
Hot-Spot Prediction and Alleviation in
Distributed Stream Processing Applications

Thomas Repantis Vana Kalogeraki
Department of Computer Science and Engineering

University of California, Riverside, CA 92521
{trep,vana}@cs.ucr.edu

Abstract

Many emerging distributed applications require the real-
time processing of large amounts of data that are being up-
dated continuously. Distributed stream processing systems
offer a scalable and efficient means of in-network process-
ing of such data streams. However, the large scale and
the distributed nature of such systems, as well as the fluc-
tuation of their load render it difficult to ensure that dis-
tributed stream processing applications meet their Quality
of Service demands. We describe a decentralized frame-
work for proactively predicting and alleviating hot-spotsin
distributed stream processing applications in real-time.We
base our hot-spot prediction techniques on statistical fore-
casting methods, while for hot-spot alleviation we employ
a non-disruptive component migration protocol. The ex-
perimental evaluation of our techniques, implemented in
our Synergy distributed stream processing middleware over
PlanetLab, using a real stream processing application oper-
ating on real streaming data, demonstrates high prediction
accuracy and substantial performance benefits.

1. Introduction

A variety of emerging applications require real-time pro-
cessing of high-volume, high-rate data that are updated con-
tinuously. Examples include analyzing the input provided
by website visitors to provide relevant advertising, moni-
toring network traffic to detect intrusions or update router
configuration, customizing news feeds to user interests, or
processing financial trading data for recommendations or
alerts. This type of applications has given rise to a new
class of systems, calledDistributed Stream Processing Sys-
tems (DSPSs)[1, 8, 10, 13, 14]. In DSPSs, reusable compo-
nents, located on geographically distributed nodes, process
continuous data streams in real-time. These components are
composed dynamically to form distributed applications.

Distributed stream processing applications have Quality
of Service (QoS) requirements, expressed in terms such as
end-to-end delay, throughput, or miss rate. For example,
an alert needs to be raised within a certain time frame af-
ter an intrusion, or a trading recommendation needs to be
made while processing financial data at certain rates. Ad-
hering to such QoS requirements is crucial for the depend-
able operation of a DSPS. The first step towards satisfying
the QoS requirements of stream processing application is
taking them into account during the application composi-
tion [8, 14]. However, as the incoming data rates may in-
crease at run-time, due to external events such as a network
attack or a rapid popularity growth of some news event, an
application execution may cease to adhere to the requested
QoS. In fact, the distinct characteristic of stream processing
applications is that the data to be processed arrive in high
rates, and often in bursts [24, 25]. Under such dynamically
changing conditions, providing application QoS is a chal-
lenging task. The problem is complicated further by the
large scale and the distributed nature of a DSPS. Accurate
centralized decisions are infeasible, due to the fact that the
global state of a large-scale DSPS is changing much faster
than it can be communicated to a single host.

In this paper we study the problem of predicting and alle-
viating application hot-spots in a DSPS. Current approaches
for addressing load fluctuations in DSPSs [3,18,24,25], in-
cluding our previous work [15], focus on avoiding or re-
solving hot-spots in the system resources, in other words
overloaded nodes. We refer to this kind of hot-spot de-
tection and alleviation as node-oriented. The focus of this
work, on the other hand, is on detecting and alleviating
hot-spots in the application execution, in other words ap-
plications that persistently fail to meet the QoS required by
the user. We call this kind of hot-spot detection and alle-
viation application-oriented. We believe that application-
oriented hot-spot detection and alleviation are as impor-
tant as their node-oriented counterparts for the following
key reasons: i) Application-oriented hot-spot detection is
more sensitive and can be triggered even when a node is

underloaded. Even when running on a moderately loaded
node, an application may not be meeting its QoS require-
ments (e.g., if they are stringent), thus experiencing a hot-
spot. On the other hand, with node-oriented hot-spot detec-
tion, by the time a node is overloaded many of the applica-
tions using that node will already have violated their QoS
requirements. ii) Application-oriented hot-spot alleviation
allows more fine-grained hot-spot alleviation. Depending
on the individual applications’ QoS demands, only some
instead of all the applications that are using a node may be
suffering, and thus only these applications may need to be
migrated. On the contrary, node-oriented hot-spot allevia-
tion aims at reducing a node’s load, irrespective of which
of the applications experience overload. iii) Most impor-
tantly, application-oriented hot-spot detection enablestak-
ing proactivemeasures with regards to application perfor-
mance, to prevent severe degradation of application QoS.

Specifically, this paper makes the three following main
contributions: i) We propose a framework built on statistical
forecasting methods, to accurately predict QoS violationsat
run-time and proactively identify application hot-spots.In
order to achieve this, our prediction framework binds work-
load forecasting with execution time forecasting. To accom-
plish workload forecasting we predict rate fluctuations, ex-
ploiting auto-correlation in the rate of each component, and
cross-correlation between the rates of different components
of a distributed application. To accomplish execution time
forecasting we use linear regression, an established statisti-
cal method, to accurately model the relationship of the ap-
plication execution time and the entire workload of a node,
while dynamically adapting to workload fluctuations. ii)
To react to predicted QoS violations and alleviate hot-spots
we enable nodes to autonomously migrate the execution of
stream processing components using a non-disruptive mi-
gration protocol. Candidate selection for migration is based
on preserving QoS. We employ prediction again to ensure
that migration decisions do not result to QoS violations of
other executing applications. To drive migration decisions
in a decentralized manner we build a load monitoring archi-
tecture on top of a Distributed Hash Table (DHT) [16]. iii)
We have implemented our techniques in Synergy [14], our
distributed stream processing middleware1. To validate our
approach we have deployed our middleware on the Planet-
Lab [5] wide-area network testbed and we have run exper-
iments of a real network monitoring application [20] oper-
ating on traces of real TCP traffic [22]. Our experimental
evaluation demonstrates high prediction accuracy, with an
average prediction error of 3.7016%, and substantial ben-
efits in application QoS, achieved by migrations that are
completed in approximately 1s.

1Synergy is implemented as a multi-threaded system of about
35,000 lines of Java code and more information is available at
http://synergy.cs.ucr.edu/

Figure 1. The basic blocks of Synergy.

2. The Synergy Middleware

In this section we present a brief overview of our Syn-
ergy distributed stream processing middleware. Synergy
is a middleware designed to provide QoS support for dis-
tributed stream processing applications. In Synergy, data
streams, consisting of independent data tuples, arrive con-
tinuously from external sources (such as web users, mon-
itoring devices, or a sensor network) and need to be pro-
cessed by stream processing components in real-time. Each
component is a self-contained software module, that offers
a predefined operator. The operators can be as simple as a
filter or a join, or as complex as transcoding or encryption.
Components are deployed in the distributed nodes of the
Synergy middleware according to their individual software
capabilities or following criteria for the optimization ofthe
performance of the whole system [1,13].

The nodes of our distributed stream processing middle-
ware are connected via overlay links on top of the existing
IP network. The application component graph is built on
top of the middleware, as shown in Figure 1. The basic
blocks of the Synergy middleware running on each node
are shown in Figure 1. Synergy offers several benefits: i) It
enables efficient component composition that meets end-to-
end QoS demands by sharing resources, components, and
streams [14]. ii) It provides a low overhead resource moni-
toring facility. iii) It allows fast stream and component dis-
covery by utilizing the underlying DHT infrastructure [16].

The user executes a distributed stream processing appli-
cation by submitting a request at one of the nodes of the
middleware, specifying the required operators and their de-
pendencies. Then, the system runs a composition algorithm
to select the components on the nodes to accomplish the
application execution. These will constitute the application
component graph, that represents the sequence of compo-

nent execution and the corresponding hosting nodes.
We have extended Synergy’s architecture to enable de-

centralized load monitoring [15], built on top of the DHT
we use for component discovery. We have implemented
a distributed inverted index on top of the DHT. This way
we associate operator names with handlers to nodes host-
ing components offering these operators, together with the
current load values of these nodes. For example, in Fig-
ure 1 on the left of each node are listed the components this
node is offering, while on the right of each node are listed
the handlers and loads this node is responsible for maintain-
ing. Node B is responsible for keeping the handlers for the
components that offer an aggregator operator. Therefore it
keeps the handlers of nodes B and C, as well as the loads of
nodes B and C. Whenever a node’s load changes, it consults
the DHT to determine the nodes responsible for holding the
handlers for all the components it offers. It then sends load
update messages to them. For example, in Figure 1 node
B that offers a filter, an aggregator, and a transcoder, will
send its load update messages to the responsible nodes, C,
B, and A, respectively. To avoid the communication over-
head caused by updating, we enable the nodes to inform the
monitoring nodes only when a significant change in their
load occurs. Configuration changes such as node arrivals,
departures, failures, or balancing of operator keys among
nodes are handled by the DHT [16].

We use our decentralized load monitoring architecture to
cope with application hot-spots. We define an application
hot-spot as a node in the application component graph in
which the application execution persistently fails to meet
the QoS required by the user. The end-to-end QoS require-
ments, which are specified when requesting an applica-
tion, may among others include end-to-end execution time,
throughput, or miss rate. Although our schemes are generic
to additive QoS metrics linearly related to rate, we focus on
the end-to-end execution time metric denoted byqt.

3. Application Hot-Spot Prediction

The goal of proactive application hot-spot detection is
to predict end-to-end execution time QoS violations. In
order to achieve this goal we employ: i) Computation of
the application “slack time”ts (Section 3.1), to determine
the maximum local execution time allowed by the applica-
tion QoS, before missing its end-to-end execution time re-
quirement. ii) Local execution time prediction based on an
application’s incoming rate and using linear regression, to
determine whether the maximum local execution time will
be reached or exceeded (Section 3.2). iii) Rate prediction
based on auto- and cross-correlation between stream pro-
cessing components, to determine the future workload that
defines the future execution time (Section 3.3).

3.1 End-to-End to Local Execution Time
Translation

We predict an application hot-spot by examining the
“slack time” of the application on every component of the
application component graph. The slack time represents
how close we are to violating the end-to-end execution time
requirement of the application. Letqt represent the end-
to-end execution time requirement of the application.qt

includes the execution and communication times spent for
a tuple to traverse the entire application component graph.
Thus, we define the slack timets of an application as the
difference between the required end-to-end execution time
qt and the predicted end-to-end execution time. As the
application executes, its slack time is computed for every
tuple, on every component of the application component
graph, based on the local prediction of the end-to-end ex-
ecution time. The predicted end-to-end execution time in-
cludes the execution and communication times spent for a
tuple to reach the current component,te andtc respectively,
the predicted execution timeŝte needed for the current and
its downstream components to process the data tuple, as
well as estimated average communication timest̄c needed
for the data tuple to traverse the rest of the application com-
ponent graph. For example, in Figure 3 the predicted end-
to-end execution time as it is calculated in component B is
the sum ofte(A), tc(A→B), ˆte(B), ¯tc(B→D), and ˆte(D). In
order to avoid a QoS violation, the predicted end-to-end ex-
ecution time needs to be less than the required end-to-end
execution timeqt, in other words, the slack timets needs to
be positive, for every componenti of thev components of
the application component graph:

ts(i) = qt − (
∑

j∈1...i−1

tc(j→j+1) +
∑

j∈1...i−1

te(j)+

∑

j∈i...v−1

¯tc(j→j+1) +
∑

j∈i...v

ˆte(j)) > 0
(1)

The above single-path computation will identify a hot-spot
in the path where it exists. For example, if in Figure 3 com-
ponent C is overloaded, the pathA → B → D will not
detect a hot-spot, while pathA → C → D will. In order
for the above hot-spot prediction to take place, the estimated
average communication times, and the predicted execution
times must be computed. The estimates for the communi-
cation times are available from the application composition
phase [14] and can be updated periodically. The predicted
execution times are derived locally on every node hosting
a component of the application component graph, as ex-
plained in the following Section 3.2. They are then propa-
gated to all nodes participating in the application execution
using a feedback loop passing through the source. The feed-
back loop allows us to piggyback the predicted execution
times on the data tuples, to minimize the communication

overhead. For example, in the application component graph
shown in Figure 3 when the node hosting component D cal-
culates the component’s next predicted execution time for
this application, it propagates it to the node hosting compo-
nent A, which forwards it to the nodes hosting components
B and C. Similarly, the rest of the nodes propagate their pre-
dicted execution times. Using the predicted execution times
to compute the slack time on every component enables us
to predict locally whether the end-to-end execution time re-
quirement of the application will be violated.

3.2 Local Execution Time Prediction

In this section we explain how we predict the local ex-
ecution timet̂e needed to process a data tuple of an appli-
cation. The prediction takes place at each node hosting a
component of the application.̂te is used to compute the
next slack timets of the application using Equation 1. The
local execution time for a data tuple (the time elapsed be-
tween the arrival and the departure of the tuple) is the sum
of the processing time to process the tuple, and the queue-
ing time the tuple has to wait in the scheduler’s queue while
other tuples are being processed. While the processing time
is constant for a given tuple size, the queueing time de-
pends on the load of the processing node, in other words
on the rates (incoming tuples to be processed per time unit)
and processing times of the applications currently being ex-
ecuted on the node. Using queueing theory, one can derive
average values for the queueing time, assuming an M/M/1
queueing model [14], or a more general M/G/1 model that
makes no assumptions regarding the service rate, in which
case the queueing time is given by the Pollaczek-Khinchin
mean value formula [9]. However, we chose not to predict
the execution time using queueing theory for the following
reason: The arrivals of data tuples may not always be accu-
rately approximated with a Poisson distribution if rate fluc-
tuations or bursts occur. Such rate variations are quite com-
mon in distributed stream processing applications [24]. Ac-
curate prediction during such fluctuations is however cru-
cial. We use linear regression to predict the execution time
of an application [12]. Since data tuples arrive in high rates,
prediction is more fine-grained than node load changes.

To predict the local execution timête of an application
using a component on a node, we need to derive the re-
lationship between̂te and the total ratesrt =

∑

l∈1...a

rl of

all a applications currently using components on that node.
While for increasingrt one expectŝte to increase, the trend
of the increase is not clear without making any assumptions
regarding the arrival pattern of the data tuples. We approx-
imate the relationship using linear regression and our ex-
perimental results show good fitting for increasing rates.
Figures 14, 15 show the relationships between the execu-
tion times of different components of a stream processing

application and the rates of the applications currently run-
ning on the nodes hosting them, obtained from our imple-
mentation over Planetlab. Linear relationship of execution
time and rate is also consistent with earlier works [23, 24].

Figure 2. Linear
regression.

Each node maintains a
series of(te, rt) pairs, for
each application a compo-
nent of which the node is
hosting. The series is main-
tained as a sliding window
of the k most recent val-
ues. The execution time is
measured every time a data
tuple for an application is
processed, while the total
rate is measured as the sum
of rates of all applications,
data tuples of which were
processed since the last time a data tuple of that application
was processed. If the rate of any application increases, it
affects the execution time of other applications on the same
node due to queueing delays. We estimate the conditional
expected value ofte, given a predicted value forrt. We
use linear regression, and assuming we havek pairs so far,
the linear function iste = a + b · rt and the least square
estimatorsa andb are:

a = t̄e − b · r̄t b =

∑

j∈1...k

(rt(j) − r̄t) · (te(j) − t̄e)

∑

j∈1...k

(rt(j) − r̄t)2
(2)

where the average values̄te andr̄t are:

t̄e =

∑

j∈1...k

te(j)

k
r̄t =

∑

j∈1...k

rt(j)

k
(3)

In order to enable proactive hot-spot detection, we base the
prediction of the execution timête of an application on the
predicted rates of the applications running on components
of the node,̂rt =

∑

l∈1...a

r̂l. (We explain hoŵrl for an appli-

cationl is derived in the following Section 3.3.) Assuming
an estimated value for the nextr̂t, we predictt̂e using the
above equations. Specifically, as shown in Figure 2, we use
thek pairs of(te, rt) values to calculatea andb and then
given an estimated̂rt we predictt̂e using the following for-
mula:

t̂e = a + b · r̂t (4)

To evaluate the accuracy of our execution time prediction
we calculate the estimated standard error of the slopeb:

se(b) =

v

u

u

u

u

t

P

j∈1...k

(te(j) − t̄e)2 − b
P

j∈1...k

(rt(j) − r̄t)(te(j) − t̄e)

(k − 2)
P

j∈1...k

(rt(j) − r̄t)2
(5)

If the estimated standard errorse(b) is above a heuristically
set confidence levelC, we do not employ execution time
prediction. Instead we report the last measured application
execution time value rather than a predicted future one. In
general however the last measured value is not an accurate
predictor, as it ignores the current rate.

3.3 Rate Prediction

In this section we describe how we predict the rater̂ of
an application, which we use to calculate the sum of the
rates of all applications running on components of a node,
r̂t. The latter is used to predict the application execution
time t̂e using Equation 4. We base the prediction of the
rate of every application that is using a component hosted
on the node on both auto- and cross-correlation. We take
into account auto-correlation by building our prediction of
a component’s future input rate on its previous input rate.
This captures any self-similarity the application traffic may
have, which has been known to be the case for various types
of traffic in stream processing environments [24]. We take
into account cross-correlation, by also building our predic-
tion of the input rate of a component on the current input
rate of a previous component in the application component
graph. This captures the fact that preceding components
observe changes in the application input rate before the cur-
rent component. Since data flow from one component to
the next, the observed trends are often seen in the current
component as well. In particular, we identify the preceding
componentm in the application component graph, the rate
of which has the maximum correlation with the rate of the
current component so far. In summary, we estimate thek-
th input rater̂k of a component based on its previous input
raterk−1, as well as the current and previous input rates of
componentm, rk(m) andrk−1(m) respectively.

We transfer the current input rate values to the down-
stream components using the same path followed by the
data tuples, as shown in Figure 3. This way, for each of the
previousi components in the application component graph,
a series of(k − 1) pairs(r, r(i)) is built. This series asso-
ciates the(k−1) rate valuesr of the current component with
the (k − 1) rate valuesr(i) of each of the previousi com-
ponents. We use the Pearson Product MomentR, a popular
correlation coefficient [12], to estimate how the rate of each
of the previousi components in the application component
graph is correlated to the rate of the current component.
We use the current (k-th) and previous ((k − 1)-th) rates
of the componentm with the maximum correlation coef-
ficient,argm maxR(k) andargm maxR(k−1) respectively,
as predictors for the rate of the current component. Hence,
assuming we have(k − 1) pairs of recorded input rates so
far, the estimated input rate for the current component is:

Figure 3. Propagation of rate values for cor-
related rate estimation.

r̂k =
argm maxR(k)

argm maxR(k−1)
· rk−1 =

rk(m)

rk−1(m)
· rk−1 (6)

and the componentm is decided as the one with the maxi-
mum among all correlation coefficientsRi of each preced-
ing componenti in the application component graph:

Ri =

∑

j∈1...(k−1)

(rj(i) − ¯r(i))(rj − r̄)

√

∑

j∈1...(k−1)

(rj(i) − ¯r(i))2
∑

j∈1...(k−1)

(rj − r̄)2
(7)

where the average rate values of thei-th preceding and the
current component,̄r(i) andr̄ respectively, are:

¯r(i) =

∑

j∈1...(k−1)

rj(i)

k − 1
r̄ =

∑

j∈1...(k−1)

rj

k − 1
(8)

4. Application Hot-Spot Alleviation

4.1. Identifying the Components to Migrate

After an application hot-spot has been predicted, the next
step is to determine which component execution(s) to mi-
grate in order to resolve the hot-spot. We perform QoS pro-
jection and choose the migrations in such a way, so that the
predicted execution times of the remaining applications in
the node are within their QoS requirements.

Specifically, our goal is to determine the minimum num-
ber of migrations that will result to all the remaining appli-
cations satisfying their QoS requirements. In other words,
we seek the minimum number of migrations that will re-
duce the sum of rates of all the applications in the node to
such a degree, that all projected execution times for the re-
maining applications will be within their QoS requirements.
More formally, and by building on the concepts introduced
in Section 3, we migrate the component execution(s) that
remove the minimum number of predicted ratesr̂ (from
Equation 6), so that the predicted sum of application rates
on the nodêrt results to predicted execution timest̂e (from
Equation 4) such that, for every application remaining in
the node, the slack timets (from Equation 1) is positive.

This optimization problem lends itself to a dynamic pro-
gramming solution in pseudo-polynomial time. After ob-
serving that usually one migration suffices to alleviate a
hot-spot, and to minimize the execution time overhead, as
migration decisions need to be taken online, we employ a
simple heuristic of selecting for migration the component
with the largest̂r until all slack times become positive.

4.2. Identifying the Target Nodes

Once a component the execution of which is to be mi-
grated has been identified, the host to migrate to has to be
decided. The choice for migration targets is made among
the nodes that host the same component. Among them we
try to identify a node probable to satisfy the migrating appli-
cation’s QoS requirements, while not violating the QoS of
the applications currently running locally. Such nodes are
most probable to be found among the ones that are predicted
to be less loaded. Each node predicts its local load using
linear regression, based on predicted rate values, using a
methodology similar to the one described in Section 3.2.
We use a simple model, according to which a component’s
load is proportional to the number of input data tuples it is
receiving, which is an assumption also made by previous
works [23, 24]. We store load information in a decentral-
ized architecture [15] on top of the DHT, as was described
in Section 2. By utilizing the load monitoring architecture
a node determines the least loaded node offering the compo-
nent the migration requires. After the migration target has
been identified, the migration from the source to the target
takes place, to resolve the application hot-spot.

To avoid QoS violations we perform QoS projection that
predicts whether the QoS of the migrating and of the cur-
rently running applications will be able to be met after the
migration has occurred. Once it has received a migration
request, a node determines whether after accepting the mi-
gration it will be able to provide the migrating application
its required QoS. Additionally, it determines whether the
migration will not result to QoS violations for the locally
executing applications. To achieve these goals, a migra-
tion target performs QoS projection involving the migrating
and the currently running applications, that is similar to the
one described in Section 4.1. Specifically, it ensures that
by addingr̂ for the new application, the sum of application
rates on the nodêrt will not result to a predicted̂te (from
Equation 4) that results to a negative execution time slack
for any application (from Equation 1). If that is the case, the
migration is accepted and takes place using the migration
protocol presented in [15]. Our current migration mecha-
nism caters to stateless components and simple components
whose state is captured in small buffers. State transfer is a
separate issue by itself and worth future investigation.

5. Experimental Evaluation

To evaluate the performance of our hot-spot prediction
and alleviation mechanisms we have implemented them in
our Synergy distributed stream processing middleware and
performed experiments over the PlanetLab [5] wide-area
network testbed. We used 34 hosts, each one of them is-
suing a request for a distributed stream processing applica-
tion. Each node was hosting stream processing components
that were processing data tuples as they arrived. We set the
application end-to-end delay QoS requirement to 20s.

To evaluate the accuracy of our prediction mechanisms
we implemented a real stream processing application from
the network traffic management domain, which we fed
with real TCP traffic traces. We used a stream process-
ing application from the Stream Query Repository [20],
in which, assuming a packet capturing device installed in
a network, a system administrator wishes to monitor the
source-destination pairs in the top 5 percentile in terms
of total traffic in the past 20 minutes over a backbone
link. We generated the streaming data to be processed
by replaying a TCP traffic trace available from the Inter-
net Traffic Archive [22]. Similar results where obtained
with the rest of the traces from [22]. The trace contained
two hours’ worth of all wide-area TCP traffic between the
Lawrence Berkeley Laboratory and the rest of the world,
consisting of 1.8 million packets. Each packet contained
a timestamp, and fields defining the source and destina-
tion (IPs and ports), as well as the size of the packets ex-
changed between them. Our implementation of the above
stream processing application to process the packet input
over 20-minute windows to generate the monitoring output
involved eight components, and screenshots are available
at http://synergy.cs.ucr.edu/screenshots.html. Each node in-
stantiated a different stream processing application thatin-
cluded all eight components of the application component
graph, distributed randomly on different nodes of the sys-
tem. Each node predicted the rate and the execution time of
the components it was hosting using the statistical methods
described in section 3. We plot predicted and actual values
to show correlation and burstiness. The differences between
actual and predicted values were also plotted but are omitted
due to lack of space.

Rate Prediction Accuracy. In our first set of experi-
ments we investigated the accuracy of our rate prediction
algorithm described in Section 3.3. Figures 4, 5, 6, 7, and 8
compare the predicted rate for the individual components
of an application to their actual rate. Similar results were
obtained for all applications, as well as for the rest of the
components of the application component graph, but are
not included here due to lack of space. We observe that
the predicted rate closely follows the measured rate for the
different component types, namely sort, project, aggregate,

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160

R
at

e
(k

bp
s)

Time (s)

Predicted vs Measured Rate for Sort

Measured Rate
Predicted Rate

Figure 4. Rate prediction ac-
curacy for “sort”.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160

R
at

e
(k

bp
s)

Time (s)

Predicted vs Measured Rate for Project

Measured Rate
Predicted Rate

Figure 5. Rate prediction ac-
curacy for “project”.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120 140 160

R
at

e
(k

bp
s)

Time (s)

Predicted vs Measured Rate for Aggregate

Measured Rate
Predicted Rate

Figure 6. Rate prediction ac-
curacy for “aggregate”.

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120 140 160

R
at

e
(k

bp
s)

Time (s)

Predicted vs Measured Rate for Count

Measured Rate
Predicted Rate

Figure 7. Rate prediction ac-
curacy for “count”.

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100 120 140 160

R
at

e
(k

bp
s)

Time (s)

Predicted vs Measured Rate for Compare

Measured Rate
Predicted Rate

Figure 8. Rate prediction ac-
curacy for “compare”.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120 140 160

E
xe

cu
tio

n
Ti

m
e

(m
s)

Time (s)

Predicted vs Measured Execution Time for Sort

Measured Execution Time
Predicted Execution Time

Figure 9. “Sort” execution
time prediction accuracy.

count, and compare. Another interesting observation is the
correlation in the rate between different components, for ex-
ample between sort and project, or between aggregate and
count. This indicates the significance of cross-correlation
between different components in the application component
graph, which we exploit in addition to auto-correlation to
predict component rates.

Execution Time Prediction Accuracy. In our second
set of experiments we investigated the accuracy of our exe-
cution time prediction algorithm described in Section 3.2.
Figures 9, 10, 11, 12, and 13 compare the predicted to
the actual execution time for the same set of components
as in the rate prediction accuracy experiment. As was de-
scribed in Section 3.2, the predictions are based on the sum
of rates being processed by the node hosting each compo-
nent. Note, that each component was hosted on a different
node. The predicted execution time follows the execution
time we measure. Cases where the prediction is very in-
accurate are detected using the estimated standard error of
the linear regression, as was described in section 3.2. This
way, instead of the inaccurate predicted future execution
time value the currently monitored value is reported.

Execution Time Distribution. In our third set of exper-
iments we investigated the relationship between the execu-
tion time of the individual application components and the
total rate for all applications being processed by each node

hosting a component, shown in Figures 14, and 15 (similar
Figures for the rest of the components are omitted due to
lack of space). This enabled us to determine the accuracy
of assuming a linear relationship between the two, which
formed the basis of our linear regression-based execution
time prediction algorithm described in Section 3.2. We ob-
serve that the relationship can be approximated by a line,
excluding a few outliers. However this linear relationship
is most evident when the total rate in the node is signifi-
cant. If the node is lightly loaded, no significant queueing
delays occur and therefore no significant variations in the
execution time take place.

Prediction Parameters. In our fourth set of experiments
we investigated various parameters regarding the prediction
overhead and performance. In Figure 16 we show how rate
prediction accuracy is affected when reducing the predic-
tion frequency. Reducing the prediction frequency can en-
able the system to handle high rates, by avoiding the pre-
diction overhead for every data tuple. We present the effect
on prediction accuracy for the different components, when
predicting the rate for every 1, every 50, every 75, and every
100 incoming data tuples. We observe that even by reduc-
ing the prediction overhead by a factor of 75, the prediction
accuracy only drops by 8.775% on average, ranging from
2.0% for sort, to 14.375% for project.

Table 17 shows the average rate prediction error for the

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160

E
xe

cu
tio

n
Ti

m
e

(m
s)

Time (s)

Predicted vs Measured Execution Time for Project

Measured Execution Time
Predicted Execution Time

Figure 10. “Project” execu-
tion time prediction accu-
racy.

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140 160

E
xe

cu
tio

n
Ti

m
e

(m
s)

Time (s)

Predicted vs Measured Execution Time for Aggregate

Measured Execution Time
Predicted Execution Time

Figure 11. “Aggregate” exe-
cution time prediction accu-
racy.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160

E
xe

cu
tio

n
Ti

m
e

(m
s)

Time (s)

Predicted vs Measured Execution Time for Count

Measured Execution Time
Predicted Execution Time

Figure 12. “Count” execu-
tion time prediction accu-
racy.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160

E
xe

cu
tio

n
Ti

m
e

(m
s)

Time (s)

Predicted vs Measured Execution Time for Compare

Measured Execution Time
Predicted Execution Time

Figure 13. “Compare” exe-
cution time prediction accu-
racy.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

A
pp

lic
at

io
n

C
om

po
ne

nt
 E

xe
cu

tio
n

Ti
m

e
(m

s)

Total Rate in Node (kbps)

Execution Time Distribution for Sort

Figure 14. Execution time
distribution for “sort”.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

A
pp

lic
at

io
n

C
om

po
ne

nt
 E

xe
cu

tio
n

Ti
m

e
(m

s)

Total Rate in Node (kbps)

Execution Time Distribution for Project

Figure 15. Execution time
distribution for “project”.

different application components. This provides a clear
overview of the prediction accuracy. Even though some
variation depending on the component semantics exists, the
average prediction error is kept at 3.7016%. Table 18 shows
the overhead in processing time for rate, execution time, and
load prediction. The average overhead is 0.5984ms, which
makes our algorithms suitable for online prediction.

Application Performance. In our fifth set of experi-
ments we investigated the application benefits gained from
our hot-spot prediction and alleviation mechanisms. Fig-
ure 19 shows the improvement in application QoS achieved
by predicting application hot-spots and alleviating them us-
ing migration. The QoS metric displayed is the miss rate,
defined as the number of data tuples that missed their QoS
deadline, over the total number of data tuples that were pro-
duced by the source. The miss rate is displayed as a function
of the system load. We inject additional load in the system
by increasing the number of application component graphs
each node requests from 1 to 10. When the system is un-
derloaded not many application hot-spots occur and there-
fore their alleviation does not offer significant QoS advan-
tages. However, as the system load increases, the miss rate
increases drastically when hot-spots are not handled. Ap-
plication hot-spot elimination controls this increase.

Figure 20 shows the benefit of hot-spot prediction and al-
leviation for the application performance. The performance
metric displayed is the end-to-end application delay. Note
that this delay is calculated only for the data tuples that did
not miss their deadlines, as the ones that missed their dead-
lines are dropped by the local schedulers before reaching the
receiver. While hot-spot prediction and alleviation enables
the delivery of more data tuples as the load increases, it also
maintains a lower average application end-to-end delay.

Figure 21 shows how a migration affects the perfor-
mance of a particular application. For a load of 10 ap-
plication requests per node, we show the end-to-end delay
attained by delivered data tuples of one application. Ap-
proximately at data tuple #500 an application hot-spot oc-
curs, resulting to an increase in the end-to-end delay. Our
hot-spot elimination mechanism kicks in and decreases the
end-to-end delay through migration approximately at data
tuple #1200. It is also important to note that only the data
tuples that were delivered within the application’s QoS re-
quirements are shown. As the application end-to-end delay
increases, we can clearly observe a reduction in the number
of delivered data tuples. After the hot-spot has been elim-
inated, the number of data tuples that miss their deadline
decreases again and more points can be seen in the graph.

 0

 5

 10

 15

 20

 25

 30

 0.01 0.1 1

A
bs

ol
ut

e
A

ve
ra

ge
 P

re
di

ct
io

n
E

rr
or

 (%
)

Prediction Frequency (Sampling Fraction)

Prediction Accuracy vs Frequency

Sort
Project

Aggregate
Count

Compare

Figure 16. Rate prediction
accuracy versus prediction
frequency.

Component Average Prediction Error (%)

sort 2.875
project 7.872

aggregate 0.838
count 2.019

compare 4.904

Figure 17. Absolute average
rate prediction error.

Component Average Prediction Time (ms)

sort 0.133
project 0.327

aggregate 0.509
count 0.836

compare 1.187

Figure 18. Average total pre-
diction time.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7 8 9 10

M
is

s
R

at
e

(M
is

se
d/

To
ta

l D
at

a
Tu

pl
es

 (%
))

Load (Applications/Node)

Application QoS Improvement

Without Hot-Spot Elimination
With Hot-Spot Elimination

Figure 19. Application QoS
improvement.

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 A
pp

lic
at

io
n

E
nd

-to
-E

nd
 D

el
ay

 (s
)

Load (Applications/Node)

Application Performance Improvement

Without Hot-Spot Elimination
With Hot-Spot Elimination

Figure 20. Application per-
formance improvement.

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000

A
pp

lic
at

io
n

E
nd

-to
-E

nd
 D

el
ay

 (s
)

Data Tuple Sequence Number

Application Performance Variation

Figure 21. Application per-
formance variation.

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350

N
um

be
r o

f M
ig

ra
tio

ns

Number of Applications

Migration Overhead

Figure 22. Migration over-
head.

The Figure magnifies, focusing on 2000 of the total tuples.
In Figure 22 we show the migration overhead to achieve

the hot-spot alleviation benefits. The number of migrations
is shown as a function of the number of applications de-
ployed in the system. We observe that the number of migra-
tions grows linearly to the number of applications. On aver-
age, one migration every three applications is required. This
shows that on average one every three applications experi-
ence a hot-spot at some point during the execution, which
motivates the need for application-oriented hot-spot allevia-
tion. This assumes that not many applications require more
than one migration, in other words that the system is not so
overloaded that a migration does not permanently resolve
a hot-spot. We also measured the average time required to
perform a migration to be 1144ms. This time included the
complete distributed protocol execution described in Sec-
tion 4.2. The short migration time, together with the fact
that our migration protocol enables application executionto
continue while the migration is taking place offline, make
our hot-spot alleviation mechanism suitable for distributed
stream processing applications with QoS demands. Pre-
diction further facilitates fast reaction to a hot-spot, before
massive QoS violations occur.

6. Related Work

Distributed stream processing systems have been the
focus of a lot of recent research from different perspec-
tives. Work on the placement of components to make ef-
ficient use of resources and to maximize application perfor-
mance [1,13] is complementary to ours. Any technique for
deploying new components can be used, once all the nodes
hosting a particular component type are overloaded. Ad-
ditionally, the migration techniques presented in [13] can
be used as an alternative to our migration protocol, com-
plementing the prediction mechanisms for QoS violations
presented here. Similarly, work on component composi-
tion [8, 14] or application adaptation [2, 6, 10] can assist in
load balancing. Load balancing for distributed stream pro-
cessing applications has also been studied [3,18,24,25]. We
differ from these approaches in that we focus on the appli-
cation QoS, rather than the system utilization. Furthermore,
we propose a hot-spot prediction framework to drive proac-
tive migration decisions. In our previous work [15] we pre-
sented a peer-to-peer load balancing architecture, focusing
on reactive, node-oriented hot-spot detection that does not
utilize prediction. Load shedding [4, 21, 23] has been ex-

plored before as a means to alleviate application hot-spots
in stream processing systems. Our goal when alleviating
application hot-spots via migration is to do so in a less in-
trusive manner. Similar to our work, [23] identifies the need
for proactive QoS management and proposes operator se-
lectivity estimation using sampling. Their methods however
refer to centralized stream processing on a single node.

Workload prediction has been studied in various con-
texts and [17] discusses how some workloads have been
shown to be most accurately represented by open mod-
els, while others by closed ones. Dinda [7] has shown
the effectiveness of linear models in predicting host load,
network bandwidth, and performance data. In the do-
main of grid computing multi-resource prediction has been
proposed [11], where the processor utilization is cross-
correlated with the memory utilization. We also utilize
cross-correlation, but between different nodes rather than
between different resources. Performance prediction for
multi-tier web servers [19, 26] is also relevant to our work,
provided that all tiers are considered and not just one which
is assumed to be the bottleneck. [19] proposes a model
based on queuing theory, to predict performance as a func-
tion of the transaction mix. For stream processing applica-
tions however, rate fluctuations rather than the type of re-
quired processing affect performance. For the same rea-
son, certain assumptions regarding the distribution of ar-
rival rates that are needed for queueing analysis, may not
hold. [26] proposes a model based on regression to predict
the processing cost of web transactions and drive capacity
planning decisions. We also employ linear regression but
focus on online execution time prediction.

7. Conclusions

We have described hot-spot prediction and alleviation
mechanisms for distributed stream processing applications.
Our algorithms for hot-spot prediction are based on the sta-
tistical methods of linear regression and correlation, utiliz-
ing only light-weight, passive measurements. Statistics col-
lection and hot-spot prediction and alleviation are carried
out at run-time by all nodes independently, building upon
a fully decentralized architecture. The experimental eval-
uation of our techniques on the Synergy middleware over
PlanetLab, and using a real network monitoring applica-
tion operating on traces of real TCP traffic, demonstrated
high prediction accuracy and substantial performance ben-
efits with moderate monitoring and migration overheads.

References

[1] Y. Ahmad and U. Çetintemel. Network-aware query pro-
cessing for stream-based applications. InVLDB, 2004.

[2] R. Arpaci-Dusseau. Run-time adaptation in river.ACM
Transactions on Computer Systems, 21(1):36–86, Feb. 2003.

[3] M. Balazinska, H. Balakrishnan, and M. Stonebraker.
Contract-based load management in federated distributed
systems. InNSDI, 2004.

[4] P. Barlet-Ros et al. Load shedding in network monitoringap-
plications. InUSENIX Annual Technical Conference, 2007.

[5] A. Bavier et al. Operating systems support for planetary-
scale network services. InNSDI, 2004.

[6] F. Chen, T. Repantis, and V. Kalogeraki. Coordinated me-
dia streaming and transcoding in peer-to-peer systems. In
IPDPS, 2005.

[7] P. Dinda. Design, implementation, and performance of an
extensible toolkit for resource prediction in distributedsys-
tems.IEEE TPDS, 17(2):160–173, February 2006.

[8] X. Gu, P. Yu, and K. Nahrstedt. Optimal component compo-
sition for scalable stream processing. InICDCS, 2005.

[9] L. Kleinrock. Queueing Systems. Volume 1: Theory. John
Wiley and Sons Inc., New York, NY, USA, 1975.

[10] V. Kumar, B. Cooper, Z. Cai, G. Eisenhauer, and K. Schwan.
Resource-aware distributed stream management using dy-
namic overlays. InICDCS, 2005.

[11] J. Liang, K. Nahrstedt, and Y. Zhou. Adaptive multi-
resource prediction in distributed resource sharing environ-
ment. InCCGRID, 2004.

[12] D. Montgomery and G. Runger.Applied Statistics and Prob-
ability for Engineers. John Wiley & Sons Inc., NY, 2006.

[13] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos,
M. Welsh, and M. Seltzer. Network-aware operator place-
ment for stream-processing systems. InICDE, 2006.

[14] T. Repantis, X. Gu, and V. Kalogeraki. Synergy: Sharing-
aware component composition for distributed stream pro-
cessing systems. InMiddleware, 2006.

[15] T. Repantis and V. Kalogeraki. Alleviating hot-spots in peer-
to-peer stream processing environments. InDBISP2P, 2007.

[16] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. InMiddleware, 2001.

[17] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open
versus closed: A cautionary tale. InNSDI, 2006.

[18] M. Shah, J. Hellerstein, S.Chandrasekaran, and M. Franklin.
Flux: An adaptive partitioning operator for continuous query
systems. InICDE, 2003.

[19] C. Stewart, T. Kelly, and A. Zhang. Exploiting nonstation-
arity for performance prediction. InEuroSys, 2007.

[20] Stream Query Repository.
http://infolab.stanford.edu/stream/sqr/netmon.html,2002.

[21] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and
M. Stonebraker. Load shedding in a data stream manager.
In VLDB, 2003.

[22] The Internet Traffic Archive.
http://ita.ee.lbl.gov/html/contrib/lbl-tcp-3.html, 1994.

[23] Y. Wei, V. Prasad, S. Son, and J. Stankovic. Prediction-based
QoS management for real-time data streams. InRTSS, 2006.

[24] Y. Xing, J. Hwang, U. Cetintemel, and S. Zdonik. Providing
resiliency to load variations in distributed stream processing.
In VLDB, 2006.

[25] Y. Xing, S. Zdonik, and J. Hwang. Dynamic load distribu-
tion in the Borealis stream processor. InICDE, 2005.

[26] Q. Zhang, L. Cherkasova, and E. Smirni. A regression-based
analytic model for dynamic resource provisioning of multi-
tier appications. InICAC, 2007.

