
WS-DREAM: A Distributed Reliability Assessment
Mechanism for Web Services

Zibin Zheng, Michael R. Lyu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Hong Kong, China

{zbzheng, lyu}@cse.cuhk.edu.hk

Abstract

It is critical to guarantee the reliability of service-
oriented applications. This is because they may employ
remote Web Services as components, which may easily
become unavailable in the unpredictable Internet
environment. This practical experience report presents
a Distribute REliability Assessment Mechanism for
Web Services (WS-DREAM), allowing users to carry
out Web Services reliability assessment in a
collaborative manner. With WS-DREAM, users in
different geography locations help each other to carry
out testing, and share test cases under the
coordination of a centralized server. Based on this
collaborative mechanism, reliability assessment for
Web Services in real environment from different
locations of the world becomes seamless. To illustrate
the advantage of this mechanism, a prototype is
implemented and a case study is carried out. Users
from five locations all over the world perform
reliability assessment to Web Services distributed in
six countries. Over 1,000,000 test cases are executed
in a collaborative manner and detailed results are
provided.

1. Introduction

In general, Service Oriented Applications are built
on top of Web Services which have standardized
interface, loosely-coupled structure and cross-platform
characteristics. In contrast to implementing all
components from scratch for an application, it is much
more efficient and economical to engage existing Web
Services as components. Since remote Web Services
may easily become unavailable in the unpredictable
Internet environment, it is difficult to guarantee the
reliability of applications developed on these Web
Services.

Web Services reliability assessment techniques are
therefore critical for establishing trustworthy Service-
Oriented Applications [1,2]. Such assessments allow
suitable Web Services be identified for applications
from various Web Services available in Internet. Also,
assessments are needed to select out optimal
replication strategies for applications from a good deal
of fault tolerance replication strategies [3,4], which
employ identical or similar Web Services to enhance
the application reliability. To perform accurate Web
Service assessment, it is critical to design good test
cases and conduct the testing in real-world
experiments. Since most Web Service applications
will be deployed to different locations in the world, it
is important to carry out reliability assessments from
these locations through various Web environments.
Obtaining accurate assessment is therefore a
formidable challenge for both Web Service users as
well as Web Service providers.

To address this challenge, this practical
experimental report presents a Distributed REriablity
Assessment Mechanism for Web Services (WS-
DREAM). WS-DREAM employs the concept of user-
collaboration, which is an important concept
contributing to the recent success of BitTorrent [5],
and Wikipedia [6]. With WS-DREAM, users in
different geography locations help each other to carry
out testing under the coordination of a centralized
server, which makes a distributed assessment of Web
Services much easier. Moreover, the users can
contribute individually-designed test cases to WS-
DREAM, achieving a powerful, full-scale automated
Web testing oracle. Under this collaboration manner,
those users who plan to make assessment to the same
Web Service will benefit from the intelligence (due to
their individual design of test cases) of each other.
They also benefit from the cumulated intelligence of

prior users who have performed the Web assessment
before.

WS-DREAM aims at two kinds of target users:
Service users and Service providers. For Service users,
instead of conducting time-consuming assessment
themselves, they can make accurate reliability
assessment of target Web Services by the facility of
WS-DREAM. For Service providers, WS-DREAM
can be employed to simulate real usage condition to
their Web Services from various geographic locations
via real Internet environment. This enables accurate
real-life testing which is not available in the lab testing
environment.

Design and implement of WS-DREAM will be
presented. Also, to illustrate the functionality and
applicability of WS-DREAM, users from five
locations all over the world carry out assessment to
Web Services located in six countries, and more than
1,000,000 test cases are executed and analyzed. The
detailed results will be reported and discussed.

This paper is organized as follows: Section 2
introduces the architecture of WS-DREAM. Section 3
presents details of implementation, and practical
experiment. Section 4 discusses experimental results,
and Section 5 concludes the paper.

2. WS-DREAM Architecture

WS-DREAM includes a centralized server with a
number of distributed clients. WS-DREAM server
serves as a coordinator for the users. It is in charge of
receiving test requests, creating test cases, scheduling
test tasks, and analyzing test results. Distributed clients
are running at computers of the user side. They carry
out testing in a collaboration manner. As shown in
Figure 1, steps of running WS-DREAM are as follows:

Strategy
Manager

Fault
Injector

WSDL
Analyzer

Web Site

Manager

Coordinator

1

7

User1

User N

Web Service 2

Web Service 1

Web Service N

2

TestCase
Dispatcher

TestResult
Reveriver

Result
Database

TestResult
Analyzer

8

TestCase Generator

Test Coodinator

Web Service 2

Web Service 1

Web Service N

6

WS-DREAM Server

Testing Engine

RulesManeger
1.<parallel>
2.<sequence>
3. <retry>
………...

 TestRunner

4

3

5

Figure 1. WS-DREAM Architecture

Step1: Users go to the Web site of WS-DREAM
and submit assessment requests with the related
information (i.e., target Web service address, timeout
threshold, particular test cases, preferred replication
strategies, etc).

Step2: The client-side of WS-DREAM is loaded
and executed in the user’s computer.

Step3: TestCase Generator in the WS-DREAM
server creates test cases based on the interface of the
target Web Service (WSDL file), test cases provided
by users, and accumulated test cases in WS-DREAM.
Fault injection techniques [7,8] are employed to create
various fault-trigging test cases in addition to normal
test cases. Test plans, which contain several test cases
and a running rule, are composed.

Step4: Test Coodinator schedules testing tasks
based on the number of current users and test requests.

Step5: The distributed client-side computer sends
requests to the WS-DREAM server to get the test plan.

Step6: The user computer at the distributed client-
side calls a RulesManager to resolve test plan and
carries out testing to remote Web Services following
the specified rules in the test plan.

Step7: The client-side computer sends back test
results to the server, and repeats steps 5, 6 and 7 to
execute more test plans.

Step8: After the test is completed, the WS-DREAM
server engages TestResult Analyzer to process the
collected data and send back detailed results to the user
who submitted this assessment request.

After getting the analysis result, the user can stop
the WS-DREAM client-side execution, or keep it open
for running test plans for other WS-DREAM users.

2.1. Scheduling Algorithm

The dynamic changes of the current user number

and test plan number in WS-DREAM makes the test
tasks assignment difficult. Therefore, a scheduling
algorithm is critical for enabling test plans to be
executed in a collaborated and distributed manner. The
following principles are taken into consideration when
designing the scheduling algorithm:
- Fairness. Different Web Services should have fair

chances to be assessed.
- Distributed. Web Services should be assessed by

users in as many geography locations as possible.
- Feasible. Task assignment should dynamically

adjust to the frequently changed number of users
and number of test plans.

- Efficient. The algorithm should be efficient and it
should not slow down the testing progress.

As shown in Figure 2, a Round-Robin based
algorithm is designed to meet the above requirements.
A client gets only one test plan from the server each
time, and will send back the result to the server after
executing the test plan. This design minimizes the
influence of the sudden departure of a user, since at
most one test result would be lost.

Figure 2. Scheduling Algorithm

2.2. Replication Strategies

The abundant resources of identical and similar Web
Services available in Internet make fault tolerance by
design diversity [9] a natural choice for Service
Oriented Applications to enhance reliability. The most
suitable strategy for a Web Service application may be
different depending on different application
requirements and network conditions. WS-DREAM
can be flexibly engaged to evaluate the performance of
different strategies and assist developers to select out
the most suitable strategy. 9 strategies are employed in
WS-DREAM, which are shown in the following:

1. Parallel. The service oriented application sends
requests to different Web Service replicas in parallel.
The first properly returned response will be taken as
the final outcome. This strategy can be used to tolerate
faults and achieve better respond time performance.

However, it consumes more computing and
networking resource.

2. Retry. The same Web Service will be retried if it
fails. This strategy can be employed to mask temporal
faults.

3. RB. Another backup Web Service will be tried
sequentially if the primary Web Service fails. In
erroneous environment, the response time performance
of RB is not good, since the backup Web Service is
tried sequentially.

4. Parallel +Retry. The whole parallel block will be
re-executed if fails.

5. Retry+ Parallel. Individual replica in the parallel
block will be retried if the replica itself fails.

6. Parallel +RB. As shown in Figure 3, another
parallel block using other replicas will be tried if the
first parallel block fails.

7. RB+ Parallel. As shown in Figure 3, a replica in
the parallel block will try another replica sequentially
if it fails.

8. Retry+RB. A replica will retry itself first if it
fails for certain times. Then another replica will be
executed.

9. RB+Retry. A replica will try another standby
replica first if it fails. After trying n times without
success, the whole RB process will be retried.

XML-based scripts are used to express strategies in
WS-DREAM; therefore, new strategies can be easily
added. Figure 3 shows the expression samples of
strategies type 6 and type 7.

Figure 3. Expressions of Type 6 and Type 7

3. Implementation and Experiments

Based on the architecture design in Figure 1, a
prototype of WS-DREAM is implemented using Java
and Axis. The client-side of WS-DREAM is realized
as a signed Java Applet, which is run with Internet

Begin
Let T be n WS test plan queues },....,,{ 21 nTTT=

=

,....,, 21

+

},....,,{ 21 niiii = be n indexes for T
 c be m clients },..,,{ 21 mccc

},....,,{ 21
x
n

xxx jjjj = be n counters for c
x

Set i to be 0 nii
Repeat

 Wait for request from clients.

xc = incoming client.

If(c ==new client) set to 0 x
x
n

xx jjj ,....,, 21

Else get from the client. x
n

xx jjj ,....,, 21

},....,,{ 2211
x
nn

xxx jijijik +++=

 m = i = Min(k) x
yy j x

 If (multiple m) random select one
Dequeue a testplan from T

y

 i ++ x
x
xj ++

Return the test plan to the c x

Until i >= Max x

End
<sequence>

<parallel>
<id>A1</id>
 ………….
 <id>An</id>

</parallel>
<parallel>
 <id>B1</id>
 ………….
 <id>Bn</id>
</parallel>

</sequence >

<parallel>
 <sequence>
 <id>A1</id>

<id>B1</id>
</sequence >
<sequence>

 <id>A2</id>
<id>B2</id>

</sequence >
………….

</parallel>

Browsers at the user computers. This provides a
convenient way for users to carry out testing
seamlessly, as Internet Browsers will load and update
the client-side executions automatically.

The server-side of WS-DREAM includes several
components: an HTTP Web site (running on Apache
HTTP Server), a TestCaseGenerator (Java project
using JDK6.0 and Axis library), and a TestCoodinator
(Java Servlet running on Tomcat 6.0). MySQL is used
to record testing results. These server-side components
are loosely-coupled. Design diversity can be easily
employed to enhance reliability.

Practical experiments are conducted in real Internet
environments to illustrate WS-DREAM in real-world
executions. We assume a user named Ben employs
WS-DREAM for reliability assessment on several
target Web Services, which will be employed in his
commercial Web site. These Web Services include: six
identical Amazon book displaying and selling Web
Services distributed in six countries, a Global Weather
Web Service to display currently weather information,
and a GeoIP Web Service to get geography
information of Web site visitors. Users of WS-
DREAM, who are from five locations all over the
world, perform this assessment in a collaborative
manner. Over 1,000,000 test cases are executed.

In the above example, the timeout period is set to be
10 seconds by Ben. If a Web Server does not respond
within the 10-second period, the request will be
terminated and a failure is recorded. In practice, the
value of timeout threshold is application-dependent
and can be set by users in WS-DREAM based on the
need of their applications. Detailed information of test
cases, test plans, and test results of this example is
available in the WS-DREAM Web site [10].

WS-DREAM is therefore employed by Ben for
following purposes:
1) Assess the reliability of the target Web Services.
2) Measure the performance of different replication

strategies employing the six identical Web Services
provided by Amazon in different countries.

3) Determine the best number of replicas for a
selected replication strategy.

4. Result and Discussion

4.1. Reliability Assessment of Web Services

Tables 1-5 show the assessment results of the target
Web Services. In the first colum of these tables, a-us,
a-jp, a-de, a-ca, a-fr and a-uk stand for the six
identical Amazon Web Services located in US, Japan,
Germany, Canada, France, and UK, respectively. GW

and GIP stand for the corresponding Global Weather
Web Service and GeoIP Web Service. In the first row
of the tables, Cases shows the failure rate (R%), which
is the number of failed test cases (Fail) divided by the
number of all executed test cases (All). RTT shows the
average (Avg), standard deviation (Std), minimum
(Min) and maximum (Max) values of the testing
communication round-trip-times. ProT shows the
average (Avg) and standard deviation (Std) values of
process times of test cases in service servers. The ProT
of GW and GIP are unavailable, as these two Web
Services do not provide the information. Only values
of correct cases are calculated in the RTT and ProT,
because most of the failed cases have large RTT values
and unavailable ProT values, which will affect
accuracy of the result. All time units are in
milliseconds (ms).

Table 1. Availability and RTT (Hong Kong)

 Cases RTT(ms) ProT
 R% Fail All Avg Std Min Max Avg Std
a-us 0.32 110 34395 453 309 250 9562 42 21
a-jp 0.13 45 34425 407 340 203 9937 44 33
a-de 2.25 761 33889 587 348 343 9750 43 18
a-ca 0.45 153 34361 484 325 250 9515 43 20
a-fr 2.32 784 33771 588 358 343 9750 44 20
a-uk 2.51 844 33660 619 375 328 9813 43 20
GW 4.27 1461 34239 1582 1508 406 9989 -------
GIP 3.75 1285 34284 847 1470 203 9984 -------

Table 1 shows assessment results of the eight target

Web Services in the locations of Hong Kong. Failure
rate and RTT performance of a-jp are better than
others. This means Hong Kong users can employ a-jp
to achieve higher availability and smaller network
latency. RTT standard deviation values of target Web
Services are all very large, which indicates RTT values
are changing drastically from time to time (For
example, RTT values of a-jp are fluctuating from 203
millisecond to 9937 milliseconds in our experiment).

Failure rates and RTT performance of GW and GIP
are not so good comparing with the six Amazon Web
Services. However, this is understandable, because
they are neither commercial nor designed for critical
purposes. ProT values of Amazon Web Services are
rather small comparing with RTT, indicating that
latency of Amazon Web Services is mainly caused by
Internet connection instead of Web Server executions.
Among all the 5443 failure cases, 2986 failure cases
are due to timeout (larger than 10 seconds), 2456
failure cases are due to unavailable service (http code
503), and 1 failure case is due to bad gateway (http
code 502).

Table 2. Availability and RTT (Mainland China)
 Cases RTT(ms) ProT
 R% Fail All Avg Std Min Max Avg Std
a-us 7.37 109 1479 1801 2048 484 9906 42 19
a-jp 7.52 128 1703 1683 1945 296 9937 46 27
a-de 7.41 114 1539 1806 1909 390 9844 42 17
a-ca 6.44 111 1723 1671 1961 281 9953 45 21
a-fr 6.41 96 1498 1869 1920 360 9999 43 18
a-uk 5.36 100 1865 1792 1903 359 9875 45 20
GW 26.3 337 1280 3487 2416 953 9969 -------
GIP 1.66 32 1923 1230 1535 250 9781 -------

Table 3. Availability and RTT (Australia)
 Cases RTT(ms) ProT
 R% Fail All Avg Std Min Max Avg Std
a-us 0 0 1982 1218 1543 375 9937 42 16
a-jp 0 0 1996 1052 1465 312 9922 44 29
a-de 0 0 1935 1476 1603 453 9891 45 115
a-ca 0 0 1982 1190 1487 375 9828 42 17
a-fr 0 0 1823 1309 1350 453 9812 44 23
a-uk 0.15 3 1984 1326 1388 453 9734 44 24
GW 0.28 5 1794 1466 1590 234 9812 -------
GIP 0 0 1994 875 1619 234 9899 -------

Table 4. Availability and RTT (Taiwan)
 Cases RTT(ms) ProT
 R% Fail All Avg Std Min Max Avg Std
a-us 0 0 9316 712 293 234 9422 44 22
a-jp 0.01 1 9328 596 276 187 5016 44 40
a-de 0 0 9895 938 369 343 9515 44 17
a-ca 0.06 5 8861 715 306 235 9791 43 20
a-fr 0 0 9537 923 388 329 9719 44 21
a-uk 0.02 2 8831 944 405 328 9762 45 23
GW 0.37 35 9344 1824 1445 250 9948 -------
GIP 0.68 60 8774 793 1262 234 9922 -------

Table 5. Availability and RTT (USA)
 Cases RTT(ms) ProT
 R% Fail All Avg Std Min Max Avg Std
a-us 0 0 8004 100 135 31 5094 42 18
a-jp 0 0 8087 302 247 109 9282 43 33
a-de 0 0 7753 313 229 109 9390 43 16
a-ca 0 0 7794 177 217 31 9515 43 19
a-fr 0 0 8168 383 194 125 3906 44 30
a-uk 0 0 8060 318 228 124 9453 44 19
GW 0 0 7694 1189 1376 62 9855 -------
GIP 0 0 7733 660 1354 62 9938 -------

0

500

1000

1500

2000

2500

3000

3500

4000

a-us a-jp a-de a-ca a-fr a-uk GW GIP

CN

AU

TW

HK

US

Figure 4. Avg RTT from Different Locations

Tables 2-5 are assessment results from user
locations in Mainland China, Australia, Taiwan and
USA. As shown in Figure 4, the average RTT values
are quite different in these locations, where USA is the
best and Mainland China the worst. Moreover, the
failure rate in USA is the lowest while in Mainland
China is the highest. It can be observed that the
unstable Internet environment is the main contribution
to unavailability of the target Web Services. Note the
execution times for the Amazon Web Service, as
shown by ProT, are essentially the same for all
geographic sites. Even from the locations in USA,
which enjoy the best RTT performance, the standard
deviation of RTT is still very large. This large
fluctuation of RTT can break down latency-sensitive
applications. Approaches are needed to obtain more
stable and reliable services performance.

4.2. Assessment of Replication Strategies

To enhance the service reliability as well as
performance, WS-DREAM can be used to conduct
assessment of various replication strategies. To clearly
show the performance of these strategies in erroneous
networking conditions, fault injection techniques [7,8]
are applied to generate faulty test cases. Table 6 shows
the assessment result of the correct cases and the faulty
cases under various strategies. Tolerated failures are
not shown in Table 6 although we have record on them,
since they are transparent to the user.

Table 6. Performance of Replication Strategies
Correct Cases Faulty Cases

 R% Fail All Avg Std R% Fail All Avg Std
1 0.03 11 33466 273 160 0.57 19 3314 264 132
2 0.01 3 34545 378 333 0.03 1 3709 720 705
3 0 0 34293 367 295 0.03 1 3676 810 721
4 0.02 6 34003 466 388 0.28 10 3621 529 564
5 0 1 33104 468 384 0.14 5 3569 767 515
6 0.01 2 32955 463 359 0.06 2 3542 528 446
7 0.01 2 32806 464 393 0.03 1 3552 790 476
8 0 0 33076 404 1160 0 0 3638 729 863
9 0 0 33066 378 299 0 0 3514 731 674

As shown in Table 6, there are 25 failures in the
normal environment (Correct Cases), and 39 failure
cases in the heavy faulty environment (Faulty Cases).
All failure cases are due to timeout of all six replicas,
which may be caused by the client-side network
problems. Most of these failure cases occur in Strategy
1 (Parallel), which may be caused by too many
simultaneous network connections.

In both normal and faulty environment, Strategy 1
(Parallel) provides the best RTT performance. This is
reasonable, for it used the first properly returned
response as the final outcome. The sequential-type
strategies (i.e., 2:Retry, 3:RB, 8:Retry+RB, and

9:RB+Retry) can provide good RTT performance in
the normal environment, since in most cases they only
need to run one replica to get the correct result.
However, in the faulty environment, their
performances are not so good; because they need to try
another backup replica or themselves sequentially
when fail.

We can observe that the most suitable strategy is
application dependent. For example, real-time
applications can employ Strategy 1 to obtain better
RTT performance, while payment oriented
applications can use the sequential-type strategies,
since parallel strategies will lead to multi-payments.

4.3. Assessment of Best Replica Number

From the experimental data, Ben decides to use the
Strategies 1 (Parallel) to obtain better latency and
reliability performance of his commercial Web site.
The next question to ask is: How many replicas should
be used in the Strategy 1? WS-DREAM can be
employed again to make assessment. The result is
shown in Table 7. To show the performance with
different number of replica, fault test cases are applied
to simulate 5% faulty Internet environment.

Table 7. Performance of Replica Numbers
 Correct Cases 5% Fault
 R% Fail All Avg Std R% Fail All Avg Std
2 0.01 1 19375 324 257 0.77 140 18281 331 280
3 0.04 6 14857 299 192 0.01 2 14169 300 203
4 0.01 1 14317 283 162 0.02 3 14305 287 195
5 0.06 8 14226 272 167 0.04 6 14180 276 156
6 0.03 4 14100 273 168 0.01 1 14163 270 177

As shown in Table 7, two replicas are enough to
provide high availability in the normal Internet
environment, while three replicas are needed to ensure
high reliability in the 5% faulty Internet environment.
No matter how many replicas used in the Strategy 1, a
few failure cases still occur due to time out of all
replicas, which may cause by client side network
problems. The overall failure rate performance with
Strategy 1 is much better than without any replication
strategies, since a lot of logical faults and
communication faults have been masked by the
replication strategy. In our experiment, Strategy 1
(Parallel) with six replicas obtains the best RTT
performance, but not significant.

Based on the experimental result, Ben decides to
employ Strategy 1 (Parallel) with 3 replica (e.g., jp, ca,
us) to build a reliable Service Oriented Web site.

5. Conclusion

 This paper presents a practical distributed
mechanism named WS-DREAM for assessing

reliability of Web services based on user collaboration
schemes in real-world applications. The experimental
results indicate that unstable Internet environments and
server connections can lead to unreliability of Web
services. With the facility of WS-DREAM, accurate
reliability assessment of target Web services can be
automatically acquired in a user collaboration manner,
and optimal replication strategies engaging fault
tolerance and design diversity schemes can be
effectively obtained for the achievement of Web
Service reliability.

Our future work includes an automatic mechanism
for users to search for similar or identical Web Service
as replica for design diversity purpose, and the
enhancement of system feature in facilitating user test
case contributions.

6. Acknowledgement

The work described in this paper was fully
supported by a grant from the Research Grants Council
of the Hong Kong Special Administrative Region,
China (Project No. CUHK4150/07E), and a grant from
the Research Committee of The Chinese University of
Hong Kong (Project No. CUHK3/06C-SF).

7. References

[1] X. Bai, W. Dong, W.T. Tsai and Y. Chen (2005),
“WSDL-Based Automatic Test Case Generation for Web
Services Testing”, Proceedings of IEEE Workshop on
Service-Oriented System Engineering, pp. 207 – 212, 2005.
[2] H. Foster, S. Uchitel, J. Magee, and J. Kramer (2003),
“Model-based Verification of Web Service Compositions”,
Proceedings of 18th IEEE International Conference on
Automated Software Engineering, pp.152-161, 2003.
[3] P. W. Chan, M.R. Lyu and M. Malek, “Reliable Web
Services: Methodology, Experiment and Modeling,” in IEEE
International Conference on Web Services, 2007.
 [4] N. Salatge and J.C. Fabre, “Fault Tolerance Connectors
for Unreliable Web Services,” in 37th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN'07), Edinburgh, UK, pp. 51-60, 2007.
[5] Wikipedia, http://www.wikipedia.org
[6] BitTorrent, http://www.bittorrent.com
[7] N. Looker and J. Xu, “Assessing the Dependability of
Soaprpc-based Web Services by Fault Injection,” In Proc. of
the 9th IEEE International Workshop on Object-oriented
Real-time Dependable Systems, pp. 163-170, 2003.
[8] M. Vieira, N. Laranjeiro, and He. Madeira, “Assessing
Robustness of Web-Services Infrastructures,” in 37th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN'07), Edinburgh, UK, pp. 131-136, 2007.
[9] M.R. Lyu, “Software Fault Tolerance”, Wiley Trends in
Software book series, John Wiley & Sons, Chichester,
February 1995.
[10] WS-DREAM Web site, http://137.189.89.120.

