
Architectural dependability evaluation with Arcade
∗

H. Boudali1 P. Crouzen2 B. R. Haverkort1 M. Kuntz1 M.I.A. Stoelinga1
1 University of Twente, Department of Computer Science, Enschede, NL
2 Saarland University, Department of Computer Science, Saarbrücken, D

Abstract

This paper proposes a formally well-rooted and ex-
tensible framework for dependability evaluation:Arcade

(architectural dependability evaluation). It has been de-
signed to combine the strengths of previous approaches to
the evaluation of dependability. A key feature is its for-
mal semantics in terms of Input/Output-Interactive Markov
Chains, which enables both compositional modeling and
compositional state space generation and reduction. The
latter enables great computational reductions for many
models. TheArcade approach is extensible, hence adapt-
able to new circumstances or application areas. The paper
introduces the new modeling approach, discusses its formal
semantics and illustrates its use with two case studies.

1 Introduction

Now that computers and communication systems are
proliferating in all kinds of devices and home appliances,
high-dependability is no longer restricted to systems thatare
being used in traditional safety- or mission-critical applica-
tions, such as space and aircraft or (nuclear) power control
systems. An important difference with these traditional sys-
tems, however, is that although high dependability is a key
concern, achieving it should be affordable in terms of costs.
Hence, high dependability must be achieved as a “by prod-
uct” of a sound design and implementation trajectory, at al-
most no additional costs. Therefore, dependability evalua-
tion techniques are being integrated in design frameworks,
to enable a cost-efficient comparison of design alternatives
with respect to the dependability requirements.

Although the standard theory of reliability engineering
has been around for many years now [20], the actual use

∗This research has been partially funded by the Netherlands Organiza-
tion for Scientific Research (NWO) under FOCUS/BRICKS grantnumbers
642.000.505 (MOQS) and 542.000.504 (VeriGem); by the EU under grant
numbers IST-004527 (ARTIST2); and by the DFG/NWO bilateralcooper-
ation programme under project number DN 62-600 (VOSS2).

of these methods during the design of computer and com-
munication systems is far less common. Nevertheless,
a wide variety of modeling approaches has been devel-
oped for evaluating system dependability. We categorize
them in three classes: (1) General purpose models, such
as CTMCs, stochastic Petri nets (SPNs) [3] and their ex-
tensions; stochastic process algebras (SPAs) [14, 15]; in-
teractive Markov chains (IMCs) [13], Input/Output IMCs
(I/O-IMCs) [5], and stochastic activity networks (SAN) as
used in UltraSAN and Möbius [19]. These approaches are
general-purpose, serving the specification and validationof
a wide variety of quantitative properties of computer and
communication systems, and certainly not of dependabil-
ity properties only. (2) In contrast, several dependability-
specific approaches have also been developed, such as relia-
bility block diagrams (RBDs), the System Availability Esti-
mator (SAVE) language [12], dynamic RBDs (DRBDs) [9];
dynamic fault trees (DFTs) [10] and extended fault trees
(eFTs) [7]; OpenSESAME [21], and TANGRAM [8]. (3)
Finally, for some architectural (design) languages specific
extensions have been developed to allow for dependability
analysis, most notably, the error annex of the architectural
description language AADL [2], and the UML dependabil-
ity profile [17].

We have identified five criteria, a good dependability for-
malism in our opinion should satisfy: (1) Modeling effort:
how easy is it to model a system and its dependability as-
pects? (2) Expressiveness: what features (repair, spare man-
agement, different failure modes, etc.) can be modeled and
can new ones easily be added? (3) Formal semantics: is
the meaning of the models unambiguously clear? (4) Com-
positionality: we distinguish between (4a) Compositional
modeling, meaning that a model can be created by compos-
ing smaller submodels and (4b) Compositional state space
generation and reduction. Compositional state space gener-
ation means that the state space of the entire model is con-
structed out of the state spaces of its constituent subcompo-
nents. Compositional state space reduction means that the
global state space of a multi-component system is obtained
by repeated composition and reduction (e.g., by bisimula-

tion reduction). (5) Tool support: are tools available for
automatic analysis?

The general-purpose formalisms, specifying system
models in terms of states and transitions, have the advantage
of being very flexible (hence, expressive) and precise. But,
with these formalisms, it is often difficult to specify depend-
ability models, since they do not provide any dependability-
specific constructs, which in turn may lead to specifications
that are hard to understand and thus are potentially sub-
ject to modelling errors. We also found that dependability
specific approaches score relatively low on expressiveness;
although each of them incorporates certain dependability
constructs, none of them includes them all. Although we
agree that it is impossible to include all possible features,
we do think that a modeling approach should be extensi-
ble (cf. Section 3.6), so as to be able to accommodate any,
also future, needs. Architectural languages require limited
modeling effort, since they annotate architectural models
(which play an important role throughout the design). How-
ever, these languages, as we know them, lack a formal and
compositional semantics and tool support for automatic de-
pendability evaluation, although recently some work in this
direction has been done [18].

In this paper, we therefore propose a new, formally well-
rooted and extensible framework for dependability evalua-
tion that satisfies the five criteria we have discussed above:
Arcade (for architectural dependability evaluation). In ad-
dition, we define our framework in an architectural style,
i.e., we define a system model in terms of components or
entities that (directly) map to actual physical/logical sys-
tem components. In fact, our framework is ultimately in-
tended to be incorporated into an architectural design lan-
guage.Arcade defines a system as a set of interacting com-
ponents, where each component is provided with a set of op-
erational/failure modes, time-to-failure/repair distributions,
and failure/repair dependencies.Arcade models have a se-
mantics in terms of I/O-IMCs, thus pinning down their in-
terpretation in an unambiguous way. Moreover, the compo-
sitional state space generation and reduction technique for
I/O-IMCs also enables an efficient analysis of very large
Arcade models.

The paper is further structured as follows. In Section 2
we provide background on IMCs and I/O-IMCs, the under-
lying semantical models used in the remainder of this paper.
Section 3 introduces theArcade modeling approach. Sec-
tion 4 describes the currently employed tool-chain to evalu-
ateArcade models, whereas Section 5 reports on two cases
studies. Section 6 concludes the paper.

2 Input/Output Interactive Markov Chains

Input/Output interactive Markov chains (I/O-IMCs) [5]
are a combination of Input/Output automata (I/O-

automata) [16] and interactive Markov chains (IMCs) [13].
I/O-IMCs distinguish two types of transitions: (1)Interac-
tive transitionslabeled with actions (also called signals); (2)
Markovian transitionslabeled with ratesλ, indicating that
the transition can only be taken after a delay that is governed
by an exponential distribution with parameterλ. Inspired by
I/O-automata, actions can be further partitioned into:

1. Input actions(denoteda?) are controlled by the envi-
ronment. They can bedelayed, meaning that a transi-
tion labeled witha? can only be taken if another I/O-
IMC performs an output actiona!. A feature of I/O-
IMCs is that they areinput-enabled, i.e., in each state
they are ready to respond to any of their inputsa?.
Hence, each state has an outgoing transition labeled
with a?.

2. Output actions(denoteda!) are controlled by the I/O-
IMC itself. In contrast to input actions, output actions
cannot be delayed, i.e., transitions labeled with output
actions must be taken immediately.

3. Internal actions(denoteda;) are not visible to the en-
vironment. Like output actions, internal actions cannot
be delayed.

States are depicted by circles, initial states by an incoming
arrow, Markovian transitions by dashed lines, and interac-
tive transitions by solid lines. Fig. 1 shows an I/O-IMC with
two Markovian transitions: one fromS1 to S2 with rateλ
and another fromS3 to S4 with rateµ. The I/O-IMC has
one input actiona?. To ensure input-enabling, we specify
a?-self-loops in statesS3, S4, andS51. Note that stateS1
exhibits a race between the input and the Markovian transi-
tion: in S1, the I/O-IMC delays for a time that is governed
by an exponential distribution with parameterλ, and moves
to stateS2. If however, before that delay ends, an inputa?
arrives, then the I/O-IMC moves toS3. The only output
actionb! leads fromS4 to S5. We say that two I/O-IMCs

S1

S2

S3

S4a? a?

a?

a?

S5
b!

λ

µ

a?

Figure 1. Example of an I/O-IMC

synchronizeif either (1) they are both ready to accept the
same input action or (2) one is ready to output an actiona!
and the other is ready to receive that same action (i.e., has

1In the sequel we often omit these self-loops for the sake of clarity and
simplicity of the I/O-IMC representation.

2

input actiona?). I/O-IMCs can be combined with a parallel
composition operator “||”, to build larger I/O-IMCs out of
smaller ones. The behavior ofP = Q||R, i.e., the parallel
composition of I/O-IMCsQ andR, is the joint behavior of
its constituent I/O-IMCs and can be described as follows:

1. If an action does not require synchronization thenQ
and R can evolve independently, i.e., ifQ (R) can
make any transition (interactive or Markovian) and be-
haves afterwards asQ′ (R′), the same behavior is pos-
sible in the parallel context, i.e.,Q||R can evolve to
Q′||R (Q||R′).

2. If an action of an interactive transition requires syn-
chronization, then both I/O-IMCsQ and R must be
able to perform that action at the same time, i.e.,Q||R
evolves simultaneously intoQ′||R′. Note that when an
output and an input action synchronize the result is an
output action.

Like in process algebras, the hiding operatorhide A in P
makes output actions in a setA internal, such that no further
synchronization is possible over actions inA. More details
on the I/O-IMC formalism can be found in [5].

3 Arcade: Semantics and Syntax

This section describes the semantics and syntax of
Arcade. We have identified three main building blocks with
which we can, in a modular fashion, construct a system
model: (1) a Basic Component (BC), (2) a Repair Unit
(RU), and (3) a Spare Management Unit (SMU). These
building blocks interact with each other by sending and
receiving input/output actions. The semantics of these
building blocks and their interactions is based on the I/O-
IMC framework. In the following, we describe each of
these building blocks.

3.1 Basic component

The basic component building block represents a physi-
cal/logical system component that has a distinct operational
and failure behavior. There are two steps involved in defin-
ing a BC: (1) defining the BC’s operational modes, (2)
defining the BC’s failure model. In theory, there could be
a different failure model (failure behavior) for each of the
BC’s operational modes; however, for simplicity we will
restrict these differences.

3.1.1 Operational modes

A basic component can be in various operational modes
(OM). Examples of operational modes includeactiveversus
inactive, which are two typical modes of operation when a

component is used as a primary or as a spare. We define
operational modes in terms of groups of operational modes.
A group of operational modes defines a set ofmutually ex-
clusiveoperational modes, e.g. active mode versus inactive
mode. At the I/O-IMC level, a mode corresponds to an
operational state. Thus, each OM group defines a set of
operational states. If a BC has multiple OM groups, then
the BC operational states consist of thecross-productof the
operational states of the different OM groups. For exam-
ple, let’s assume a BC has two OM groups: inactive/active
and on/off. In this case, the BC has four operational states,
namely: (active,on), (active,off), (inactive,on), and (inac-
tive,off). Switching from one operational mode to another
needs to be defined as aninput actionat the I/O-IMC level.
The mode switching or transition is thus triggered by some
external event. Fig. 2 shows, for the example, the two OM
groups (along with the mode switches) of the BC and the
resulting operational states2.

A user can essentially specify any number of OM groups
as long as for each group the mode switches are clearly de-
fined. At this point, we have identified a predefined set of
OM groups from which a user can chose:

1. active/inactive: As explained earlier, this OM group
allows the modeling of a component acting as a spare
(and thus typically having a reduced failure rate while
in inactive mode). The activation and deactivation sig-
nals (causing the mode switching) are managed by a
spare management unit (cf. Section 3.3).

2. on/off: This group allows to model, for instance, the
fact that if the power fails, then the BC is shut down
and can no longer fail (i.e., its failure rate equals zero).

3. accessible/inaccessible: This group is used to model a
non-destructive functional dependency(as in, e.g., [10,
21]); for example a database becomes inaccessible if
the bus linking to it fails. Switching from accessi-
ble to inaccessible does not mean that the component

2For readability, all input self loops have been omitted.

Figure 2. Defining operational modes of a BC.

3

has failed (hence, no repair is initiated). However, to
the environment, i.e., the rest of the system, an inac-
cessible component might or might not be, depending
on the system at hand, viewed as a failed component.
While defining a BC, the user has to specify if inac-
cessibility is seen by the environment as a failure or
not (cf. Section 3.5).

4. normal/degraded: This group is useful to model de-
graded modes of operation. A prime example isload
sharing, where a component switches to a degraded
operational mode (and consequently exhibits an in-
creased failure rate) in case the component with which
it is sharing the load fails. It is of course possible
to model a group with more than two modes, e.g.,
normal/degraded1/degraded2/... /degradedn.

Whenever a mode switch (except for theactive/inactive
OM group) occurs, this is due to failure or repair events of
other components (this is further explained in Section 3.5).

3.1.2 Failure model

We attach a failure model to each BC operational state.
For simplicity and to keep the framework well-structured,
the failure model of each operational state is essentially
the same except for possibly different values of Markovian
rates3.

The failure model describes how a BC fails, i.e., how it
moves from an operational (or up) state to a failed (or down)
state and visa versa. We distinguish two ways in which a
component can fail: (1) aninherent failurespecified as a
Markovian transition, and (2) a failure due to adestructive
functional dependency(as in [21, 10]) specified as a tran-
sition to a failed state upon the receipt of a signal (denoted
DF). The destructive functional dependency is due to the
failure of another (or many other) component; e.g., a pro-
cessor depends upon the functioning of a fan and if the fan
fails, the processor overheats and fails as well. The two
types of failures lead to slightly different behavior, in par-
ticular when dealing with repair. The failure model consists
of anUP , DOWNM , DOWNDF , and some (numbered)
intermediate states. Fig. 3 shows the I/O-IMC represent-
ing a BC failure model. The upper portion (states 1, 2,
andDOWNM) represents an inherent failure. The lower
portion (states 3, 4, 5, andDOWNDF) represents a de-
structive functional dependency failure.UP is the starting
operational state, and state 6 is added to properly handle the
transitions between the two portions of the I/O-IMC.

From theUP state, the BC can fail in two ways by mov-
ing to state 2 or state 3 respectively, and from these states the
BC immediately moves to the down states by outputting the

3In the future, one might allow for more flexibility in the failure model
used for each operational state.

corresponding failure signal (faileddf ! and failedm !). Any
other BC, RU, or SMU can now respond to these output fail-
ure signals. Once a BC has failed, it waits for arepaired?
input signal (cf. Section 3.2 for details on the interaction
with an RU) and then immediately outputs anup! signal
and moves to its operational state. The rateλ in Fig. 3 is
only a placeholder which will be instantiated once the fail-
ure model is combined with the operational modes. Note
that if the BC fails due to a destructive functional depen-
dency and is repaired without the component upon which
it depends being operational, then the repair does not lead
to an operational state (transition fromDOWNDF to state
3). Signal¬DF is the complement ofDF . Typically DF
corresponds to thefailed (faileddf or failedm) signal of an-
other component and¬DF corresponds to itsup signal. If
a BC has no destructive functional dependency, we can dis-
card states 3, 4, 5, 6, andDOWNDF .

In the failure model, we also allow multiplefailure
modeswith regard to the inherent failure. In this case, if the
BC hasn failure modes, the user needs to specifyn proba-
bilities4, and the Markovian rates are adjusted accordingly.
Fig. 4 shows the I/O-IMC of a BC with two failure modes
(with probabilities1 − p andp).

3.1.3 Combining operational modes and failure model

To obtain the final I/O-IMC model of a BC, we simply su-
perimpose the failure model on each operational state, with
theUP state of the failure model corresponding to an oper-
ational state. Note that here, different Markovian rates can
be specified according to the operational state the BC is in.
Fig. 5 shows the I/O-IMC model of a BC having opera-
tional modes of Fig. 2 and a failure model with one failure
mode and no destructive functional dependency5. Note the
different rates used in the model. There is, of course, a syn-
tactic way for specifying these rates (cf. Section 3.5).

4With their sum being 1.
5For readability, we omitted the transitions from the four unnumbered

states which are similar to the ones for states 1 through 4.

Figure 3. The failure model of a BC.

4

3.2 Repair unit

Repairing a component or a set of components is handled
in a separate entity called the repair unit (RU). In fact, this
allows handling complexrepair policiesandrepair depen-
denciesbetween various components. The RU semantics is
again described in terms of an I/O-IMC with failure signals
as inputs and repair signals as outputs. The RU is also aware

Figure 4. The failure model of a BC having
two failure modes.

Figure 5. The I/O-IMC model of a BC.

(a) Single failure mode. (b) Multiple failure modes.

Figure 6. Dedicated repair strategy.

of all rates related to repair times. In short, the RU listensto
failure signals output by one or many components, picks a
component (given some policy) and initiates a repair oper-
ation according to a specific repair rate, and finally outputs
the appropriaterepaired ! signal when the repair is finished.
This procedure is then repeated. We allow at most one RU
per component.

So far we have considered the following repair configu-
rations/strategies: (1)dedicatedrepair, where each compo-
nent has its own RU, (2)first come first served (FCFS), (3)
FCFS withnon-preemptive priorities (PNP), and (4) FCFS
with preemptive priorities (PP).

Fig. 6(a) shows the I/O-IMC of the dedicated repair
policy and Fig. 7 shows the I/O-IMC of the FCFS repair
strategy with two components A and B. Note that the I/O-
IMC models of the FCFS, PP, and PNP can get quite large
with increasing number of components. This is essentially
due to the fact that the RU needs to keep track of the failing
components and the order in which the failures occurred.

Often a component has multiple failure modes, i.e., dif-
ferent failure signals, and different repair rates for each
mode. Fig. 6(b) shows a dedicated RU for a component
having two different failure signals, i.e., two failure modes,

Figure 7. FCFS repair strategy.

5

with two repair rates,µm andµdf respectively.

3.3 Spare management unit

The spare management unit (SMU) handles the activa-
tion and deactivation of spare components. Two configura-
tions are possible at this point:

1. One primary and one spare: In this configuration,
the assumption6 is that the primary component is al-
ways in active mode, and thus always providing the
service whenever it is operational. In fact, the primary
component does not have an inactive mode per se and
is therefore never activated or deactivated by the SMU.
When the primary fails, the SMU activates the spare
component which takes over the primary. As soon as
the primary is up again, the spare is deactivated and
the primary resumes operation. The I/O-IMC model
of the SMU is shown in Fig. 8.

2. One primary and two or more spares: This con-
figuration can be modeled based on the previous con-
figuration; however, due to lack of space it will not be
further discussed here.

3.4 System failure evaluation

Once all the basic components and units have been de-
fined along with their interactions and dependencies, we
need to specify the condition under which the whole sys-
tem is failed or operational. We chose a fault tree repre-
sentation (i.e., an AND/OR expression whose literals are
failure modes of the BCs)7 as the system evaluation crite-
rion8. A fault tree also has a corresponding I/O-IMC model
[6]. Thus, the entire system failure/operation is repre-
sented as an I/O-IMC. A simple example would be a system
comprised of two redundant processors; the system fails if
both processors fail. In this case, the whole system fail-
ure/operation would be modeled by a fault tree consisting
of a repairable AND gate with the two processors as inputs.
The repairable AND gate represents the overall system fail-
ure/operation and has a corresponding I/O-IMC model [6].

6Other assumptions, e.g., treating symmetrically both components, are
possible at the cost of complicating the SMU I/O-IMC model.

7We can also use the K/M gate as a shorthand notation.
8We can also consider adding the Priority-AND gate [10].

Figure 8. The SMU I/O-IMC model.

3.5 Syntax

This section describes the (textual) syntax ofArcade,
i.e., the syntax for the BC, the RU, and the SMU.

3.5.1 BC syntax

(1) COMPONENT: Name
(2) OPERATIONAL MODES: List of OM groups
(3) ACCESSIBLE-TO-INACCESSIBLE: AND/OR expr.
(4) INACCESSIBLE MEANS DOWN: YES or NO
(5) ON-TO-OFF: AND/OR expression
(6) NORMAL-TO-DEGRADED: AND/OR expr.
(7) TIME-TO-FAILURES: exp(λ1), exp(λ2), · · · , exp(λm)
(8) FAILURE MODE PROBABILITIES: Prob1, ...,Probn

(9) TIME-TO-REPAIRS: exp(µ1), · · · , exp(µn), exp(µdf)
(10) DESTRUCTIVE FDEP: AND/OR expression

Line (1) defines the unique name of the BC. Line (2)
defines the OM groups of the component. At this point, the
BC syntax is limited with respect to the restriction we have
on the OM groups that are available to the user. Each of
line (3), (5), and (6) defines an expression which tells us
when exactly a mode switch occurs, e.g., if the AND/OR
expression for an on/off switch evaluates to true, then the
BC switches from ‘on’ to ‘off’. If later the evaluation of the
expression changes to false, the BC switches back to ‘on’.

The mode switches of a componentY are expressed in
terms of the failure modes of other components. A sim-
ple example would be if we have forY ON-TO-OFF:
X.down, then this means thatY switches from mode ‘on’
to mode ‘off’ upon the failure ofX . Moreover, it is also im-
plicit thatY switches back to its ‘on’ mode upon the repair
of X . The active/inactive mode transitions are handled by
an SMU through theactivate anddeactivate signals.

Line (4), specifies if the inaccessibility of the BC is seen
as a failure by the environment (c.f. Section 3.1.1). Line (7)
defines the time-to-failure distribution for each operational
state9 (e.g., in Fig. 5, the BC has four operational states,
therefore the user needs to provide four distributions). Line
(8) defines then probabilities corresponding ton failure
modes. Line (9) defines the time-to-repair distributions for
each of then failure modes and the distribution associated
to the destructive functional dependency. Finally, line (10)
specifies the condition under which the BC fails due to a
destructive functional dependency.

All the distributions defined in lines (7) and (9) can, in
general, be any phase-type distribution (see an example in
Section 5).

9The order in which the OM groups are listed determines which dis-
tribution matches which operational state. The same goes for the repair
distributions w.r.t. failure modes.

6

3.5.2 RU syntax

(1) RU: Name
(2) COMPONENTS: comp1, comp2,..., compn
(3) STRATEGY: Dedicated | FCFS | PP | PNP
(4) PRIORITIES: pr1, pr2,..., prn

Line (2) lists all then component names that are repairable
by the unit. The RU I/O-IMC model varies depending on
the number of failure modes of the components (cf. Sec-
tion 3.2). Line (3) specifies the repair policy. Line (4) de-
fines the priority values (i.e., non-zero integer) of the vari-
ous components in case of aPP or aPNP repair strategy.

3.5.3 SMU syntax

(1) SMU: Name
(2) COMPONENTS: primary, sp 1,..., sp n

Line (2) defines a primary component andn possible spare
components for that primary.

3.5.4 System failure evaluation syntax

(1) SYSTEM DOWN: AND/OR expression

Line (1) defines the condition under which the system is
failed (cf. Section 3.4 for more details). The elementary
conditions under which the system fails, are expressed in
terms of the failure modes that are defined for the compo-
nent. If for a component more than one failure mode is
defined, then the user has to specify the failure mode that
is relevant for the system failure evaluation. For example,
componentX has two failure modes, and mode 2 is relevant
for the evaluation, then the user writesX.down.m2 to state
that mode 2 is the relevant failure mode. If there is only one
failure mode, we can simply writeX.down.

3.6 Extensibility

Arcade is extensible in the sense that it is easy to incor-
porate new or additional dependability constructs the user
may think are important for his/her needs. All that has to be
done is to provide the syntax, i.e., theArcade specification
of that additional construct, and its semantics in terms of
an I/O-IMC model. State space generation, reduction and
analysis do not have to be changed at all.

As an example, a simplefailover time(i.e. the time it
takes for an SMU to detect the primary failure and activate
the spare component is exponentially distributed rather than
instantaneous) can be added to the framework in the fol-
lowing way: First,Arcade’s syntax is extended (here for an
SMU with one primary and one spare):

(1) SMU: Name
(2) COMPONENTS: primary, sp 1
(3) FAILOVER-TIME: exp(δ)

Secondly, the I/O-IMC model has to be defined (Fig. 9),
which is an extension of the semantic model of an SMU
(Fig. 8).

4 System dependability evaluation

To evaluateArcade models, we use a three step ap-
proach, similar to the one in [5], using the CADP
toolset [11].

First, we translate (according to the models defined in
Section 3) all basic components, spare management units,
repair units, and system failure evaluation models into their
underlying I/O-IMCs. This translation step has not been
automated yet.

The second step is to combine these models to obtain the
overall system model. To this end, we use the Composer
tool [5], which incrementally composes (using the well-
defined parallel composition operator) the I/O-IMC models.
Each composition step is followed by an aggregation (i.e.,
state minimization or reduction) step. The order in which
the I/O-IMC models are composed is given by the user. This
compositional aggregation approach has proved to be cru-
cial in alleviating the state-space explosion problem. The
output of the Composer tool is a single I/O-IMC, model-
ing the entire system. This I/O-IMC has two output signals:
failed ! to denote the failure andup! for the restoration of the
system. Our Composer tool, which uses the CADP toolset,
fully automates the composition and aggregation steps.

In a third step, we convert this system I/O-IMC into a
labelled CTMC on which standard CTMC solution tech-
niques to compute availability and reliability can be per-
formed. This step has been automated, using the CADP
toolset.

5 Case studies

To demonstrate the feasibility and usability ofArcade,
we address two case studies from the literature. In Sec-
tion 5.1 we analyze a distributed database system (DDS),

Figure 9. The SMU I/O-IMC model with
failover time.

7

which was evaluated in [19] using SANs. In Section 5.2,
we analyze a cooling system of a nuclear reactor, which was
evaluated in [7] using eFTs.

5.1 Distributed database architecture

This system consists of two processors, one of which is
a spare; four disk controllers, divided into two sets; and 24
hard disks, divided in 6 clusters, i.e., each cluster consist-
ing of four disks. Each controller is responsible for three
disk clusters, and each of the twelve disks, which the con-
troller set is responsible for, is accessible by any of the two
controllers in the respective set. Furthermore, each proces-
sor can access each of the four disk controllers. The pro-
cessors are administrated by a spare management unit and
share one repair unit. For each disk controller set and disk
cluster there is a separate repair unit responsible. All re-
pair units choose the next item to be repaired according to a
FCFS repair strategy.

The system is down, if (at least) one of the following
conditions is met: (1) all processors are down, or (2) in at
least one controller set, no controller is operational, or (3)
more than one disk in a cluster is down.

5.1.1 Arcade model

TheArcade models for the components of the DDS system
are fairly simple. Most components have no distinguished
OMs, except the spare processor which has OM group(in-
active, active). If there are no special OMs to be considered,
the lineOPERATIONAL MODES can be omitted.

1. Arcade model of processors:

(a) Primary processor

COMPONENT: pp
TIME-TO-FAILURE: exp(1

2000
)

TIME-TO-REPAIR: exp(1)

The disk controllers (dc i, i = 1, ..., 4) and the
disks (d j, j = 1, ..., 24) have the sameArcade

model, except for a different time-to-failure in
case of the disks, which isexp(1

6000
).

(b) Spare processor:

COMPONENT: ps
OPERATIONAL MODES: (inactive, active)
TIME-TO-FAILURE: exp(1

2000
), exp(1

2000
)

TIME-TO-REPAIR: exp(1)

2. Arcade model of processors’ repair unit:

REPAIR UNIT: p.rep
COMPONENTS: pp, ps
REPAIR STRATEGY: FCFS

3. TheArcade model for the system evaluation criteria is
given by the fault tree description of the system failure
conditions:

SYSTEM DOWN:
(pp.down ∧ ps.down)
∨(dc 1.down ∧ dc 2.down)
∨(dc 3.down ∧ dc 4.down)
∨(2of4 d 1.down, ..., d 4.down)
∨... ∨ ((2of4 d 21.down, ..., d 24.down)

((2of4 d 1.down, ..., d 4.down) is a 2-out-of-4 fail-
ure amongd 1, d 2, d 3, andd 410.

5.1.2 Analysis

Using the methodology described in Section 4 we gener-
ated the CTMC representing the behavior of the DDS. This
CTMC has 2,100 states and 15,120 transitions. During the
generation of this model, the largest I/O-IMC encountered
had 6,522 states and 33,486 transitions. For comparison,
the final model generated in [19] had 16,695 states.

Using the overall CTMC we can analyze the steady-
state availability (A) and reliability (R(t)) of the distributed
database system. Table 1 shows the results of this analy-
sis compared to the SAN-based results in [19]. Note that
the reliability results in this table are based on the definition
of reliability used in [19], i.e., the probability of havingno
system failures within a certain mission time assuming that
no component is ever repaired. Because of the discrepancy
in reliability results we have also verified our results for the
DDS system with the DFT tool Galileo [1].11

Measure Arcade SAN Galileo

A 0.999997 0.999997 -
R(5 weeks) 0.402018 0.425082 0.402018

Table 1. Dependability analysis for DDS

5.2 Reactor Cooling System

This case study was described in [22, 7]. In [7], the sys-
tem was modeled using the eFT approach.

The reactor cooling system (RCS) consists of a reactor,
two parallel pump lines, a heat exchanger and a bypass sys-
tem for the heat exchanger. Each of the two pump lines
consists of a single pump, a single filter and a number of
control valves. The heat exchanging unit consists of the
heat exchanger itself, a number of valves and one filter. The

10i.e.,(2of4 is shorthand for(d 1.down ∧ d 2.down) ∨ (d 1.down ∧

d 3.down) ∨ ... ∨ (d 3.down ∧ d 4.down)
11It is possible to use DFTs here because we do not consider repair.

8

bypass system can be opened and closed by means of two
motor driven valves.

All components, except the reactor itself whose failure
behavior is not considered here, are subject to failures and
are repairable. The filters and the heat exchanger are either
operational or failed. The valves can fail in two different
modes, eitherstuck-openor stuck-closed. The pumps have
two different operational modes and one failure mode. They
are either fully operational, or in a degraded operational
mode, which is reached if one of the two pumps fails. In
degraded mode, the remaining pump will fail with a higher
failure rate. We refer to this operational mode asdegraded
mode. This is indeed a typicalload sharingsituation.

Except for the two pumps, which share a single repair
unit with an FCFS repair strategy, each component has its
own dedicated repair unit.

The system is down, if either none of the two pump lines
is operational, or both the heat exchanger and the bypass
system are not operational. A pump line is defective, if one
of its components is defective, where for the valves, only the
stuck-closed case is considered to be a relevant failure. The
heat exchanging unit is defective if the heat exchanger itself
fails or one of its accompanying filters or valves fails. Fi-
nally, the bypass line fails if one of the motor driven valves
is stuck-closed.

5.2.1 Arcade model

Here, we will give theArcade models for a few of the com-
ponents of the RCS.

1. The pumps have two operational modes, normal and
degraded. For P1, the pump goes to its degraded mode,
if P2 fails. The time-to-failure is distributed according
to an Erlang-2 distribution, where each phase has rate
5.44 · 10−6, i.e., we haveerlang(2, 5.44 · 10−6). If
the pump is in degraded mode, the rate doubles, i.e.,
becomes10.88 · 10−6 The time-to-repair is distributed
according to an Erlang-2 distribution with rate 0.1.

COMPONENT: P1
OPERATIONAL MODES: (normal, degraded)
NORMAL-TO-DEGRADED: P2.down
TIME-TO-FAILURE: erlang(2, 5.44 · 10−6),

erlang(2, 10.88 · 10−6)
TIME-TO-REPAIR: erlang(2, 0.1)

The sameArcade model applies for P2.

2. The valves can fail in two different ways: either they
are stuck-open or stuck-closed. That means, we have
two failure modes, which are equally probable. The
overall failure rate is2 ·4.2 ·10−8, as each of the failure

modes has failure rate4.2 · 10−8 according to the eFT
specification in [7]12.

COMPONENT: VIP1

TIME-TO-FAILURE: exp(8.4 · 10−8)
FAILURE MODE PROBABILITIES: 0.5, 0.5
TIME-TO-REPAIR: exp(0.1), exp(0.1)

3. The filters can be either free or blocked, where the lat-
ter state is the failure case. InArcade terminology this
means to be either “up” or “down”13.

COMPONENT: FP1

TIME-TO-FAILURE: exp(2.19 · 10−6)
TIME-TO-REPAIR: exp(0.1)

4. The heat exchanger can be either up or down, it fails
with rate1.14 · 10−6. The repair rate is again 0.1.

COMPONENT: HX

TIME-TO-FAILURE: exp(1.14 · 10−6)
TIME-TO-REPAIR: exp(0.1)

In [7] the repair policies are not clearly specified. From the
remarks w.r.t. the repair of the pumps, we conclude that
there are dedicated repair units for all elements, thus, we
will assign to each component its own repair unit, except
for the pumps, which have a common repair unit.

1. We only show the RU for valve VIP1, all remaining
valves are handled similarly. The RU can handle both
failure modes of the valve.

REPAIR UNIT: VIP1 .rep
COMPONENTS: VIP1

REPAIR STRATEGY: DEDICATED

2. Both pumps are repaired by a single repair unit.

REPAIR UNIT: P.rep
COMPONENTS: P1, P2
REPAIR STRATEGY: FCFS

5.2.2 Analysis

After generating the CTMC models for the pump and the
heat exchanger subsystem, we could apply the technique of
modularization [7] to compute the reliability and availabil-
ity of the RCS.

The CTMC for the pump subsystem has 10,404 states
and 109,662 transitions. The CTMC for the heat exchanger
subsystem (including the bypass) has 240 states and 1,668

12TheArcade models for the remaining valvesare similar.
13Arcade models for other filters are similar.

9

transitions. The largest model encountered during gener-
ation had 98,056 states and 411,688 transitions. Unfortu-
nately, in [7] no state space size was given, thus no compar-
ison is possible in this case.

For a mission time of for example 50 hours, the sys-
tem unavailability and unreliability are6.52100 · 10−10 and
52.9242 · 10−10 respectively. Our unavailability results co-
incide with the results in [7].

6 Summary and conclusions

In this paper we have proposed a new framework for de-
pendability evaluation namedArcade. The framework is
based on the formal and compositional I/O-IMC seman-
tics. Moreover, its compositional aggregation technique has
shown to be very effective in combating the state space ex-
plosion problem during analysis. TheArcade approach is
extensible. Furthermore, we envisionArcade as a step to-
wards a design language for large and complex systems. In-
deed, the ultimate goal is to integrateArcade in a design
environment based on e.g. AADL or UML. It is impor-
tant to note that although the syntax of theArcade language
bears resemblance to SAVE, the approaches are truly dif-
ferent. Where in SAVE the actual semantics of the models
was hidden in a software program that coded the transla-
tion from that syntax to a large (flat) Markov chain,Arcade

has a formal semantical model that allows for compositional
modeling and state space generation and reduction, as well
as facilitates the extension of the modeling language.

As for the future, we plan to work on a further automa-
tion of the tool chain, as well as to connect to design ap-
proaches based on AADL and UML. Furthermore, where
we now use relatively simple fault-tree like expressions to
specify system failure (cf. Section 3.5.4), we plan to allow
for CSL-type expressions [4], thus querying more complex
measures than system reliability or availability.

Acknowledgment: The authors thank Holger Hermanns for
his valuable comments on an earlier draft version of this
paper. The reviewers are also thanked for their constructive
comments that helped to improve the quality of the paper.

References

[1] Galileo tool. http://www.cs.virginia.edu/˜ftree.
[2] Architecture Analysis and Design Language (AADL). SAE

standards AS5506, Nov 2004.
[3] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and

G. Franceschinis. Modelling with generalized stochastic
Petri nets. Wiley, 1995.

[4] C. Baier, B. Haverkort, H. Hermanns, and J. Katoen. Model-
Checking Algorithms for Continuous-Time Markov Chains.
IEEE Trans. Software Eng., 29(7):1–18, July 2003.

[5] H. Boudali, P. Crouzen, and M. Stoelinga. A compositional
semantics for Dynamic Fault Trees in terms of Interactive
Markov Chains.LNCS, 4762:441–456, 2007.

[6] H. Boudali, P. Crouzen, and M. Stoelinga. Dynamic fault
tree analysis using input/output interactive markov chains.
In Proc. of the 37th Annual IEEE/IFIP International Con-
ference on DSN, pages 708–717. IEEE, 2007.

[7] K. Buchacker. Modeling with extended fault trees. In5th
IEEE Int. Symposium on High Assurance Systems Engineer-
ing, pages 238–246, Nov 2000.

[8] E. de Souza e Silva and R. M. M. Leao. The ”TANGRAM-
II” environment. In Computer Performance Evaluation.
Modelling Techniques and Tools: 11th Int. Conference,
TOOLS 2000, volume 1786, pages 366–369. LNCS, 2000.

[9] S. Distefano and L. Xing. A new approach to modeling the
system reliability: dynamic reliability block diagrams. In
RAMS’06 proceedings, pages 189–195, 2006.

[10] J. B. Dugan, S. J. Bavuso, and M. A. Boyd. Dynamic
fault-tree models for fault-tolerant computer systems.IEEE
Trans. on Reliability, 41(3):363–377, September 1992.

[11] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP
2006: a toolbox for the construction and analysis of
ditributed processes. InProc. of the 19th International Con-
ference on Computer Aided Verification (CAV), 2007.

[12] A. Goyal, W. C. Carter, E. de Souza e Silva, S. S. Laven-
berg, and K. S. Trivedi. The system availability estimator.In
Proceedings of the 16th Int. Symp. on Fault-Tolerant Com-
puting, pages 84–89, July 1986.

[13] H. Hermanns.Interactive Markov Chains, volume 2428 of
Lecture Notes in Computer Science. Springer, 2002.

[14] H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and
M. Siegle. Compositional performance modelling with the
TIPPtool.LNCS, 1469:51–62, 1998.

[15] J. Hillston. A Compositional Approach to Performance
Modelling. Cambridge University Press, 1996.

[16] N. Lynch and M. Tuttle. An Introduction to Input/output
Automata.CWI Quarterly, 2(3):219–246, 1989.

[17] OMG Group. UML Profile for Modeling Quality of Service
and Fault Tolerance Characteristics and Mechanisms. Tech-
nical report, june 2006.

[18] A.-E. Rugina, K. Kanoun, and M. Kaniche. A System De-
pendability Modeling Framework Using AADL and GSPNs.
In R. de Lemos, C. Gacek, and A. B. Romanovsky, editors,
WADS, volume 4615 ofLNCS, pages 14–38. Springer, 2006.

[19] W. H. Sanders and L. M. Malhis. Dependability evaluation
using composed SAN-based reward models.Journal of Par-
allel and Distributed Computing, 15(3):238–254, 1992.

[20] M. L. Shooman.Reliability of Computer Systems and Net-
works: Fault Tolerance, Analysis, and Design. John Wiley
& Sons, 2002.

[21] M. Walter, M. Siegle, and A. Bode. OpenSESAME: the
simple but extensive, structured availability modeling envi-
ronment.RESS, In Press, corrected proof, April 2007.

[22] L.-M. Xing, K. Fleming, and W.-T. Loh. Comparison of
Markov model and fault tree approach in determining initi-
ating event frequency for systems with two train configura-
tions. RESS, 53(1):17–29, 1996.

10

