
Appears in Proceedings of the 38
th International Conference on Dependable Systems and Networks (DSN), June 2008.

Trace-Based Microarchitecture-Level Diagnosis of Permanent Hardware Faults

Man-Lap Li, Pradeep Ramachandran, Swarup K. Sahoo, Sarita V. Adve, Vikram S. Adve, Yuanyuan Zhou
Department of Computer Science

University of Illinois at Urbana-Champaign
swat@cs.uiuc.edu

Abstract

As devices continue to scale, future shipped hardware
will likely fail due to in-the-field hardware faults. As
traditional redundancy-based hardware reliability solutions
that tackle these faults will be too expensive to be broadly
deployable, recent research has focused on low-overhead
reliability solutions. One approach is to employ low-
overhead (“always-on”) detection techniques that catch
high-level symptoms and pay a higher overhead for (rarely
invoked) diagnosis.

This paper presents trace-based fault diagnosis, a diag-
nosis strategy that identifies permanent faults in microar-
chitectural units by analyzing the faulty core’s instruc-
tion trace. Once a fault is detected, the faulty core is
rolled back and re-executes from a previous checkpoint,
generating a faulty instruction trace and recording the
microarchitecture-level resource usage. A diagnosis process
on another fault-free core then generates a fault-free trace
which it compares with the faulty trace to identify the
faulty unit. Our result shows that this approach successfully
diagnoses 98% of the faults studied and is a highly robust
and flexible way for diagnosing permanent faults.

1. Introduction

As we continue to scale CMOS, hardware reliability
threatens to be a major challenge to reaping the benefits
of Moore’s law. Permanent faults due to phenomena such
as wear-out and infant mortality are growing concerns
for in-field processor reliability. The problem is pervasive
across the broad computing market; therefore, there has
been much emphasis on solutions that incur limited area,
power, and performance overheads. Traditional manufactur-
ing, device, and circuit level solutions often make worst-
case, overly conservative assumptions. An alternative is
to use an aggressive design that risks faults but relies on

This work is supported in part by the Gigascale Systems Research Center
(funded under FCRP, an SRC program), the National Science Foundation
under Grants NSF CCF 05-41383, CNS 07-20743, and NGS 04-06351,
an OpenSPARC Center of Excellence at the University of Illinois at
Urbana-Champaign supported by Sun Microsystems, and an equipment
donation from AMD.

microarchitecture and higher system levels to detect these
faults on-line.

While traditional high-level detection involves core-level
redundancy, more recent techniques propose very low-cost
monitoring of high level symptoms of faults. For example,
Wang and Patel consider traps and mispredictions of high
confidence branches as symptoms of transient faults [19].
Racunas et al. dynamically predict the valid set of values
that an instruction will produce, and consider a departure
from this prediction as a symptom of a (transient) fault [14].
Dimitrov and Zhou monitor the variance between the two
most recent results produced by two dynamic instructions
of the same PC, and any large variance indicates a possible
soft error [5]. We have recently explored various symptoms
– fatal traps, hangs, high OS activity, and program based
invariant violations – as the mechanisms for detecting
permanent and transient faults in our SWAT system [6],
[15]. Meixner et al. describe a set of high-level detection
techniques for a simple processor [9]. Such high-level
detection mechanisms can be very effective because they
provide coverage for a wide range of fault sources and
faulty components.

Unlike transient faults, permanent faults require diagno-
sis in addition to detection. To ensure continuous operation,
it is important to diagnose the source of the permanent fault
so it can be repaired or reconfigured; e.g., by disabling the
faulty component (such as a faulty core, ALU, or entries
in a buffer, queue, or cache), reducing the frequency of
operation of the component, or using software to replace
the faulty execution of a specific instruction.

While there has been significant recent work on high-
level detection of in-field faults, there is relatively little
work on diagnosing the source of a permanent fault de-
tected in this way. The higher the level at which a fault
is detected, the longer the latency between the actual fault
activation and detection and the more difficult it is to diag-
nose its root cause for repair. Therefore, to reap the benefits
of emerging low-cost high-level detection techniques, we
need to develop effective diagnosis techniques. This paper
concerns such a diagnosis framework.

When a fault is detected and identified to a particular
core, a simple option is to decommission that core [10].
However, that can be wasteful, especially since modern pro-

1



cessors offer opportunities to reconfigure around individual
(failed) microarchitectural components. We therefore inves-
tigate a technique to diagnose the fault to the granularity
of a microarchitectural component. Our technique, Trace
Based Fault Diagnosis (TBFD), is based on the following
observations.

• It is acceptable to incur high overhead for the diagno-
sis procedure since it is invoked only in the infrequent
case when a fault is detected (in contrast, the detection
mechanism needs to be low overhead since it must be
on all the time).

• Many detection schemes today rely on a check-
point/restart mechanism for recovery [1], [9], [14],
[19]. Our diagnosis exploits this mechanism to roll
the faulty core back to a pristine checkpoint. It replays
from the checkpoint to generate a detailed record of
the execution trace that activated the fault. This trace
can now be used as a starting point for instruction-
based (functional) diagnosis.

• We exploit the trend towards multicore systems by
using a fault-free core to generate a fault-free trace
against which the replay on the faulty core can be
compared to reveal diagnostic information. Effectively,
we cheaply synthesize Dual-Modular Redundancy
(DMR) for diagnosis, in contrast to expensive always-
on DMR traditionally used for detection.

Our overall scheme proceeds as follows. We assume a
single-threaded program that is executing on a modern out-
of-order superscalar processor. The presence of the fault
in the core is detected through one of the many existing
detection mechanisms [6], [9], [14], [19]. For this work, we
use the low-cost detection methods in the SWAT system
to detect faults within the processor core [6]. Detection
of a permanent fault triggers the firmware-driven TBFD
algorithm on a fault-free core. TBFD rolls the faulty core
back to a pristine checkpoint and replays the execution on
it, while recording detailed information such as microar-
chitectural resource usage for all instructions. TBFD also
downloads the checkpoint from the faulty core to the fault-
free core, and plays a “golden” execution on the fault-free
core. It compares the traces from the fault-free and faulty
cores and systematically analyzes any points of divergence
to accurately diagnose the faulty microarchitectural struc-
ture.

We evaluate the effectiveness of TBFD using
microarchitecture-level fault injection experiments in
a full-system simulation of an out-of-order processor. We
apply TBFD to all the faults that are detected using the
SWAT symptom-based fault detectors [6]. TBFD correctly
diagnosed 89% of the detected faults to a single non-array
structure (e.g., one particular ALU) or a single entry in
an array structure (e.g., a particular register in the register
file). Of the remaining detected faults, TBFD is able to
correctly diagnose almost all of them to the correct array
structure (as opposed to a specific entry in the array).

The array entry could be narrowed down using traditional
BIST-like techniques. With the above faults included, the
accuracy of TBFD is 98%. Overall, TBFD presents a
flexible and robust method for in-field microarchitecture
level fault diagnosis.

2. Related Work

Addressing in-field permanent faults at higher system
levels is a relatively new area with little work on high-
level on-line diagnosis. The most related prior work is by
Bower et al. [2], proposed in the context of the DIVA
architecture [1]. Their scheme associates a counter for each
reconfigurable (repairable) microarchitectural resource. As
instructions flow through the pipeline, it keeps track of the
microarchitectural resources used (e.g., which ALU, etc.)
in a bit vector which is carried along through the pipeline.
When a mismatch between the main processor and the
DIVA checker is detected, the counter corresponding to
each resource touched by the mismatching instruction is
incremented. Once a resource counter reaches a certain
threshold value, it is declared faulty. Our scheme differs
from Bower et. al.’s scheme in the following ways. First, we
incur diagnosis related overhead only in the infrequent case
when a fault is detected. Their scheme, however, contains
always-on monitors that present overheads in power and
performance even in the common fault-free operation. Sec-
ond, although their method works well for faults on the data
path, it is not well-suited to handle faults in structures that
establish or rely on logical to physical name translations.
For example, a fault in a register alias table (RAT) entry or
physical register number in a reorder buffer entry (ROB)
is not handled by their technique [2]. TBFD diagnoses the
faulty microarchitectural structure even in these scenarios.

Periodic low-level (conventional) tests to detect faults
at a finer granularity, and using the signature of the test
output to diagnose the fault source have also been pro-
posed [4], [16]. Our diagnosis framework does not require
the overhead (in performance, power, or increased wear-
out) of periodic testing. Our overhead is incurred only in
the infrequent case when a fault is actually detected through
very low-cost detection techniques (e.g., [6]). Further, the
coverage of the test-based approaches is limited by the fault
models used to generate the test vectors. In contrast, our
“test vector” is the program for which the fault was detected
and is therefore known to excite the fault. Nevertheless,
for parts of the chip where our approach does not provide
sufficient diagnosis, conventional test-based schemes may
be used to complement the trace-based diagnosis scheme
and to improve its accuracy.

Of late, there has been much interest in logic self-
test. Specifically, recent projects have explored instruction-
sequence based test (also referred to as functional or
embedded self-test) [3], [12], [20] where the processor
generates its own (pre-specified) set of instructions for



Permanent
fault detected

Invoke diagnosis

Rollback faulty 
core to checkpoint

Load checkpoint 
on fault-free core

Replay execution, 
collect µarch info

Fault-free 
instruction exec

Mismatch in execution
Diagnosis Algorithm

Faults in Front-end

Meta-datapath Faults

Datapath Faults

Figure 1. TBFD overview.

testing. The FRITS tool in particular has been extensively
used for testing real x86 and Itanium processors [12].
In our diagnosis framework, such pre-specified instruction
traces are not generated because the program and inputs
for the execution of interest is already known. However,
such mechanisms that generate pre-specified instruction
sequences can aid in refining the resolution of diagnosis in
the cases that the existing program inputs fail in providing
sufficient information for accurate diagnosis. These form
interesting future studies, but are beyond the scope of this
paper.

3. Trace-Based Fault Diagnosis

This section describes the different components of our
trace-based fault diagnosis algorithm (TBFD) and its im-
plementation. On detection of a fault in a core, TBFD is
invoked in the firmware of a fault-free core. TBFD must
first determine whether it is a permanent fault (Section 3.1).
It then constructs a detailed trace of the faulty execution
on the faulty core (Section 3.2). This is followed by the
generation of a corresponding fault-free execution on the
fault-free core, and a resulting test trace that incorporates
information from both the faulty and fault-free executions
(Section 3.3). TBFD then analyses the test trace to finally
diagnose the faulty structure (Section 3.4). Section 3.5
provides details on the implementation for TBFD. Sec-
tion 3.6 gives a possible alternative strategy for TBFD
and compares it to the chosen strategy. Figure 1 shows
an overview of TBFD.

3.1. Identifying Permanent Faults

When a symptom is detected in a core, the diagnosis
firmware rolls the core back to the previous checkpoint and
replays the execution. If the symptom does not recur, it is
diagnosed as a transient. If the symptom occurs again, the
diagnosis firmware loads the checkpoint onto another fault-
free core and replays the execution. If the symptom does

not recur in the other core, a permanent fault is diagnosed
in the original symptom-causing core. 1

3.2. Generating the Detailed Faulty Trace

To generate the faulty trace, TBFD rolls the faulty core
back to the previous checkpoint and replays the execution
for a predefined number of instructions. It records a trace
of the execution with the following information for each
retired instruction:
Decode: Decoded opcode, logical source and destination
register identifiers.
Data values: Values read from the source registers and
written into the destination register. For loads, stores, and
branches, it also records the virtual address.
Microarchitectural resources used by the instruction: For
example, the source and destination physical register num-
bers, the specific functional unit used, etc. The specific
information recorded depends on the reconfigurable units
supported in the processor and consequent granularity of
diagnosis required.

Section 3.5 describes hardware support for obtaining and
recording the above information.

3.3. Fault-Free Execution and Test Trace

Next, the fault-free core is loaded with the checkpoint
of the faulty core and the execution is replayed. For each
instruction in this execution, the TBFD firmware compares
the decode and value fields from the corresponding instruc-
tion in the faulty trace. Any mismatches in these fields
cause the firmware to mark the corresponding instruction
in the faulty trace as mismatched and record the cause
for the mismatch. Additionally, the firmware synchronizes
(corrupts) the fault-free core’s state to that of the faulty
core. This allows the fault-free core to continue executing
a path similar to the faulty core until the next activation of
the fault.

It is also possible that the corresponding instruction on
the faulty core was hung at the head of the reorder buffer
and never retired because it waits for its source operand(s)
indefinitely. The firmware marks such an instruction in the
faulty trace as hung. We assume hooks are available to
extract information of the hung instruction even though it
does not retire. When a hung instruction is encountered,
the analysis algorithm diagnoses the source of the fault by
examining the test trace (Section 3.4). If the algorithm does
not terminate after the analysis, both the faulty core and the
fault-free core are rolled back to generate a new test trace
for further analysis.

We refer to mismatched and hung instructions collec-
tively as misbehaved instructions. We refer to the faulty
trace enhanced with the information about misbehaved
instructions as the test trace.

1. If the symptom occurs in both cores, a software fault is diagnosed
and handed over to the software layer.



3.4. Analysis of the Test Trace

The heart of the TBFD algorithm is the analysis of the
generated test trace to to diagnose the fault. This analysis
can be performed after completing building of the test
trace. Alternatively, it may be periodically invoked after
generating every N instructions of the test trace. The latter
strategy may be more efficient if memory space to store
the trace is at a premium. It also allows terminating test
trace generation as soon as the diagnosis is able to uniquely
identify the faulty structure.

TBFD divides the processor core into three different
parts, on the basis of the information and analysis required
to diagnose a fault in these parts:

1) Front-End: A fault in this part of the processor
affects which instruction is executed, which operation
is executed, and the logical source and destination
registers accessed.

2) Meta-Datapath: Modern out-of-order processors use
register renaming to translate logical register names
to physical registers. Even if the front-end supplies
the correct logical names, a fault in the translated
name can result in erroneous computation. This type
of fault is the largest source of complexity in TBFD
– as we will show later, a corruption in the physical
register name may not be caught by analyzing only
the mismatched instructions. We use the term meta-
datapath to refer to the parts of the core where a fault
can corrupt the physical register name.

3) Datapath: This is the conventional data path, includ-
ing the functional units, buses, and data residing in
the physical register files.

In our work, we inject faults in the following structures
as representatives of each of the above categories (see
Table 2): Front-end: Instruction decoders. Meta-datapath:
Register alias table (RAT) entries; source and destination
(physical) register identifier fields in the reorder buffer
(ROB).2 Datapath: ALU, address generation unit, register
data bus, and integer physical registers.

The analysis described below assumes faults in only the
above structures, but can be extended to others as well.3

The analysis algorithm proceeds by using misbehaved
instructions in the test trace as the starting point of the
diagnosis. On encountering a misbehaved instruction in the
trace, the algorithm systematically analyzes the misbehav-
ior and determines if it can conclusively identify a fault in a
unique structure. If so, it successfully terminates; otherwise,
it updates counters corresponding to the microarchitectural
resources used by the misbehaved instruction in the test
trace. It then moves on to analyzing the next misbehaved

2. In a real implementation, source register identifier fields would be
in the issue queue; however, our simulator models them in the ROB and
our algorithm uses the same terminology.

3. The algorithm assumes Intel Pentium 4 style register renaming with
a distinct retirement register alias table or RRAT.

instruction. If at any stage, one of the resource counters
reaches a value higher than any other counters, the algo-
rithm declares that resource as faulty and terminates. If the
end of the trace is reached, then the algorithm identifies
the resources with the highest value counters as suspected
faulty units – in this case, it is not able to uniquely identify
a faulty resource.

Next we describe how TBFD systematically analyzes the
misbehaved instructions to track down faults to the three
targeted areas in the processor.

3.4.1. Faults in Front-End. If the misbehaved instruction
is a mismatched instruction (i.e., not hung), TBFD first
suspects a front-end fault. (As will be seen later, a hung
instruction can only arise from a meta-datapath fault.) For
this, it simply needs to check if the test trace indicates
that the mismatch occurred in the decode information –
such a mismatch indicates that the instruction word was
corrupted at the front-end. For example, when the faulty
instruction uses r1 as source operand but the fault-free
instruction uses r3 as source operand, a fault is suspected in
the front-end. Consequently, counters of the front-end units
used in the faulty execution are incremented. In this study,
since only decoders are accounted for in the front-end, the
first mismatch in the instruction word makes the decoder
used by the mismatching instruction identified as the unique
faulty unit and successfully terminates the algorithm.

3.4.2. Faults in Meta-Datapath. If either the misbehaved
instruction was hung or if it was a mismatched instruction
and no front-end fault was identified, then TBFD analyzes
the misbehavior to check for meta-datapath faults.

This class of faults requires the most sophisticated anal-
ysis method. This is because, unlike the front-end and
datapath, the first instruction that is affected by such a
fault may not appear as a misbehaved instruction; i.e.,
it may not affect the fields in the faulty trace that are
compared with the fault-free execution. Instead, it may
silently corrupt processor architectural state, causing later
unrelated instructions to misbehave and obscuring the real
source of the fault.

For example, in Figure 2, Ia writes to r3 which is
mapped to physical register p23 and Ic reads from r3. Ib

writes to r1 but is incorrectly mapped to p23 because of
a meta-datapath fault (e.g., the register alias table had the
wrong mapping). Thus, when Ib executes, r3 is corrupted
with the value of r1; however, this is not indicated in any
way in the information recorded for Ib in the test trace.
Now when Ic retires, it sees the wrong value. This is
caught when the faulty trace is compared with the fault-free
execution and Ic is marked as a mismatched instruction.
Now if TBFD were to blindly attribute this mismatch to
the datapath structures used by Ic, the actual meta-datapath
fault will never be identified.

In this study, TBFD focuses on meta-datapath faults in



Ib : r1←←←←r5+r6Ia: r3 ←←←← r2+r2

3. Find next writer of p23
4. Detect p23 mapped to r1 while live!

Retired
Instructions

2. Find producer of r3

Ic: r5←←←←r3-r2

r5 p10

r3 p23

r1

log phy
p15

r5 p10

r3 p23

r1

log phy
p23

r5 p55

r3 p23

r1

log phy
p23

RRAT RRAT RRAT

1. Mismatch!

X

Figure 2. An example scenario depicting how a physical
register that is mapped to more than one logical register is
identified by TBFD.

the ROB and RAT entries. In particular, TBFD checks
the integrity of the logical-physical register mappings of
the misbehaved instruction based on the following two
conditions of fault-free executions.

1) A non-free physical register can be mapped to at most
one logical register at any time.

2) If an instruction reads from physical register px that
is mapped to logical register ry, the last instruction
that writes to logical register ry (the producer) must
have written to physical register px.

If a fault occurs in the meta-datapath, one or both of the
above conditions may not hold. The first condition above
handles the case discussed in Figure 2, where instruction Ic

is detected as a mismatching instruction (step 1). To check
if condition 2 is violated, TBFD searches backward in the
test-trace to check the integrity of the mappings of Ic’s
registers. Thus, it finds register r3’s producer, instruction
Ia, that maps r3 to physical register p23 (step 2). To verify
that condition 1 holds, TBFD searches forward from Ia for
the next writer to p23 and finds that Ib maps r1 to p23 (step
3) while it is still mapped to r3 (step 4) and condition 1 is
violated. Consequently, TBFD increases the counters of the
RAT entries for both r1 and r3 since it does not know where
the fault is located. Nonetheless, with more misbehaved
instructions, the faulty RAT entry can be identified.

Condition 2 is usually violated by a ROB fault. To check
if condition 2 holds, TBFD goes backwards in the test-trace
from the misbehaved instruction to the producing instruc-
tion and verifies its logical to physical register mappings.
For example, a fault in the destination register number field
causes instruction IA to write to a different physical register
than indicated in the RAT. Then, a dependent instruction
IB reads the mapping from the RAT and waits indefinitely
for a physical register that will never be set ready by IA. As
a result, IB becomes a hung instruction. TBFD then starts
tracing from IB to find that condition 2 is violated. As a
result, TBFD increments the counter of the ROB entries of
both IA and IB . With more misbehaved instructions, the
faulty ROB entry can be uniquely identified.

However, even with techniques described above, RAT
faults that are exercised by speculative instructions can be

hard to diagnose down to the individual RAT entries. The
scenario described below illustrates the difficulty. Consider
that a logical register r1 is mapped to a physical register
p1. Suppose an instruction I that writes to logical register
r2 enters the rename stage. Because of a fault in the
RAT entry, r2 gets mapped to the already live physical
register p1. Then, I executes, writes to p1, and wipes
out r1’s data. Later on, I is squashed as a result of an
exception or a branch mis-prediction, causing p1 to be freed
and added to the free list (even though it is supposed to
be live and mapped to r1). Subsequently, when another
logical register is mapped to p1 and written by another
instruction that retires and becomes architecturally visible,
r1 now shows a corruption in the architectural state as
its value is now incorrect. However, since TBFD never
looks at the intervening speculative instruction I (remember
that TBFD only tracks retiring instructions), the faulty
RAT entry is not correctly identified. Nevertheless, with
more misbehaved instructions diagnosed, TBFD is able to
identify the existence of RAT faults.

3.4.3. Faults in Datapath. After TBFD determines that
a mismatched instruction is unlikely to have been caused
by a fault in the front-end or the meta-datapath, a fault
in the datapath is suspected. At this point, the microarchi-
tectural structures (the functional unit, the result bus, and
the destination physical register) on the datapath that are
used by the misbehaved instruction are deemed potentially
faulty. As a result, the counters of these structures are
incremented. With more misbehaved instructions analyzed,
the faulty module is likely to be the most frequently used
with the highest counter value among all structures and
thus can be identified.

3.5. Implementation
The TBFD algorithm is implemented in firmware. The

detection of a fault on a core must result in an interrupt on
another core (possibly through a protected channel) where
the control transfers to the diagnosis firmware on that core.
A single-core fault model implies that the latter core is
fault-free; otherwise, the system must provide a protected,
possibly simpler, fault-free core to invoke for diagnosis
and recovery. (Analogous support is likely required for
multicore systems that aim to provide continuous operation
in the presence of a non-repairable fault in a core.)

Additionally, the system must support checkpoint gen-
eration for the faulty core and checkpoint migration to a
fault-free core. Several techniques have been proposed for
checkpointing for the purpose of recovery from hardware
failures [13], [17], and can be used for TBFD as well.
For example, the SafetyNet scheme [17] could be used,
with the checkpointed state made accessible to firmware
on other cores.

The most significant hardware support required for
TBFD pertains to the generation of the test-trace. For



Instruction Trace

I1 : Add r1 ← r2 + r3

I2 : Mul r4 ← r1 + r3

I3 : St Mem[r2] ← r4
…

RAT

r1 p10

Logical Phy

r2 p20
r3 p35
r4 p47

Register File

p10 30

p20 10

p35 20

p47 600
Instruction Trace Buffer (ITB)

Decode information µarch resource info Data values

s vals val t valdt d ps p t pdop Unit Addr

r2 10 20 30r3 r1 p20 p35 p10Add alu1 -
r1 30 20 600r3 r4 p10 p35 p47Mul alu2 -
r2 - - 600r4 - p20 p47 -St stq7 0x10

I1
I2
I3

Figure 3. An example Instruction Trace Buffer (ITB).
For each instruction retired by the faulty core in diagnosis-
mode, the ITB records information pertaining to 1) decoded
instruction information, 2) some microarchitectural resources
used by the instruction, and 3) the data values used by the
instruction.

this purpose, we propose to use an Instruction Trace
Buffer or ITB, illustrated in Figure 3. Since diagnosis is
not performance-critical, the ITB could be implemented
entirely in memory or in cache. For better efficiency, we
propose an on-chip hardware FIFO buffer that is periodi-
cally flushed to memory.

On the faulty core, the ITB is responsible for storing
three types of information for each retired instruction: the
decoded instruction information, the microarchitectural re-
sources used by the retiring instruction, and the data values
of the retiring instruction. The decoded information of
each instruction includes the instruction opcode, the source
operands, and the destination operands. The microarchi-
tectural resources usage information refers to microarchi-
tectural structures (e.g., decoder, functional units, source
and destination physical registers, etc.) that were used by
the retiring instruction. The data values of the retiring
instruction corresponds to the source values, destination
value, and the virtual address used in the case of a load,
store, or branch. Figure 3 gives an example of an ITB for
a small retirement trace from a faulty core.

Populating the fields of the ITB: Since the ITB is
populated only in the rare event of a fault, we propose
to populate the ITB with additional circuitry that taps into
current microarchitectural structures for this information.
An entry in the ITB is allocated once the instruction is
decoded, with decode information from the decoder. When
the instruction is allocated a ROB entry, and added to an is-
sue queue, microarchitecture-level usage information (such
as the physical registers used, ROB entry occupied, ALU
used, etc.) can be populated. When the instruction writes
its result, the data values corresponding to the instruction
(destination register value and address) can be stored. If,

however, the instruction is flushed, the corresponding entry
from the ITB must be discarded as the trace accounts only
for retiring instructions.

While the ITB and its upstream and downstream logic
would incur area overhead, they are only activated during
diagnosis after a rare event of a detection. During fault-free
execution, these modules can be power-gated to reduce the
power and performance overhead during normal operations.
This is in contrast to previous methods of obtaining such
information by adding bits that flow along with the instruc-
tions throughout the pipeline [2].

Diagnosis granularity and size of ITB: The granularity at
which TBFD can diagnose a faulty microarchitectural unit
is governed by the level of detail at which information is
recorded in the ITB, which in-turn determines the size of
the ITB. The fields to record in the ITB can be determined
based on the level of repair supported by hardware. For
example, if the hardware only supports replacing an entire
array, as opposed to individual entries in the array, the ITB
needs to only record the fact that this array was accessed,
and not the specific entry in the array that was accessed. In
our simulations, we assume that fine-grain reconfiguration
is supported for the parts of the front-end, meta-datapath,
and datapath which may contain faults (Section 3.4) and
record their usage information in the ITB.

Test-trace generation and analysis: On the fault-free core,
the firmware performs the golden execution from the faulty
core’s checkpoint, comparing instructions from the golden
and faulty executions. On a misbehaved instruction, it needs
to corrupt the golden state and enhance the faulty trace
with bits to indicate the source of the misbehavior, thereby
generating the test-trace. These bits are best implemented as
extensions to the ITB. Since the golden execution is already
emulated in software, it is unlikely to benefit from any
acceleration due to hardware support of the ITB. Therefore,
the additional bits above need not be implemented in the
hardware FIFO for the ITB, and can simply be maintained
in software. Finally, the analysis algorithm is invoked on
the generated test trace – this algorithm works entirely in
software.

3.6. Alternative Strategy for TBFD

The TBFD description above suggests that the fault-
free core’s state is synchronized to the faulty core’s bad
state when a mismatch occurs between the two executions.
We also considered an alternative where the faulty core
is synchronized to the fault-free core’s good state when a
mismatch is encountered. We refer to this alternative as
the “patching” (versus corrupting) execution. A possible
advantage of this alternative is that in diagnosis mode, the
faulty core is made to go through the original program
rather than potentially arbitrary code and data, while still
communicating the impact of the fault on this code. We



implemented this method and did not find better diagnosis
coverage than the corrupting method. We preferred the
corrupting method since it is much easier to implement
as follows.

In the corrupting version we chose, we did not have to
execute the fault-free and faulty cores in synchrony. In fact,
the entire faulty trace could be generated before the fault-
free core started execution. The firmware on the fault-free
core took care of corrupting the fault-free execution. In the
patching version, this is not possible because the firmware
cannot run on the faulty core. The faulty core must instead
run roughly synchronized with the fault-free core. It must
send the results of its instructions to the fault-free core and
the fault-free core must send back any patches if needed.
This is clearly much more complex and higher overhead
than the corrupting version. Additionally, it requires the
faulty core to patch the register file with data from the
fault-free core while not knowing whether the path for
overwriting the register file is fault-free.

It is interesting to note that the patching mode closely
resembles the scheme proposed by Bower et al. where
the DIVA checker is essentially the fault-free core that
patches the architectural state of the faulty core [2]. While
this is feasible in a tightly coupled scenario like DIVA,
in a general multicore environment, it requires too tight
lockstepping of two cores to be widely deployable.

4. Experimental Methodology

4.1. Simulation Environment

We use a full system simulation environment compris-
ing the Wisconsin GEMS microarchitectural and memory
timing simulators [7] in conjunction with the Virtutech
Simics full system functional simulator [18]. Together,
these simulators provide cycle-by-cycle microarchitecture-
level timing simulation of a real workload (6 SpecInt2000
and 4 SpecFP2000) running on a real operating system (full
Solaris-9 on SPARC V9 ISA) on a modern out-of-order
superscalar processor and memory hierarchy (Table 1).

The GEMS + Simics infrastructure is based on the
timing-first approach for simulation [8]. In this approach,
the cycle-accurate GEMS timing simulator first executes
an instruction. When this instruction is ready to retire, the
functionally accurate Simics executes the same instruction.
The resulting states are compared for coherence and in the
case that they don’t match (which may arise because GEMS
does not implement a small subset of infrequently used
instructions in the SPARC ISA), the timing simulator’s state
is updated with that from the functional simulator which is
assumed to be accurate.

For our fault injections, we inject a single fault into the
timing simulator’s microarchitectural state and propagate it
as the faulty values are read through the system. When a
mismatch in the architectural state of the functional and
the timing simulator is detected, the functional simulator

Base Processor Parameters
Frequency 2.0GHz
Fetch/decode/execute/retire 4 per cycle
Functional units 2 Int add/mul, 1 Int div

2 Load, 2 Store, 1 Branch
2 FP add, 1 FP mult
1 FP div/Sqrt

Integer FU latencies 1 add, 4 mul, 24 div
FP FU latencies 4 default, 7 mul, 12 div
Reorder buffer size 128
Register file size 256 integer, 256 FP
Load-store queue 64 entries

Base Memory Hierarchy Parameters
Data L1/Instruction L1 16KB each
L1 hit latency 1 cycle
L2 (Unified) 1MB
L2 hit/miss latency 6/80 cycles

Table 1. Parameters of the simulated processor.
µarch structure Fault location
Instruction decoder Input latch of one of the decoders
Integer ALU Output latch of one of the int ALUs
Register bus Bus on the write port to the reg file
Physical int reg file A physical reg in the int reg file
Reorder Buffer (ROB) Src/dest reg # of instr in ROB entry
Reg Alias Table (RAT) Logical→ phy map of logical reg
Address gen unit (AGEN) Virtual address generated by the unit

Table 2. Fault injection locations.

(Simics) is corrupted if it is due to the injected fault. Oth-
erwise, the value is read from Simics to GEMS, upholding
the timing-first paradigm.

4.2. Faults Diagnosed

The focus of this study is to diagnose the permanent
faults that are detected by the SWAT system. We injected
11,200 stuck-at and dominant-0 and dominant-1 bridging
faults in various microarchitectural components (listed in
Table 2) in 40 random points (in both time and space)
during application execution. The injected faults are then
simulated for 10M instructions in detailed timing simula-
tion during which the low-cost software-symptom detectors
in the SWAT system detect these faults. This methodology
is identical to that in [6].

The detection techniques achieve a high coverage by
detecting 95% of the non-masked faults, detecting approx-
imately 8500 faults. These faults are subject to diagnosis
using our TBFD algorithm, to identify the faulty microar-
chitectural component.

4.3. Implementation Assumptions

Emulating fault-free execution: We emulate the fault-
free execution by exploiting the inherent dual execution
mode prevalent in our simulation because of the timing-
first simulation paradigm. When a fault is detected, the
faulty execution is rolled back and replayed in the GEMS
timing simulator, as it would in a real system. For the fault-
free execution, we use the Simics functional simulator that
runs in parallel with the timing simulation. Copying the
state corrupted in the timing simulator due to the fault to



0%

20%

40%

60%

80%

100%

Decoder INT ALU Reg
Dbus

Int Reg ROB RAT AGEN Overall

P
er

ce
n

ta
g

e 
o

f 
D

et
ec

te
d

 F
au

lt
s

Incorrect

No
Mismatch

Correct
Type

Among 2

Unique

Figure 4. Effectiveness of microarchitecture-level fault diag-
nosis. The figure shows the ability of the diagnosis algorithm
to accurately diagnose detected faults. Overall, 98% of the
detected faults are accurately diagnosed as either (1) the
correct non-array structure or the correct entry within an
array structure (the Unique stack); or (2) within one of two
non-array structures or entries of array structures (Among
2); or (3) the correct array structure type but not the correct
entry within the structure (Correct Type).

the functional simulator corresponds to synchronizing the
fault-free and faulty execution values. This process allows
detection of misbehaved instructions as soon as they retire;
therefore, the test-trace is also immediately generated and
saved to a simulated ITB.

Checkpointing: In our simulations, fault-free checkpoints
are recorded at the beginning of the execution, prior to
fault injection. Rollback is implemented by reloading the
register state, the TLB state, and rolling back the changes
in the cache and memory state (similar to SafetyNet [17]).

Trace length: We run the faulty and the fault-free execu-
tions for up to 30 million instructions from the checkpoint.
For efficiency, we invoke the TBFD analysis every 10,000
instructions collected in the ITB. If the algorithm finds the
unique faulty structure, we terminate the simulation.

5. Results

Figure 4 presents the results indicating the effectiveness
of the diagnosis for faults in different microarchitectural
structures. In each bar, the Unique stack represents cases
that the diagnosis process correctly and uniquely diagnoses
the faulty non-array structure or the faulty entry within an
array structure. The Among 2 stack represents cases that
the diagnosis diagnoses 2 potentially faulty units and one of
them is truly faulty. The Correct Type stack shows the cases
where the diagnosis does not diagnose the faulty array entry
(e.g., RAT entry), but the faulty array structure (e.g., RAT)
is correctly diagnosed. The No Mismatch stack represents
cases where no misbehaved instruction is found for 30M
instructions. The Incorrect stack shows the cases where

the diagnosis process diagnoses one or more structures as
faulty, none of which is the actual faulty structure. The
height of each bar is normalized to all the cases on which
the diagnosis procedure is invoked (i.e., all faults detected
within 10M instructions as discussed in Section 4.2).

Of all detected faults, our trace-based diagnosis correctly
narrows 89% of the faults down to a single non-array
structure (e.g., ALU) or a specific entry in an array structure
(e.g., physical register # 15) and 92% of the faults down
to two structures or entries. Assuming other techniques are
available for testing array structures, diagnosis only needs
to narrow the fault down to the array structure (e.g., RAT)
instead of the array entry (e.g., RAT entry # 10). In this
case, additional 5% of the faults can be correctly diagnosed.
Overall, TBFD is able to narrow 98% of the detected
permanent faults down to one, or two potentially faulty
structures or array entries, and the faulty array structure.

5.1. Uniquely Diagnosed Faulty Structures

When TBFD correctly narrows a detected fault down
to a single unit or array entry, we categorize the fault as
uniquely diagnosed. While 89% of all detected faults can
be uniquely diagnosed, from Figure 4, we see that differ-
ent microarchitectural structures have varying amounts of
uniquely diagnosed faults.

For 5 (all except INT ALU and RAT) out of 7 structures,
over 97% (up to 100%) of the detected faults are uniquely
diagnosed; this shows TBFD is highly effective for di-
agnosing faults in these structures. In particular, virtually
all the faults in Decoder can be uniquely diagnosed. This
high percentage is likely due to the specific instruction
word check in the first part of the diagnosis algorithm.
Furthermore, over 99.6% of the ROB faults are uniquely
diagnosed. This shows TBFD’s meta-datapath check is
essential for correct diagnoses.

For INT ALU, only 79% of the faults are uniquely
diagnosed. The lower percentage is mainly due to the
correlations with other structures (discussed in Section 5.2).

For RAT, however, only 45% of the faults can be
uniquely diagnosed. While TBFD seems less effective for
diagnosing faults in RAT, we note that without checking for
faults in the meta-datapath, all of the RAT faults cannot be
correctly diagnosed. Also, for array structures like RAT,
there are existing testing techniques such as BIST in the
processor. Thus, TBFD may not need to diagnose the fault
down to a single RAT entry, as long as it identifies the RAT
as the source of the fault (discussed in Section 5.3).

5.2. Non-Uniquely Identified Faulty Structures

Since the diagnosis only analyzes the faulty core’s
test trace and does not reconfigure the faulty core, if a
correlation among two structures exists during execution,
the diagnosis may not be able to uniquely diagnose the
faulty component. The Among 2 category reflects such



cases where the diagnosis diagnoses 2 suspects that are
potentially faulty, with one of the suspects being the
structure with the fault.

Overall, only 3% of the diagnosed faults fall into the
Among 2 category. Most of them are faults in INT ALU
(18% of INT ALU faults). A closer look at the Among 2
cases shows that all mismatching instructions that use ALU
1 always write to their registers using Reg DBus 1. It is
therefore virtually impossible to separate ALU1 from Reg
DBus 1 for the purpose of high-level diagnosis.

However, by narrowing down the faults down to 2 non-
array structures or array entries, TBFD gives clues to
where the fault may be. Then, by disabling suspected faulty
components one at a time and running TBFD, the faulty
unit/entry can be uniquely diagnosed. Another alternative
to reduce faults in the Among 2 category is to break the
correlations among resources by explicitly changing the
scheduling algorithm in the processor (proposed by Bower
et. al [2]).

5.3. Faults Diagnosed in Higher Granularity

While TBFD is able to narrow down most of the faults
correctly to one or two structures/array entries, only 45%
of the detected RAT faults fall into Unique and Among
2 categories. Such low percentage is mainly due to the
reasons discussed in Section 3.4.2.

However, as BIST based techniques that test array struc-
tures are increasingly common in modern processors (for
manufacturing testing), it is useful to use TBFD to diagnose
the RAT (instead of a particular RAT entry) as potentially
faulty and track down the actual faulty RAT entry using
BIST. If we assume that it is sufficient to diagnose faults
at the granularity of an array structure, TBFD can diagnose
additional 44% of detected RAT faults to be in the RAT.

5.4. Undiagnosed Faults

Undiagnosed faults fall under two categories - No Mis-
match and Incorrect in Figure 4. In both these cases, the
diagnosis algorithm is unable to accurately attribute the
location of the fault that was detected.

Of all detected faults, 2% fall in the No Mismatch
category, where the instruction traces of the faulty and
the fault-free cores do not differ. These faults may be
diagnosed by collecting a longer execution trace (currently
a maximum of 30 million instructions are analyzed) or by
using existing deterministic replay schemes [11], [21] to
re-create the fault effect that lead to its detection.

On the other hand, only 0.9% of the detected faults
are mis-diagnosed by TBFD to be a fault in fault-free
structures. Further, from Figure 4, we see that most of
these faults are in the RAT. We observe that these RAT
faults cause data corruptions and mislead the diagnosis to
diagnose the datapath components as faulty. However, by

0%

20%

40%

60%

80%

100%

Decoder INT ALU Reg
Dbus

Int Reg ROB RAT AGEN Avg

P
er

ce
n

ta
g

e 
o

f 
D

et
ec

te
d

 F
au

lt
s

<30M

�10M

�1M

�100k

�10k

�1k

Figure 5. Diagnosis latency in number of instructions
between the start of diagnosis and the point when the fault is
diagnosed. The figure shows that over 90% of the faults can
be diagnosed within 1 million instructions.

disabling the suspected units and re-generating a test-trace,
TBFD is more likely to diagnose these faults correctly.

While further investigation to evaluate the best tech-
niques to reduce, or eliminate, these undiagnosed faults is
necessary to make a fool-proof diagnosis algorithm, even
with these limitations, TBFD presents impressive results
for microarchitecture-level fault diagnosis.

5.5. Diagnosis Latency

Besides the percentage of diagnosable faults, another
metric that measures the effectiveness of our diagnosis is
the latency. If the latency is too long (e.g., billions or
trillions of instructions), the processors’ (both the faulty and
fault-free cores) down time may make TBFD unattractive
when compared to other simpler techniques, such as core
decommissioning.

Our simulation infrastructure does not have enough detail
yet to determine the latency in terms of the execution
time of the entire diagnosis module. Instead, as a proxy,
we report here the latency in terms of the number of
instructions that the faulty core executes between the start
of our diagnosis (i.e., after the core is rolled back to
the previous checkpoint) to the point where the fault is
identified. Figure 5 shows this latency. The figure includes
all the faults in the Unique, Among 2, and Correct Type
categories in Figure 4.

Of all the diagnosed faults, 56% take fewer than 1k
instructions and over 90% take fewer than 1M to diagnose.

From Figure 5, we see that the latency for faults in
different structures varies widely. Over 99% of faults in
Decoder and ROB take fewer than 1M to be diagnosed. The
explicit check for front-end faults in TBFD helps shorten
the diagnosis latency for Decoder faults. For ROB faults,
the short latency is due to the fact that they usually cause a
break in dependency and quickly lead to hardware hangs.



On the other hand, only 77% of Int Reg faults and 61% of
RAT faults are diagnosed within 1M instructions. A general
observation for these two types of faults is that they are
activated relatively infrequently, causing fewer mismatches
and taking longer for TBFD to narrow the faults down to
particular unit(s).

Overall, by being able to narrow most of the faults
down to one or a few locations within reasonable latency,
TBFD shows that it is highly effective and incurs limited
performance overhead during diagnosis.

6. Conclusions
As CMOS continues to scale according to Moore’s

law, hardware failures caused by permanent faults due
to phenomena such as wear-out and infant morality are
expected to increase. As this problem pervades the broad
computing market, traditional processor-level redundancy-
based solutions will be too costly to be broadly deploy-
able. One approach is to use low-overhead fault detection
techniques (which need to be “always-on”), but backed up
by more expensive diagnosis techniques that need to be
invoked only in the rare event of a fault.

While several microarchitecture-level schemes for de-
tecting permanent faults have been devised in the past,
fault diagnosis has been less explored. Nevertheless, fault
diagnosis is crucial for tolerating permanent faults as it
needs to correctly identify faulty component for repair or
reconfiguration.

In this paper, we presented a diagnosis algorithm that
robustly identifies faults in microarchitectural structures
of different domains of a processor (front-end, datap-
ath or meta-datapath). This technique relies on recovery-
motivated checkpoint/replay mechanisms and a fault-free
core in a multi-core system that can generate a fault-free
trace for comparison with the faulty trace. The technique
compares the faulty and fault-free execution trace, analyzes
the points of differences, and reasons about the location of
the fault through an intelligent diagnostic procedure.

We evaluated this diagnosis framework with fault injec-
tion experiments in a simulated system. Our results show
that this approach is promising, being able to correctly
identify the faulty unit in 98% of the detected faults. In
89% of the detected faults, the specific entry in an array
structure was also correctly identified. Overall, with no as-
sumptions made about detection and repair/reconfiguration
mechanisms, trace-based fault diagnosis is a highly flex-
ible framework that effectively addresses permanent fault
diagnosis.

In future work, we propose to expand the diagnosis algo-
rithm to diagnose faults in other structures both in the core
and off the core. We would also like to couple this diagnosis
framework with other lower-level diagnosis techniques such
as BIST, to further refine the granularity at which diagnosis
is performed. Finally, we are also exploring detection and
diagnosis for multithreaded applications.

References

[1] T. M. Austin. DIVA: A Reliable Substrate for Deep
Submicron Microarchitecture Design. In Intl. Symp. on
Microarchitecture, 1998.

[2] F. A. Bower, D. Sorin, and S. Ozev. Online Diagnosis
of Hard Faults in Microprocessors. ACM Transactions on
Architecture and Code Optimization, 4(2), 2007.

[3] K. Cheng and W. Lai. Instruction-Level DFT for Testing
Processor and IP Cores in System-on-A-Chip. In Intl. Design
Automation Conference, 2001.

[4] K. Constantinides et al. Software-Based On-Line Detection
of Hardware Defects: Mechanisms, Architectural Support,
and Evaluation. In Intl. Symp. on Microarchitecture, 2007.

[5] M. Dimitrov and H. Zhou. Unified Architectural Support
for Soft-Error Protection or Software Bug Detection. In Intl.
Conf. on Parallel Archtectures and Compilation Techniques,
2007.

[6] M. Li et al. Understanding the Propagation of Hard Errors
to Software and Implications for Resilient Systems Design.
In Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, 2008.

[7] M. Martin et al. Multifacet’s General Execution-Driven Mul-
tiprocessor Simulator (GEMS) Toolset. SIGARCH Computer
Architecture News, 33(4), 2005.

[8] C. Mauer, M. Hill, and D. Wood. Full-System Timing-First
Simulation. SIGMETRICS Perf. Eval. Rev., 30(1), 2002.

[9] A. Meixner, M. E. Bauer, and D. Sorin. Argus: Low-Cost,
Comprehensive Error Detection in Simple Cores. In Intl.
Symp. on Microarchitecture, 2007.

[10] M. Mueller et al. RAS Strategy for IBM S/390 G5 and
G6. IBM Journal on Research and Development, 43(5/6),
Sept/Nov 1999.

[11] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Con-
tinuously Recording Program Execution for Deterministic
Replay Debugging. In Intl. Symp. on Computer Architecture,
2005.

[12] P. Parvathala, K. Maneparambil, and W. Lindsay. FRITS:
A Microprocessor Functional BIST Method. In Intl. Test
Conference, 2002.

[13] M. Prvulovic et al. ReVive: Cost-Effective Architectural
Support for Rollback Recovery in Shared-Memory Multi-
processors. In Intl. Symp. on Computer Architecture, 2002.

[14] P. Racunas et al. Perturbation-based Fault Screening. In Intl.
Symp. on High Performance Computer Architecture, 2007.

[15] S. Sahoo et al. Using Likely Program Invariants to Detect
Hardware Errors. In Intl. Conf. on Dependable Systems and
Networks, 2008.

[16] S. Shyam et al. Ultra Low-Cost Defect Protection for Micro-
processor Pipelines. In Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems, 2006.

[17] D. Sorin et al. SafetyNet: Improving the Availability
of Shared Memory Multiprocessors with Global Check-
point/Recovery. In Intl. Symp. on Computer Architecture,
2002.

[18] Virtutech. Simics Full System Simulator. Website, 2006.
http://www.simics.net.

[19] N. Wang and S. Patel. ReStore: Symptom-Based Soft
Error Detection in Microprocessors. IEEE Transactions on
Dependable and Secure Computing, 3(3), July-Sept 2006.

[20] E. Weglarz et al. Testing of Hard Faults in Simultaneous
Multithreaded Processors. In Intl. Online Test Symp., 2004.

[21] M. Xu, R. Bodik, and M. Hill. A “flight data recorder” for
enabling full-system multiprocessor deterministic replay. In
Intl. Symp. on Computer Architecture, 2003.


