B) that allows electing a leader
in the shared memory asynchronous systems that satisfy that assumption. This assumption requires that after
some time (1) there is a process whose write accesses to some shared variables are timely, and (2) the other
processes have asymptotically well-behaved timers. The notion of asymptotically well-behaved timer is weaker
than the usual notion of timer where the timer durations have to monotonically increase when the values to
which they are set increase. This means that AWB is a particular weak assumption.

e The second contribution is the design of two algorithms that elect an eventual leader in any asynchronous shared
memory system that satisfies the assumption AWB. In addition of being independent of ¢ (the maximum number
of processes allowed to crash), and being based only on one-writer/multi-readers atomic shared variables, these
algorihms enjoy noteworthy properties. The first algorithm guarantees that (1) there is a (finite) time after which
a single process writes forever the shared memory, and (2) all but one shared variables have a bounded domain.
The second algorithm uses (1) a bounded memory but (2) requires that each process forever writes the shared
memory.

e The third contribution shows that the previous tradeoff (bounded/unbounded memory vs number of processes
that have to write) is inherent to the leader election problem in asynchronous shared memory systems equipped
with AWB. It follows that both algorithms are optimal, the first with respect to the number of processes that
have to forever write the shared memory, the second with respect to the boundedness of the memory.

Several questions remain open. One concerns the first algorithm. Is it possible to design a leader algorithm in
which there is a time after which the eventual leader is not required to read the shared memory? Another question is
the following: is the second algorithm optimal with respect to the size of the control information (bit arrays) it uses to
have a bounded memory implementation?

Irisa

References

[1] Abraham I., Chockler G.V., Keidar I. and Malkhi D., Byzantine Disk Paxos, Optimal Resilience with Byzantine Shared
Memory. Proc. 23th ACM Symposium on Principles of Distributed Computing (PODC’04), ACM Press, pp. 226-235, 2004.

[2] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and Toueg S., On Implementing Omega with Weak Reliability and Syn-
chrony Assumptions. Proc. 22th ACM Symposium on Principles of Distributed Computing (PODC’03), ACM Press, pp.
306-314, 2003.

[3] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and Toueg S., Communication-Efficient Leader Election and Consensus
with Limited Link Synchrony. Proc. 23th ACM Symposium on Principles of Distributed Computing (PODC’04), ACM Press,
pp. 328-337, 2004.

[4] Aguilera M.K., Englert B. and Gafni E., On Using Network Attached Disks as Shared Memory. Proc. 21th ACM Symposium
on Principles of Distributed Computing (PODC’03), ACM Press, pp. 315-324, 2003.

[5] Chandra T. and Toueg S., unreliable Failure Detectors for Resilient Distributed Systems. Journal of the ACM, 43(2):225-267,
1996.

[6] Chandra T., Hadzilacos V. and Toueg S., The Weakest Failure Detector for Solving Consensus. Journal of the ACM, 43(4):685-
722, 1996.

[7] Dwork C., Lynch N. and Stockmeyer L., Consensus in the Presence of Partial Synchrony. Journal of the ACM, 35(2):288-323,
1988.

[8] Fischer M.J., Lynch N. and Paterson M.S., Impossibility of Distributed Consensus with One Faulty Process. Journal of the
ACM, 32(2):374-382, 1985.

[9] Gafni E. and Lamport L., Disk Paxos. Distributed Computing, 16(1):1-20, 2003.

[10] Gibson G.A. et al., A Cost-effective High-bandwidth Storage Architecture. Proc. 8th Int’l Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS’98), ACM Press, pp. 92-103, 1998.

[11] Guerraoui R. and Raynal M., The Information Structure of Indulgent Consensus. IEEE Transactions on Computers,
53(4):453-466, 2004.

[12] Guerraoui R. and Raynal M., The Alpha of Asynchronous Consensus. The Computer Journal, To appear, 2006.

[13] Guerraoui R. and Raynal M., A Leader Election Protocol for Eventually Synchronous Shared Memory Systems. 4th Int’l
IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS’06), IEEE Computer Society
Press, pp. 75-80, 2006.

[14] Hélary J.-M., Hurfin M., Mostefaoui A., Raynal M. and Tronel F., Computing Global Functions in Asynchronous Distributed
Systems with Perfect Failure Detectors. IEEE Transactions on Parallel and Distributed Systems, 11(9):897-909, 2000.

[15] Herlihy M.P. and Wing J.M, Linearizability: a Correctness Condition for Concurrent Objects. ACM Transactions on Pro-
gramming Languages and Systems, 12(3):463-492, 1990.

[16] Lamport L., The Part-Time Parliament. ACM Transactions on Computer Systems, 16(2):133-169, 1998. (The first version of
Paxos appeared a a DEC Tech Report in 1989.)

[17] Larrea M., Fernandez A. and Arévalo S., Optimal Implementation of the Weakest Failure Detector for Solving Consensus.
Proc. 19th Symposium on Resilient Distributed Systems (SRDS’00), IEEE Computer Society Press, pp. 52-60, 2000.

[18] Lee E.K. and Thekkath C., Petal: Distributed Virtual Disks. Proc. 7th Int’l Conference on Architectural Support for Program-
ing langaues and Operating Systems (ASPLOS’96), ACM Press, pp. 84-92, 1996.

[19] Lo W.-K. and Hadzilacos V., Using failure Detectors to solve Consensus in Asynchronous Shared Memory Systems. Proc.
8th Int’l Workshop on Distributed Computing (WDAG’94), Springer Verlag LNCS #857, pp. 280-295, 1994.

[20] Malkhi D., Oprea F. and Zhou L., 2 Meets Paxos: Leader Election and Stability without Eventual Timley Links. Proc. 19th
Int’l Symposium on DIStributed Computing (DISC’05), Springer Verlag LNCS #3724, pp. 199-213, 2005.

[21] Mostefaoui A., Mourgaya E., and Raynal M., Asynchronous Implementation of Failure Detectors. Proc. Int’l IEEE Confer-
ence on Dependable Systems and Networks (DSN’03), IEEE Computer Society Press, pp. 351-360, 2003.

PIn°1821

[22] Mostefaoui A. and Raynal M., Leader-Based Consensus. Parallel Processing Letters, 11(1):95-107, 2001.

[23] Mostéfaoui A., Raynal M. and Travers C., Crash Resilient Time-Free Eventual Leadership. Proc. 23th Symposium on Resilient
Distributed Systems (SRDS’04), IEEE Computer Society Press, pp. 208-218, 2004.

[24] Mostéfaoui A., Raynal M. and Travers C., Time-free and Timeliness Assumptions can be Combined to Get Eventual Leader-
ship. IEEE Transactions on Parallel and Distributed Systems, 17(7):656-666, 2006.

[25] Powell D., Failure Mode Assumptions and Assumption Coverage. Proc. of the 22nd Int’l Symposium on Fault-Tolerant
Computing (FTCS-22), Boston, MA, pp.386-395, 1992.

[26] Raynal M., A Short Introduction to Failure Detectors for Asynchronous Distributed Systems. ACM SIGACT News, Distributed
Computing Column, 36(1):53-70, 2005.

Irisa

