Hot-Spot Prediction and Alleviation in
Distributed Stream Processing Applications

Thomas Repantis  Vana Kalogeraki
Department of Computer Science and Engineering
University of California, Riverside, CA 92521
{trep,vana@cs.ucr.edu

Abstract Distributed stream processing applications have Quality
of Service (QoS) requirements, expressed in terms such as

Many emerging distributed applications require the real- end-to-end delay, throughput, or miss rate. For example,
time processing of large amounts of data that are being up-an alert needs to be raised within a certain time frame af-
dated continuously. Distributed stream processing system ter an intrusion, or a trading recommendation needs to be
offer a scalable and efficient means of in-network process-made while processing financial data at certain rates. Ad-
ing of such data streams. However, the large scale andhering to such QoS requirements is crucial for the depend-
the distributed nature of such systems, as well as the fluc-able operation of a DSPS. The first step towards satisfying
tuation of their load render it difficult to ensure that dis- the QoS requirements of stream processing application is
tributed stream processing applications meet their Qualit taking them into account during the application composi-
of Service demands. We describe a decentralized frametion [8,14]. However, as the incoming data rates may in-
work for proactively predicting and alleviating hot-spats ~ crease at run-time, due to external events such as a network
distributed stream processing applications in real-tiri¢e attack or a rapid popularity growth of some news event, an
base our hot-spot prediction techniques on statisticaéfor application execution may cease to adhere to the requested
casting methods, while for hot-spot alleviation we employ QO0S. In fact, the distinct characteristic of stream proicgss
a non-disruptive component migration protocol. The ex- applications is that the data to be processed arrive in high
perimental evaluation of our techniques, implemented in rates, and often in bursts [24, 25]. Under such dynamically
our Synergy distributed stream processing middleware overchanging conditions, providing application QoS is a chal-
PlanetLab, using a real stream processing application eper lenging task. The problem is complicated further by the
ating on real streaming data, demonstrates high prediction large scale and the distributed nature of a DSPS. Accurate
accuracy and substantial performance benefits. centralized decisions are infeasible, due to the fact tiet t
global state of a large-scale DSPS is changing much faster
than it can be communicated to a single host.

In this paper we study the problem of predicting and alle-
viating application hot-spots in a DSPS. Current approsche
for addressing load fluctuations in DSPSs [3,18, 24, 25], in-

A variety of emerging applications require real-time pro- cluding our previous work [15], focus on avoiding or re-
cessing of high-volume, high-rate data that are updated con solving hot-spots in the system resources, in other words
tinuously. Examples include analyzing the input provided overloaded nodes. We refer to this kind of hot-spot de-
by website visitors to provide relevant advertising, moni- tection and alleviation as node-oriented. The focus of this
toring network traffic to detect intrusions or update router work, on the other hand, is on detecting and alleviating
configuration, customizing news feeds to user interests, orhot-spots in the application execution, in other words ap-
processing financial trading data for recommendations orplications that persistently fail to meet the QoS requirgd b
alerts. This type of applications has given rise to a new the user. We call this kind of hot-spot detection and alle-
class of systems, callddistributed Stream Processing Sys- viation application-oriented We believe that application-
tems (DSPSH], 8,10, 13, 14]. In DSPSs, reusable compo- oriented hot-spot detection and alleviation are as impor-
nents, located on geographically distributed nodes, pce tant as their node-oriented counterparts for the following
continuous data streams in real-time. These components arkey reasons: i) Application-oriented hot-spot detection i
composed dynamically to form distributed applications. more sensitive and can be triggered even when a node is

1. Introduction



underloaded. Even when running on a moderately loaded i iputed
node, an application may not be meeting its Q0S require-stream Processing™._
ments (e.g., if they are stringent), thus experiencing a hot  Application

spot. On the other hand, with node-oriented hot-spot detec- r R

tion, by the time a node is overloaded many of the applica- " = — = ieiace | Apetiation
tions using that node will already have violated their QoS AR = R e [t |
requirements. ii) Application-oriented hot-spot allgioa :( P fpertonssaia MMT e ﬂ
allows more fine-grain_ed _hot-spot alleviation. Depending ~ Synergy = We,\_gﬂim;e;;; L s‘f"""’*’ ez
on the individual applications’ QoS demands, only some MddIeware e yemmrionss o c Ly ‘ Routing ﬂ
instead of all the applications that are using a node may be S

suffering, and thus only these applications may need to be — (==

migrated. On the contrary, node-oriented hot-spot altevia =) =

tion aims at reducing a node’s load, irrespective of which

of the applications experience overload. iii) Most impor- P Network >

tantly, application-oriented hot-spot detection enaltdds
ing proactivemeasures with regards to application perfor-
mance, to prevent severe degradation of application QoS.
Specifically, this paper makes the three following main
contributions: i) We propose a framework built on statatic 2, The Synergy M iddleware
forecasting methods, to accurately predict QoS violatains
run-time and proactively identify application hot-spols.
order to achieve this, our prediction framework binds work-
load forecasting with execution time forecasting. To aceom
plish workload forecasting we predict rate fluctuations, ex
ploiting auto-correlation in the rate of each componend, an
cross-correlation between the rates of different comptnen
of a distributed application. To accomplish execution time
forecasting we use linear regression, an establishedtstati
cal method, to accurately model the relationship of the ap

Figure 1. The basic blocks of Synergy.

In this section we present a brief overview of our Syn-
ergy distributed stream processing middleware. Synergy
is a middleware designed to provide QoS support for dis-
tributed stream processing applications. In Synergy, data
streams, consisting of independent data tuples, arrive con
tinuously from external sources (such as web users, mon-
itoring devices, or a sensor network) and need to be pro-
cessed by stream processing components in real-time. Each

“component is a self-contained software module, that offers

plication execution time and the entire workload of a node, a predefined operator. The operators can be as simple as a
while dynamically adapting to workload fluctuations. ii) filter or a join, or as complex as transcoding or encryption.

Toreact to predicted QoS violations 3”0' alleviate hot-s?pot Components are deployed in the distributed nodes of the
we enable nodgs to autonomously mlgrate the gxecu_ﬂon quynergy middleware according to their individual software
stream processing components using a non-disruptive mi
gration protocol. Candidate selection for migration isdzhs

on preserving QoS. We employ prediction again to ensure
that migration decisions do not result to QoS violations of
other executing applications. To drive migration decision

in a decentralized manner we build a load monitoring archi-

“capabilities or following criteria for the optimization tfe
performance of the whole system [1, 13].

The nodes of our distributed stream processing middle-
ware are connected via overlay links on top of the existing
IP network. The application component graph is built on

o ... top of the middleware, as shown in Figure 1. The basic
tecture on top of a Distributed Hash Table (DHT) [16]. iii) blcr:cks of the Synergy middleware runging on each node

We have implemented our techniques in Synergy [14], Ul are shown in Figure 1. Synergy offers several benefits: i) It

distributed stream processing middlewar€o validate our - o
) enables efficient component composition that meets end-to-
approach we have deployed our middleware on the Planet- .
. end QoS demands by sharing resources, components, and
Lab [5] wide-area network testbed and we have run exper- . , .
. o L streams [14]. ii) It provides a low overhead resource moni-
iments of a real network monitoring application [20] oper-

. : ; toring facility. iii) It allows fast stream and componensdi
ating on traces of real TCF.) traiffic [.22.]' Our expenm(_antal covery by utilizing the underlying DHT infrastructure [16]
evaluation demonstrates high prediction accuracy, with an

average prediction error of 3.7016%, and substantial ben- The user executes a distributed stream processing appli-

L N . o cation by submitting a request at one of the nodes of the
efits in application QoS, achieved by migrations that are ~. o S . .
. ‘ middleware, specifying the required operators and their de
completed in approximately 1s.

pendencies. Then, the system runs a composition algorithm
1synergy is implemented as a multi-threaded system of about o Selec.t the components on the nOde.S to accomp.“Sh the

35,000 lines of Java code and more information is availale a a@Pplication execution. These will constitute the appiaat

http://synergy.cs.ucr.edu/ component graph, that represents the sequence of compo-




nent execution and the corresponding hosting nodes. 3.1 End-to-End to Local Execution Time

We have extended Synergy’s architecture to enable de- Translation
centralized load monitoring [15], built on top of the DHT
we use for component discovery. We have implemented We predict an application hot-spot by examining the
a distributed inverted index on top of the DHT. This way “slack time” of the application on every component of the
we associate operator names with handlers to nodes hostapplication component graph. The slack time represents
ing components offering these operators, together with thehow close we are to violating the end-to-end execution time
current load values of these nodes. For example, in Fig-requirement of the application. Let represent the end-
ure 1 on the left of each node are listed the components thiso-end execution time requirement of the applicatiap.
node is offering, while on the right of each node are listed includes the execution and communication times spent for
the handlers and loads this node is responsible for maintain a tuple to traverse the entire application component graph.
ing. Node B is responsible for keeping the handlers for the Thus, we define the slack timg of an application as the
components that offer an aggregator operator. Therefore itdifference between the required end-to-end execution time
keeps the handlers of nodes B and C, as well as the loads of; and the predicted end-to-end execution time. As the
nodes B and C. Whenever a node’s load changes, it consult@pplication executes, its slack time is computed for every
the DHT to determine the nodes responsible for holding thetuple, on every component of the application component
handlers for all the components it offers. It then sends loadgraph, based on the local prediction of the end-to-end ex-
update messages to them. For example, in Figure 1 nodecution time. The predicted end-to-end execution time in-
B that offers a filter, an aggregator, and a transcoder, will cludes the execution and communication times spent for a
send its load update messages to the responsible nodes, @jple to reach the current componentandt, respectively,
B, and A, respectively. To avoid the communication over- the predicted execution timeés needed for the current and
head caused by updating, we enable the nodes to inform théts downstream components to process the data tuple, as
monitoring nodes only when a significant change in their well as estimated average communication tirfieseeded
load occurs. Configuration changes such as node arrivalsfor the data tuple to traverse the rest of the application-com
departures, failures, or balancing of operator keys amongponent graph. For example, in Figure 3 the predicted end-
nodes are handled by the DHT [16]. to-end execution time as it is calculated in component B is

We use our decentralized load monitoring architecture to the sum ofte ), te(a—p), te(s) te(p—p), @Ndte(p). I
cope with application hot-spots. We define an application order to avoid a QoS violation, the predicted end-to-end ex-
hot-spot as a node in the app"cation Component graph inecution time needs to be less than the required end-to-end
which the application execution persistently fails to meet €xecution timey, in other words, the slack timg needs to
the QoS required by the user. The end-to-end QoS requirePe positive, for every componenbf the v components of
ments, which are specified when requesting an applica-the application component graph:
tion, may among others include end-to-end execution time, N o _
throughput, or miss rate. Although our schemes are generic o) = e = ( Z beti—it1) + Z bei) *

je€l...i—1 je€l...i—1
to additive QoS metrics linearly related to rate, we focus on ! N . . 1)
the end-to-end execution time metric denoted;by Z be(j—j+1) T Z te()) >0
j€i..v—1 j€i...v
3. Application Hot-Spot Prediction The above single-path computation will identify a hot-spot

in the path where it exists. For example, if in Figure 3 com-
ponent C is overloaded, the path — B — D will not
The goal of proactive application hot-spot detection is detect a hot-spot, while path — C — D will. In order

to predict end-to-end execution time QoS violations. In forthe above hot-spot prediction to take place, the estthat
order to achieve this goal we employ: i) Computation of average communication times, and the predicted execution
the application “slack timet, (Section 3.1), to determine times must be computed. The estimates for the communi-
the maximum local execution time allowed by the applica- cation times are available from the application compositio
tion QoS, before missing its end-to-end execution time re- phase [14] and can be updated periodically. The predicted
quirement. ii) Local execution time prediction based on an execution times are derived locally on every node hosting
application’s incoming rate and using linear regression, t a component of the application component graph, as ex-
determine whether the maximum local execution time will plained in the following Section 3.2. They are then propa-
be reached or exceeded (Section 3.2). iii) Rate predictiongated to all nodes participating in the application exexuti
based on auto- and cross-correlation between stream prousing a feedback loop passing through the source. The feed-
cessing components, to determine the future workload thatback loop allows us to piggyback the predicted execution
defines the future execution time (Section 3.3). times on the data tuples, to minimize the communication



overhead. For example, in the application component graphapplication and the rates of the applications currently run

shown in Figure 3 when the node hosting component D cal-ning on the nodes hosting them, obtained from our imple-

culates the component’s next predicted execution time formentation over Planetlab. Linear relationship of execeutio

this application, it propagates it to the node hosting compo time and rate is also consistent with earlier works [23, 24].

nent A, which forwards it to the nodes hosting components

B and C. Similarly, the rest of the nodes propagate their pre- Each node maintains a teg

dicted execution times. Using the predicted executiongime series of(¢.,r:) pairs, for

to compute the slack time on every component enables usach application a compo- .

to predict locally whether the end-to-end execution time re nent of which the node is (re2, rt2)

guirement of the application will be violated. hosting. The series is main-
tained as a sliding window

3.2 Local Execution Time Prediction of the £ most recent val-
ues. The execution time is

In this section we explain how we predict the local ex- measured every time a data rt

ecution timet, needed to process a data tuple of an appli- tuple for an application is

cation. The prediction takes place at each node hosting aprocessed, while the total Figure 2. Linear

component of the applicationt, is used to compute the rate is measured as the sum  regression.

next slack timet; of the application using Equation 1. The of rates of all applications,

local execution time for a data tuple (the time elapsed be-data tuples of which were

tween the arrival and the departure of the tuple) is the sumprocessed since the last time a data tuple of that applicatio

of the processing time to process the tuple, and the queuewas processed. If the rate of any application increases, it

ing time the tuple has to wait in the scheduler’s queue while affects the execution time of other applications on the same

other tuples are being processed. While the processing timenode due to queueing delays. We estimate the conditional

is constant for a given tuple size, the queueing time de-expected value of., given a predicted value far,. We

pends on the load of the processing node, in other wordsuse linear regression, and assuming we Hapeirs so far,

on the rates (incoming tuples to be processed per time unitithe linear function ig. = a + b - r; and the least square

and processing times of the applications currently being ex estimators: andb are:

(tel, rtl (te3, rt3)

ecuted on the node. Using queueing theory, one can derive Yo (rug) —7) - (teq) — te)
average values for the queueing time, assuming an M/M/1, _ ~ _ . = p— JELK 2
gueueing model [14], or a more general M/G/1 model that o (reg) —7e)?

makes no assumptions regarding the service rate, in which JEL..k

case the queueing time is given by the Pollaczek-Khinchinynere the average valugsandr; are:
mean value formula [9]. However, we chose not to predict

the execution time using queueing theory for the following _ > tew) _ > Tiy)
reason: The arrivals of data tuples may not always be accu- f, = jelk o= JeLk (3)
rately approximated with a Poisson distribution if rate fluc k k

tuations or bursts occur. Such rate variations are quite com |n order to enable proactive hot-spot detection, we base the
mon in distributed stream processing applications [24}. AC prediction of the execution tim& of an application on the
curate prediction during such fluctuations is however cru- predicted rates of the applications running on components
cial. We use linear regression to predict the execution timeof the noder, = 3 7. (We explain how; for an appli-
of an application [12]. Since data tuples arrive in highsate o . lel.a _ _ .
prediction is more fine-grained than node load changes. catlon{ is derived in the following Sectlon.S.AS.) A_ssummg
To predict the local execution time of an application ~ an estimated value for the nex{, we predict. using the
using a component on a node, we need to derive the re-above equations. Specifically, as shown in Figure 2, we use

lationship betweert, and the total rates, = > r; of the k pairs of (t., r¢) values to calculate andb and then
l€T...a given an estimated, we predictt. using the following for-
all o applications currently using components on that node. myla: . )
¢ ) te=a+b-7y 4)

While for increasing:; one expects, to increase, the trend

of the increase is not clear without making any assumptions 14 evaluate the accuracy of our execution time prediction

regarding the arrival pattern of the data tuples. We approx-we calculate the estimated standard error of the stope
imate the relationship using linear regression and our ex- - -
perimental results show good fitting for increasing rates. 20 ey —te)> =b 3 (re(g) = Te)(te(s) — Te)
Figures 14, 15 show the relationships between the execuse(b) = et ot

(k=2) > (ryg —7m)?

tion times of different components of a stream processing JET .k

©)



If the estimated standard erraf(b) is above a heuristically

set confidence level’, we do not employ execution time
prediction. Instead we report the last measured applicatio
execution time value rather than a predicted future one. In
general however the last measured value is not an accurate
predictor, as it ignores the current rate.

rA

rA, B, rC, 1D
—>

Figure 3. Propagation of rate values for cor-
related rate estimation.
3.3 Rate Prediction

. . . . R m
In this section we describe how we predict the ratd T = A8m MAT ) Th_1 = Th(m) Th_1 (6)

an application, which we use to calculate the sum of the arg,, marl(x1) Tk=1(m)
rates of all applications running on components of a node,
7,. The latter is used to predict the application execution
time ¢, using Equation 4. We base the prediction of the
rate of every application that is using a component hosted

and the component is decided as the one with the maxi-
mum among all correlation coefficientd of each preced-
ing component in the application component graph:

on the node on both auto- and cross-correlation. We take > (e —re)ry —17)

into account auto-correlation by building our predictidn o R, = Jjel...(k—1) @)
a component’s future input rate on its previous input rate. > (o —re)? X (rj—7)?
This captures any self-similarity the application traffiayn Jel...(k—1) j€L...(k—1)

have, which has been known to be the case for various types
of traffic in stream processing environments [24]. We take Where the average rate values of i@ preceding and the
into account cross-correlation, by also building our peedi ~ current component,;, andr respectively, are:
tion of the input rate of a component on the current input . S
rate of a previous component in the application component jel.h—1) i) el e-1) /
graph. This captures the fact that preceding components ") = — . —71 T T (8)
observe changes in the application input rate before the cur
rent component. Since data flow from one component to
the next, the observed trends are often seen in the curren S -
component as well. In particular, we identify the preceding El Application Hot-Spot Alleviation
componenin in the application component graph, the rate
of which has the maximum correlation with the rate of the 4.1. Identifying the Components to Migrate
current component so far. In summary, we estimateithe
th input rater, of a component based on its previous input  After an application hot-spot has been predicted, the next
ratery,—1, as well as the current and previous input rates of step is to determine which component execution(s) to mi-
COmMpPOoNEeNtn, 7 (m,) andry_1(,,) respectively. grate in order to resolve the hot-spot. We perform QoS pro-
We transfer the current input rate values to the down- jection and choose the migrations in such a way, so that the
stream components using the same path followed by thepredicted execution times of the remaining applications in
data tuples, as shown in Figure 3. This way, for each of thethe node are within their QoS requirements.
previousi components in the application component graph,  Specifically, our goal is to determine the minimum num-
a series of k — 1) pairs(r, ;) is built. This series asso-  ber of migrations that will result to all the remaining appli
ciates thék—1) rate values of the current componentwith  cations satisfying their QoS requirements. In other words,
the (k — 1) rate values-(; of each of the previouscom- we seek the minimum number of migrations that will re-
ponents. We use the Pearson Product Monigrat popular ~ duce the sum of rates of all the applications in the node to
correlation coefficient [12], to estimate how the rate offeac such a degree, that all projected execution times for the re-
of the previoug components in the application component maining applications will be within their QoS requirements
graph is correlated to the rate of the current component.More formally, and by building on the concepts introduced
We use the current:(th) and previous (¢ — 1)-th) rates in Section 3, we migrate the component execution(s) that
of the componentn with the maximum correlation coef- remove the minimum number of predicted rate¢from
ficient, arg,, max R, andarg,, marR,_1) respectively, Equation 6), so that the predicted sum of applif:ation rates
as predictors for the rate of the current component. Hence,on the node’; results to predicted execution times(from
assuming we havéc — 1) pairs of recorded input rates so Equation 4) such that, for every application remaining in
far, the estimated input rate for the current componentis: the node, the slack timg (from Equation 1) is positive.



This optimization problem lends itself to a dynamic pro- 5. Experimental Evaluation
gramming solution in pseudo-polynomial time. After ob-
serving that usually one migration suffices to alleviate a
hot-spot, and to minimize the execution time overhead, as
migration decisions need to be taken online, we employ a
simple heuristic of selecting for migration the component
with the largest until all slack times become positive.

To evaluate the performance of our hot-spot prediction
and alleviation mechanisms we have implemented them in
our Synergy distributed stream processing middleware and
performed experiments over the PlanetLab [5] wide-area
network testbed. We used 34 hosts, each one of them is-
suing a request for a distributed stream processing applica
4.2. Identifying the Target Nodes tion. Each node was hosting stream processing components

that were processing data tuples as they arrived. We set the
application end-to-end delay QoS requirement to 20s.

Once a component the execution of which is to be mi-  To evaluate the accuracy of our prediction mechanisms
grated has been identified, the host to migrate to has to bayve implemented a real stream processing application from
decided. The choice for migration targets is made amongthe network traffic management domain, which we fed
the nodes that host the same component. Among them wayith real TCP traffic traces. We used a stream process-
try to identify a node probable to satisfy the migrating &ppl  ing application from the Stream Query Repository [20],
cation’s QoS requirements, while not violating the QoS of in which, assuming a packet capturing device installed in
the applications currently running locally. Such nodes are a network, a system administrator wishes to monitor the
most probable to be found among the ones that are predictedource-destination pairs in the top 5 percentile in terms
to be less loaded. Each node predicts its local load usingof total traffic in the past 20 minutes over a backbone
linear regression, based on predicted rate values, using dnk. We generated the streaming data to be processed
methodology similar to the one described in Section 3.2. by replaying a TCP traffic trace available from the Inter-
We use a simple model, according to which a component'snet Traffic Archive [22]. Similar results where obtained
load is proportional to the number of input data tuples it is with the rest of the traces from [22]. The trace contained
receiving, which is an assumption also made by previoustwo hours’ worth of all wide-area TCP traffic between the
works [23,24]. We store load information in a decentral- Lawrence Berkeley Laboratory and the rest of the world,
ized architecture [15] on top of the DHT, as was described consisting of 1.8 million packets. Each packet contained
in Section 2. By utilizing the load monitoring architecture a timestamp, and fields defining the source and destina-
anode determines the least loaded node offering the compotion (IPs and ports), as well as the size of the packets ex-
nent the migration requires. After the migration target has changed between them. Our implementation of the above
been identified, the migration from the source to the targetstream processing application to process the packet input
takes place, to resolve the application hot-spot. over 20-minute windows to generate the monitoring output

To avoid QoS violations we perform QoS projection that involved eight components, and screenshots are available
predicts whether the QoS of the migrating and of the cur- at http://synergy.cs.ucr.edu/screenshots.html. Eadk ite
rently running applications will be able to be met after the stantiated a different stream processing applicationithat
migration has occurred. Once it has received a migrationcluded all eight components of the application component
request, a node determines whether after accepting the migraph, distributed randomly on different nodes of the sys-
gration it will be able to provide the migrating application tem. Each node predicted the rate and the execution time of
its required QoS. Additionally, it determines whether the the components it was hosting using the statistical methods
migration will not result to QoS violations for the locally described in section 3. We plot predicted and actual values
executing applications. To achieve these goals, a migra-to show correlation and burstiness. The differences betwee
tion target performs QoS projection involving the migrgtin ~ actual and predicted values were also plotted but are ainitte
and the currently running applications, that is similarte t ~ due to lack of space.
one described in Section 4.1. Specifically, it ensures that Rate Prediction Accuracy. In our first set of experi-
by addingr for the new application, the sum of application ments we investigated the accuracy of our rate prediction
rates on the node, will not result to a predicted, (from algorithm described in Section 3.3. Figures 4,5, 6,7, and 8
Equation 4) that results to a negative execution time slackcompare the predicted rate for the individual components
for any application (from Equation 1). If that is the case th of an application to their actual rate. Similar results were
migration is accepted and takes place using the migrationobtained for all applications, as well as for the rest of the
protocol presented in [15]. Our current migration mecha- components of the application component graph, but are
nism caters to stateless components and simple componentsot included here due to lack of space. We observe that
whose state is captured in small buffers. State transfer is ahe predicted rate closely follows the measured rate for the
separate issue by itself and worth future investigation. different component types, namely sort, project, aggeegat
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Figure 4. Rate prediction ac- Figure 5. Rate prediction ac- Figure 6. Rate prediction ac-
curacy for “sort”. curacy for “project”. curacy for “aggregate”.
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Figure 7. Rate prediction ac- Figure 8. Rate prediction ac- Figure 9. “Sort” execution
curacy for “count”. curacy for “compare”. time prediction accuracy.

count, and compare. Another interesting observation is thehosting a component, shown in Figures 14, and 15 (similar
correlation in the rate between different components,Xer e  Figures for the rest of the components are omitted due to
ample between sort and project, or between aggregate anthck of space). This enabled us to determine the accuracy
count. This indicates the significance of cross-correfatio of assuming a linear relationship between the two, which
between different components in the application componentformed the basis of our linear regression-based execution
graph, which we exploit in addition to auto-correlation to time prediction algorithm described in Section 3.2. We ob-
predict component rates. serve that the relationship can be approximated by a line,
excluding a few outliers. However this linear relationship

Execution Time Prediction Accuracy. In our second | X , T
set of experiments we investigated the accuracy of our exe-'S Most evident when the total rate in the node is signifi-

cution time prediction algorithm described in Section 3.2. €ant. If the node is lightly loaded, no significant queueing
Figures 9, 10, 11, 12, and 13 compare the predicted todelays occur and therefore no significant variations in the

the actual execution time for the same set of componentsEXecution time take place.

as in the rate prediction accuracy experiment. As was de- Prediction Parameters. In our fourth set of experiments
scribed in Section 3.2, the predictions are based on the sunwe investigated various parameters regarding the predicti
of rates being processed by the node hosting each compoeverhead and performance. In Figure 16 we show how rate
nent. Note, that each component was hosted on a differenprediction accuracy is affected when reducing the predic-
node. The predicted execution time follows the execution tion frequency. Reducing the prediction frequency can en-
time we measure. Cases where the prediction is very in-able the system to handle high rates, by avoiding the pre-
accurate are detected using the estimated standard error afiction overhead for every data tuple. We present the effect
the linear regression, as was described in section 3.2. Thion prediction accuracy for the different components, when
way, instead of the inaccurate predicted future executionpredicting the rate for every 1, every 50, every 75, and every
time value the currently monitored value is reported. 100 incoming data tuples. We observe that even by reduc-
ing the prediction overhead by a factor of 75, the prediction

iments we investigated the relationship between the execu-2ccuracy only drops by 8.775% on average, ranging from

tion time of the individual application components and the 2-:0% for sort, to 14.375% for project.
total rate for all applications being processed by each node Table 17 shows the average rate prediction error for the

Execution Time Distribution. In our third set of exper-
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different application components. This provides a clear  Figure 20 shows the benefit of hot-spot prediction and al-
overview of the prediction accuracy. Even though some leviation for the application performance. The perfornmanc
variation depending on the component semantics exists, thanetric displayed is the end-to-end application delay. Note
average prediction error is kept at 3.7016%. Table 18 showsthat this delay is calculated only for the data tuples thdt di
the overhead in processing time for rate, execution timeé, an not miss their deadlines, as the ones that missed their dead-
load prediction. The average overhead is 0.5984ms, whichlines are dropped by the local schedulers before reachéng th
makes our algorithms suitable for online prediction. receiver. While hot-spot prediction and alleviation erabl

the delivery of more data tuples as the load increasesgit als

Application Performance. In our fifth set of experi-  aintains a lower average application end-to-end delay.

ments we investigated the application benefits gained from

our hot-spot prediction and alleviation mechanisms. Fig-  Figure 21 shows how a migration affects the perfor-
ure 19 shows the improvement in application QoS achievedmance of a particular application. For a load of 10 ap-
by predicting application hot-spots and alleviating thesn u  plication requests per node, we show the end-to-end delay
ing migration. The QoS metric displayed is the miss rate, attained by delivered data tuples of one application. Ap-
defined as the number of data tuples that missed their QoSroximately at data tuple #500 an application hot-spot oc-
deadline, over the total number of data tuples that were pro-curs, resulting to an increase in the end-to-end delay. Our
duced by the source. The miss rate is displayed as a functiorhot-spot elimination mechanism kicks in and decreases the
of the system load. We inject additional load in the system end-to-end delay through migration approximately at data
by increasing the number of application component graphstuple #1200. It is also important to note that only the data
each node requests from 1 to 10. When the system is untuples that were delivered within the application’s QoS re-
derloaded not many application hot-spots occur and there-quirements are shown. As the application end-to-end delay
fore their alleviation does not offer significant QoS advan- increases, we can clearly observe a reduction in the number
tages. However, as the system load increases, the miss ratef delivered data tuples. After the hot-spot has been elim-
increases drastically when hot-spots are not handled. Ap-inated, the number of data tuples that miss their deadline
plication hot-spot elimination controls this increase. decreases again and more points can be seen in the graph.
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The Figure magnifies, focusing on 2000 of the total tuples. 6. Related Work

In Figure 22 we show the migration overhead to achieve
the hot-spot alleviation benefits. The number of migrations  Distributed stream processing systems have been the
is shown as a function of the number of applications de- focus of a lot of recent research from different perspec-
ployed in the system. We observe that the number of migra-tives. Work on the placement of components to make ef-
tions grows linearly to the number of applications. On aver- ficient use of resources and to maximize application perfor-
age, one migration every three applicationsis requirets Th mance [1,13] is complementary to ours. Any technique for
shows that on average one every three applications experideploying new components can be used, once all the nodes
ence a hot-spot at some point during the execution, whichhosting a particular component type are overloaded. Ad-
motivates the need for application-oriented hot-spovale  ditionally, the migration techniques presented in [13] can
tion. This assumes that not many applications require morebe used as an alternative to our migration protocol, com-
than one migration, in other words that the system is not soplementing the prediction mechanisms for QoS violations
overloaded that a migration does not permanently resolvepresented here. Similarly, work on component composi-
a hot-spot. We also measured the average time required taion [8, 14] or application adaptation [2, 6, 10] can assist i
perform a migration to be 1144ms. This time included the load balancing. Load balancing for distributed stream pro-
complete distributed protocol execution described in Sec- cessing applications has also been studied [3,18,24,25]. W
tion 4.2. The short migration time, together with the fact differ from these approaches in that we focus on the appli-
that our migration protocol enables application executiion  cation QoS, rather than the system utilization. Furtheemnor
continue while the migration is taking place offline, make we propose a hot-spot prediction framework to drive proac-
our hot-spot alleviation mechanism suitable for distidslt  tive migration decisions. In our previous work [15] we pre-
stream processing applications with QoS demands. Presented a peer-to-peer load balancing architecture, fogusi
diction further facilitates fast reaction to a hot-spotfdre on reactive, node-oriented hot-spot detection that doés no
massive QoS violations occur. utilize prediction. Load shedding [4, 21, 23] has been ex-



plored before as a means to alleviate application hot-spots [3]
in stream processing systems. Our goal when alleviating
application hot-spots via migration is to do so in a less in-
trusive manner. Similar to our work, [23] identifies the need 4]
for proactive QoS management and proposes operator se-5)
lectivity estimation using sampling. Their methods howeve
refer to centralized stream processing on a single node. [6]

Workload prediction has been studied in various con-
texts and [17] discusses how some workloads have been
shown to be most accurately represented by open mod- [7]
els, while others by closed ones. Dinda [7] has shown
the effectiveness of linear models in predicting host load, (8]
network bandwidth, and performance data. In the do-
main of grid computing multi-resource prediction has been [g]
proposed [11], where the processor utilization is cross-
correlated with the memory utilization. We also utilize [10]
cross-correlation, but between different nodes rathem tha
between different resources. Performance prediction for

- : [11]

multi-tier web servers [19, 26] is also relevant to our work,
provided that all tiers are considered and not just one which
is assumed to be the bottleneck. [19] proposes a model[lz]
based on queuing theory, to predict performance as a func-
tion of the transaction mix. For stream processing applica- [13]
tions however, rate fluctuations rather than the type of re-
quired processing affect performance. For the same rea-
son, certain assumptions regarding the distribution of ar- [14]
rival rates that are needed for queueing analysis, may not
hold. [26] proposes a model based on regression to predict[15]
the processing cost of web transactions and drive capacity
planning decisions. We also employ linear regression but [16]
focus on online execution time prediction.

7. Conclusions (171

We have described hot-spot prediction and alleviation [18]

mechanisms for distributed stream processing applicaition

Our algorithms for hot-spot prediction are based on the sta- 19
tistical methods of linear regression and correlatiodizdti

ing only light-weight, passive measurements. Statistiés ¢~ [20]
lection and hot-spot prediction and alleviation are carrie

out at run-time by all nodes independently, building upon [21
a fully decentralized architecture. The experimental eval
uation of our techniques on the Synergy middleware over 22]
PlanetLab, and using a real network monitoring applica-
tion operating on traces of real TCP traffic, demonstrated [23]
high prediction accuracy and substantial performance ben-
efits with moderate monitoring and migration overheads.  [24]
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