
StageWeb: Interweaving Pipeline Stages into a Wearout and
Variation Tolerant CMP Fabric

Shantanu Gupta, Amin Ansari, Shuguang Feng and Scott Mahlke
Advanced Computer Architecture Laboratory

University of Michigan - Ann Arbor, MI
{shangupt, ansary, shoe, mahlke}@umich.edu

Abstract

Manufacture-time process variation and life-time fail-
ure projections have become a major industry concern.
Consequently, fault tolerance, historically of interest only
for mission-critical systems, is now gaining attention in
the mainstream computing space. Traditionally reliabil-
ity issues have been addressed at a coarse granularity,
e.g., by disabling faulty cores in chip multiprocessors.
However, this is not scalable to higher failure rates. In
this paper, we propose StageWeb, a fine-grained wearout
and variation tolerance solution, that employs a recon-
figurable web of replicated processor pipeline stages to
construct dependable many-core chips. The interconnec-
tion flexibility of StageWeb simultaneously tackles wearout
failures (by isolating broken stages) and process variation
(by selectively disabling slower stages). Our experiments
show that through its wearout tolerance, a StageWeb chip
performs up to 70% more cumulative work than a compa-
rable chip multiprocessor. Further, variation mitigation in
StageWeb enables it to scale supply voltage more aggres-
sively, resulting in up to 16% energy savings.

Keywords: permanent faults, process variation, multi-
core, architecture, reliability

1 Introduction

From the time of its inception, the semiconductor pro-
cess has witnessed an unhindered growth in transistor inte-
gration levels. However, in the forthcoming CMOS tech-
nology generations, this aggressive scaling poses critical
reliability issues due to the increasing power density and
process variation. First, as circuit density grows, each
transistor gets smaller, hotter, and more fragile, leading
to an overall higher susceptibility of chips to permanent
faults [6]. These wearout failures, can impact the perfor-
mance guarantees offered by a semiconductor chip, and
limit their useful lifetime. In addition, manufacture-time
process variation [19, 6], caused by the inability to pre-
cisely control the fabrication process at small-feature tech-
nologies, introduces significant deviation of circuit pa-
rameters (channel length, threshold voltage, wire spacing)
from the design specification. Together, these reliability
threats, permanent faults and process variation, have broad
implications on semiconductor performance and power ef-
ficiency.

Resources on a chip multiprocessor (CMP) can be
chiefly divided into two categories, computational cores
and cache memory arrays. Fortunately, the regular nature
of the memory layout makes it amenable to a wide variety
of reliability solutions [3], including the well-known tech-
niques such as row/column sparing and error-correcting
codes (ECC). Thus, with appropriate protection mecha-
nisms in place for caches, cores become the major source
of wearout and process vulnerability on the die.

Wearout-tolerance for individual cores is a challenging
problem. At one extreme is the option to disable cores as
soon as they develop a fault [1], we refer to this as core
isolation. Although it is a simple solution and imposes
very little overhead, core disabling tends to be wasteful.
With the increase in number of failures per chip, systems
with core isolation can exhibit rapid throughput degra-
dation, and quickly become useless. The other extreme,
when repairing defective cores, is to leverage fine-grained
micro-architectural redundancy [20, 21]. Here, the bro-
kenmicro-architectural structures, such as functional units
and reorder buffer entries, are isolated or replaced (with
spares). Unfortunately, since a majority of the core logic
is non-redundant [16], the fault coverage from these ap-
proaches is very limited. Therefore, these solutions also
fall short of delivering sustainable throughput in the face
of failures.

Process variation is encountered at manufacturing time,
and influences almost every chip manufactured from day
one. The variations can be systematic (e.g., lithographic
lens aberrations) or random (e.g., dopant density fluctu-
ations), and can manifest at different levels – wafer-to-
wafer (W2W), die-to-die (D2D) and within-die (WID).
Traditionally, D2D has been the most visible form of vari-
ation, and was tackled by introducing the notion of speed-
binning (chips are partitioned based on their frequency
and sold accordingly). However, the increasing levels of
WID variations [19, 13] have created newer challenges
for today’s multicore designs. These parametric devia-
tions can create a wide distribution of operating character-
istics for components (like cores) within a chip, resulting
in slow parts that work at a low frequency to those that
are very fast but leaky (high static power). Figure 1 shows
the impact of WID process variation on a 64-core CMP
chip, and illustrates how the distribution of core frequen-

cies is expected to widen at future technology nodes. To=

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 101 DSN 2010: Gupta et al.

5

10

15

20

25

30

35
N

u
m

b
er

 o
f

c
o
re

s
Future node 32nm 45nm

0

5

10

15

20

25

30

35

0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1

N
u

m
b

er
 o

f
c
o
re

s

Frequency (normalized)

Future node 32nm 45nm

Figure 1: Impact of process variation on a 64-core CMP. The
plot shows the distribution of core frequencies at current technol-
ogy nodes (45nm and 32nm) and a (next-to-arrive) future node.
As the technology is scaled, the distribution shifts towards the
left (more slower cores) and widens out (more disparity in core
frequencies). This is a consequence of large number of cores
ending up with slower components, bringing down their opera-
tional frequencies.

deal with this challenge, designers in upcoming technol-
ogy generationsmay create overly conservative designs or
introduce large frequency guard-bands. Both of which are
undesirable alternatives for computing efficiently.

To create robust and efficient systems in this landscape
of wearout and variation-prone components, small archi-
tectural improvements over existing designs might not be
sufficient. A rethinking of the architectural fabric from
the ground up is needed, with reliability as a primary cri-
teria. As a solution, this paper proposes StageWeb, a scal-
able many-core CMP that can deliver robust and efficient
performance in the face of reliability hurdles. The design
starts with StageNet (SN) [9], a recent proposal for mul-
ticore wearout tolerance. The basic idea of SN is to orga-
nize a multicore as a dynamically configurable network of
pipeline stages. Logical cores are created at run-time by
connecting together one instance of every pipeline stage.
The underlying pipeline microarchitecture is designed to
be completely decoupled at stage boundaries, providing
full flexibility to construct logical cores. In the event of
stage failures, the SN architecture initiates recovery by
salvaging healthy stages to form logical cores. This abil-
ity of SN to isolate failures at a finer granularity (stages
rather than cores) makes it less wasteful, and enables a
SN chip to tolerate a significantly higher number of fail-
ures. Despite its benefits, the original SN proposal has
three fundamental limitations that prevent it from meet-
ing the many-core reliability challenge: 1) not scalable, 2)
interconnection network is vulnerable to failures, and 3)
process variation is not addressed.

StageWeb (SW), a scalable CMP fabric for interweav-
ing wearout and variation-prone stages, eliminates all the
aforementioned limitations of SN. The SW system is op-
timized to determine the best degree of connectivity be-
tween pipelines (that can share their resources together),
while incurring a modest amount of overhead. A range
of interconnection alternatives, and corresponding config-
uration algorithms, are explored to enable scalable fault-
tolerance using SW. The reliability of the interconnection
network is also tackled in the SW design through the use
of spare crossbars, robust crossbar designs, and intelligent

connectivity to give an illusion of redundancy. The under-
lying interconnectionflexibility of SW is further leveraged
to mitigate process variation. Using SW, the faster com-
ponents (pipeline stages) in the fabric can be selectively
picked, to form pipelines that can operate at a higher fre-
quency. This ability of SW limits the harmful effects of
process variation that intersperse slower components with
faster ones throughout a chip.

The contributions of this paper are as follows:
1. SW, a comprehensive solution for the upcoming re-

liability challenges - permanent faults and process
variation.

2. Exploration of robust and scalable interconnection
alternatives for building SW chips.

3. Configuration algorithms to a) maximize the SW sys-
tem throughput in the face of failures, and b) improve
the distribution of core frequencies in the presence of
process variation.

2 Background
The StageWeb architecture proposed in this paper

builds upon StageNet (SN) [9], a solution for permanent
fault tolerance in multicores. This section summarizes the
design, advantages, and limitations of the SN architecture.

2.1 The StageNet (SN) Architecture

SN enables efficient stage level reconfiguration by
means of an adaptable multicore fabric. Its ability to iso-
late defects and replace broken components at the pipeline
stage granularity offers a good trade-off between area in-
vestment and reliability benefits. A SN multicore system
is designed as a network of pipeline stages, rather than iso-
lated cores. Processor cores within SN are constructed by
linking together a set of working stages, where each stage
corresponds to a node in the network. A logical core in
the SN architecture is also referred to as a StageNetSlice
(SNS).

SNS is the basic building block for the SN architec-
ture. It consists of a decoupled pipeline microarchitecture
that allows reconfiguration at the granularity of stages. As
a basis for the SNS design, a simple in-order processor
core is used, consisting of five stages: fetch, decode, is-
sue, execute/memory, and write-back [14]. Figure 2 shows
a single SNS with all of its microarchitectural additions
(shaded structures). The stages are connected using full
crossbar switches (to allow any to any communication in
SN). The crossbar switches have a fixed channel width
(64-bit) and, as a result, the transfer of an instruction from
one stage to the next can take a variable number of cycles.
These switches replace all direct wire links that exist be-
tween the pipeline stages including the bypass network,
branch mis-prediction signals and stall signals. The in-
terconnection network itself is bufferless, but the pipeline
stages maintain a latch (double buffer) at their input and
output, making the network a separate stage and prevent-
ing it from impacting critical paths within stages. The
decoupling of pipeline stages creates three fundamental
challenges for the SNS microarchitecture:
1. Global signals for flush/stall are infeasible
2. Data forwarding is hard to support
3. Performance degradation due to crossbar switches

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 102 DSN 2010: Gupta et al.

Decode

D
o
u
b
le

B
u
ff
e
r

SID

D
o
u
b
le

B
u
ff
e
r

P
a
c
k
e
rGen PC

Branch
Predictor

Fetch

D
o
u
b
le

B
u
ff
e
r

SID Register
File

Issue D
o
u
b
le

B
u
ff
e
r

SID

D
o
u
b
le

B
u
ff
e
r

Execute/
Mem D

o
u
b
le

B
u
ff
e
r

SID

D
o
u
b
le

B
u
ff
e
r

B
y
p
a
s
s
$

Branch Feedback

Register Writeback

To I$ To D$

Figure 2: The StageNet Slice (SNS) micro-architecture. The original pipeline is decoupled at the stage boundaries, and narrow-width
crossbars (64-bit) replace the direct pipeline-latch connections. The shaded blocks inside the stages highlight the structures added to
enable decoupled functionality.

SN provides a solution for each of the challenges
listed above. Specifically, it proposes stream identification
(StreamID) for global control handling, bypass cache (By-
pass$) for data forwarding, andmacro operations (MOPs)
for performance. With the application of these mecha-
nisms, and some minor ones detailed in [9], the perfor-
mance of SNS comes within 10% of a baseline in-order
pipeline (Figure 3).

2.2 Fault Tolerance using SN

A network of stages can be grouped together, using the
full crossbar switches, to form a SN multicore. Figure 4
illustrates a SN multicore created out of four SNSs that
share a common crossbar network. The inherent symme-
try of SN allows arbitrary formation of a logical SNS by
grouping together at least one pipeline stage of each type.
For instance, the fetch, issue and execute stage from slice
0 are linked with the decode from slice 1, to construct a
working pipeline.

SN relies on a fault detection mechanism to identify
broken stages and trigger reconfiguration. The manufac-
ture time failures can be easily identified at the test time
and SN can be configured accordingly. However, an active
mechanism is required to catch failures in the field. There
are two possible solutions for detection of permanent fail-
ures: 1) continuous monitoring using sensors [5] or 2)
periodic testing for faults [8]. SN can employ either of
these or use a hybrid approach. In the presence of failures,
SN can easily isolate broken stages by adaptively routing
around them. Given a pool of stage resources, a software
based configuration manager can divide them into a glob-
ally optimal set of logical SNSs. In this way, SN’s inter-
connection flexibility allows it to salvage healthy stages
from adjacent cores.

2

3

4

5

6

m
a

li
ze

d
 R

u
n

ti
m

e

SNS + StreamID SNS + StreamID + Bypass$ SNS + StreamID + Bypass$ + MOPs

0

1

N
o
rm

Figure 3: Single thread performance of a SNS normalized to
a baseline in-order core. The performance improves by almost
a factor of four after applying all proposed micro-architectural
modifications.

SNS 0

SNS 1

SNS 2

F

F

F

F

D

D

D

D

I

I

I

I

Slice 0

Slice 1

Slice 2

Slice 3

E/M

E/M

E/M

E/M

Figure 4: The SN architecture with four slices interconnected to
each other. Despite four failed stages (marked by shading), SN
is able to salvage three working pipelines, maintaining healthy
system throughput. Given a similar fault map, a core-disabling
approach for reliability would lose all working resources.

2.3 Limitations of SN

The SN design is an acceptable wearout solution for a
small scale multicore system. However, SN is limited in
three distinct ways that prevent it from meeting the many-
core reliability challenge. First, SN was designed for a
CMP with 4-8 cores, and does not scale well to a large
number of cores. The crossbar, that was used as the SN
interconnect, is notorious for steep growth in area and de-
lay overheads as the number of ports is increased [15], and
therefore limits SN scaling. Second, SN focuses primarily
on stage failures and does not investigate methods for in-
terconnection fault tolerance. SN’s robustness hinges on
the link and crossbar reliability. For instance, a SN chip
will waste all of its working stages if the shared cross-
bar between them develops a failure. And finally, the SN
design targets only wearout related failures, which consti-
tutes only a part of the reliability challenge. Amore imme-
diate concern for the industry today is the accelerating rate
of process variation, and its impact on the performance-
efficiency of semiconductor products.

3 The StageWeb Architecture
StageWeb (SW) is a scalable architecture for construct-

ing dependable CMPs. SW interweaves pipeline stages
and interconnection into an adaptive fabric that is capable
of withstanding wearout failures as well as mitigating pro-
cess variation. The interconnect is designed to be flexible
such that the system can react to local failures, reconfigur-
ing around them, to maximize the computational potential
of the system at all times. Figure 5 shows a graphical
abstraction of a large scale CMP employing the SW ar-
chitecture. The processing area of the chip in this figure
consists of a grid of pipeline stages, interconnected using
a scalable network of crossbars switches. The pipeline mi-
croarchitecture of SW is the same as that of a SNS. Any
complete set of pipeline stages (reachable by a common
interconnection) can be assembled together to form a log-
ical pipeline.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 103 DSN 2010: Gupta et al.

D IF E/M

D IF E/M

D IF E/M

D IF E/M

L2 $ L2 $ L2 $

L2 $ L2 $ L2 $

L
2
$

L
2
$

L
2
$

L
2
$

L
2
$

L
2
$

Figure 5: The SW architecture. The pipeline stages are arranged
in form of a grid, surrounded by a conventional memory hierar-
chy. The inset shows a part of the SW fabric. Note that the figure
here is an abstract representation and does not specify the actual
number of resources.

The fault-tolerance within SW can be divided into two
sub-problems. The first half is to utilize as many working
pipeline stages on a chip as possible (interconnect scala-
bility). And the second half is to ensure interconnect re-
liability. A naive solution for the first problem is to pro-
vide a connection between all stages. However, as we will
show later in this section, full connectivity is not neces-
sary between all stages on a chip to achieve the bulk of
reliability benefits. As a combined solution to both these
problems, we explore alternatives for the interconnection
network, interconnection reliability and present configu-
ration algorithms for the same. The underlying intercon-
nection infrastructure is also leveraged by SW to mitigate
process variation. The insight here is to segregate slower
and faster components (stages), allowing more pipelines
to operate at a higher frequency.

3.1 Interweaving Range

The reliability advantages of SW stem from the abil-
ity of neighboring slices (or pipelines) to share their re-
sources with one another. Thus, a direct approach for scal-
ing the original SN proposal would be to allow full con-
nectivity, i.e. a logical SNS can be formed by combining
stages from anywhere on the chip. However, such flexi-
bility is unnecessary, since the bulk of reliability benefits
are garnered by sharing amongst small groups of stages.
To verify this claim, we conducted an experiment with a
fixed number of pipeline resources interwoven (grouped
together) at a range of values. Each fully connected group
of pipelines is referred to as a SW island. Figure 6 shows
the cumulative work done by a fixed number of slices
interwoven at a range of SW island sizes. The cumula-
tive work metric, as defined in Section 4.3, measures the
amount of useful work done by a system in its entire life-
time. Note that the interconnect fabric here is kept fault
free for the sake of estimating the upper bound on the
throughput offered by SW.

As evident from Figure 6, a significant amount of de-
fect tolerance is accomplished with just a few slices shar-
ing their resources. The reliability returns diminish with
the increasing number of pipelines, and beyond 10-12
pipelines, interweaving has a marginal impact. This is be-
cause as a SW island spans more and more slices, the vari-
ation in time to failure of its components gets smaller and
smaller. This factors into the amount of gains that the flex-
ibility of the interconnect can garner in combining work-
ing stages, resulting in a diminishing return with an in-

1.8

k

1.5

1.6

1.7

1.8

la
ti

v
e

W
o
rk

1.2

1.3

1.4

1.5

1.6

1.7

1.8

iz
ed

 C
u

m
u

la
ti

v
e

W
o
rk

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

N
o

rm
a

li
ze

d
 C

u
m

u
la

ti
v

e
W

o
rk

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

N
o

rm
a

li
ze

d
 C

u
m

u
la

ti
v

e
W

o
rk

Island size (number of slices sharing stages)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

N
o

rm
a

li
ze

d
 C

u
m

u
la

ti
v

e
W

o
rk

Island size (number of slices sharing stages)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

N
o

rm
a

li
ze

d
 C

u
m

u
la

ti
v

e
W

o
rk

Island size (number of slices sharing stages)

Figure 6: Cumulative work performed by a fixed size SW sys-
tem with increasing SW island width. The results are normalized
to an equally provisioned regular CMP. These results are a theo-
retical upper bound, as we do not model interconnection failures
for this experiment.

crease in island width. Thus, a two-tier design can be em-
ployed for SW by dividing the chip into SW islands, where
a full interconnect is provided between stages within the
island and no (or perhaps limited) interconnect exists be-
tween islands. In this manner, the wiring overhead can
be explicitly managed by examining more intelligent sys-
tem organizations, while garnering near-optimal benefits
of the SW architecture.

3.2 Interweaving Candidates

Interweaving a set of 10-12 pipelines together, as seen
in Figure 6, achieves a majority of the SW reliability ben-
efits (assuming a failure immune interconnect). How-
ever, using a single crossbar switch might not be a practi-
cal choice for connecting all 10-12 pipelines together be-
cause: 1) the area overhead of crossbars scales quadrat-
ically with the number of input/output ports, 2) stage to
crossbar wire delay increases with the number of pipelines
connected together, at some point this can become the crit-
ical path for the design, 3) and lastly, failure of the single
crossbar shared by all the pipelines can compromise the
usability of all of them. In light of the above reasons, there
is a need to explore more intelligent interconnections that
can reach a wider set of pipelines while keeping the over-
heads in check.

Single Crossbars: The simplest interconnection option
is to use full crossbars switches that connect n slices.
Here, the value of n is bounded by the combined delay
of crossbar and interconnection, which should not exceed
a single CPU cycle. Note that the interconnection network
in SW constitutes a separate stage and does not change the
timing of individual pipeline stages.

Overlapping Crossbars: The overlapping crossbar in-
terconnect builds upon the single crossbar design, while
enabling a wider number of pipelines to share their re-
sources together. As the name implies, adjacent cross-
bars overlap half of their territories in this interweaving
setup. Figure 7(a) illustrates the deployment of overlap-
ping crossbars over 3

2
n slices. Unlike the single crossbar

interconnect, overlapping crossbars have a fuzzy bound-
ary for the SW islands. The shaded stages in the figure
highlight a repetitive interconnection pattern here. Note
that these n

2
stages can connect to the stages above them

using crossbars Xbar 1,4,7, and to the stages below them
using crossbars Xbar 2,5,8. Thus, overall these stages
have a reach of 3

2
n slices. The overlapping crossbars have

4

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 104 DSN 2010: Gupta et al.

D

D

D

D

D

D

F

F

F

F

F

X
b
a
r
0

X
b
a
r
1

X
b
a
r
2

F

n/2

n/2

n/2

E/M

E/M

E/M

E/M

E/M

E/M

I

I

I

I

I

X
b
a
r
6

X
b
a
r
7

X
b
a
r
8

I

X
b
a
r
3

X
b
a
r
4

X
b
a
r
5

(a) Overlapping crossbar connections. In this
figure, the shaded stages in the middle have a
reach of 3

2
n pipelines.

n

F
B
-X
b
a
r
0

F

F

F

F

D

D

D

DX
b
a
r
0

I

I

I

I

E/M

E/M

E/M

E/M

n

X
b
a
r
2

X
b
a
r
4

X
b
a
r
1

X
b
a
r
3

X
b
a
r
5

Front-End Back-End

(b) Combined application of single
crossbars in conjunction with front-
back crossbars.

X
b
a
r
0

F

F

F

F

D

D

D

D

I

I

I

I

E/M

E/M

E/M

E/M

n

n

F
B
-X
b
a
r
0

X
b
a
r
4

X
b
a
r
8

X
b
a
r
1

X
b
a
r
2

X
b
a
r
3

X
b
a
r
5

X
b
a
r
6

X
b
a
r
7

X
b
a
r
9

X
b
a
r
1
0

X
b
a
r
1
1

Front-End Back-End

(c) Combined application of overlapping
crossbars in conjunction front-back crossbars.

Figure 7: Interweaving candidates. The vertical lines here are used as an abstraction for full crossbar switches. The span of the lines
represent the pipelines they connect together.

two distinct advantages over the single crossbars: 1) al-
lows up to 50% more slices to share their resources to-
gether, and 2) introduces an alternative crossbar link at
every stage interface, improving the interconnection ro-
bustness.

Single and Front-Back Crossbars: The primary lim-
itation of single crossbars is the interweaving range they
can deliver. This value is bounded by the extent of connec-
tivity a single-cycle crossbar can provide. However, if this
constraint is relaxed by introducing two-cycle crossbars,
twice the number of slices can communicate with one an-
other. Unfortunately, the two cycle latency between every
pair of stages can introduce a significant slowdown on the
single thread performance of the logical SNSs (~25%). A
compromise solution would be to apply two cycle cross-
bar at a coarser granularity than pipeline stages. One
way to accomplish this is by classifying the fetch-decode
pair as one block (front-end), and the issue-exmem pair
as the other (back-end). The single thread performance
loss when using this is about 7%. As per Figure 2, con-
necting up these two blocks would need one front-end to
back-end crossbar, and another in the reverse direction.
We call such two-cycle interconnections front-back cross-
bars. Figure 7(b) shows 2n slices divided into front-end
and back-end blocks, which are connected by a front-back
crossbar (FB-Xbar 0).

Overlapping and Front-Back Crossbars: The single
and front-back crossbar combination benefits from the in-
terweaving range it obtains from the front-back crossbar,
but, at the expense of single thread performance loss. An
alternative is to combine the overlapping crossbars with
the front-back crossbars. Figure 7(c) shows this style of
interconnect applied over 2n slices. In this scenario, 3

2
n

slices can be reached without losing any performance, and
the remaining n/2 bordering slices can be reached using
the front-back crossbars.

3.3 Configuration Algorithms

The faults in a SW chip can manifest as broken stages,
crossbar ports or interconnect links. Each of these sce-
narios demand a reconfiguration of the system such that
the defective components are isolated. A good configura-
tion algorithm would guarantee formation of a maximum
number of logical pipelines (or SNSs), thus achieving the
highest possible system throughput. This section presents

three configuration algorithms for handling each type of
crossbar deployment, namely, single crossbars, overlap-
ping crossbars and front-back configurations. All four in-
terweaving alternatives discussed in the Section 3.2 can be
successfully configured by using a combination of these
three algorithms.

Single Crossbar Configuration: The input to this al-
gorithm is the fault map of the entire SW chip, and it is
explained here using a simple example. Figure 8 shows
a four-wide SW system. The SW islands are formed us-
ing the top two and bottom two slices. There are eight
defects in this system, four stage failures and four cross-
bar port/interconnect link failures. The dead stages are
marked using a solid shade (F2, D4, I3, E4) and the inter-
connect as crosses. The stages connected to a dead inter-
connect are also declared dead, and are lightly shaded (D1,
D2, I2). This is to distinguish them from the physically
defective stages. For illustration purposes, the backward
connections are not shown here and are assumed fault-
free.

Given the updated fault-map (with interconnection fail-
ures modeled as stage failures), the single crossbar con-
figuration is conducted for one SW island at a time. The
first step is to create a list of working stages of each type.
The second step groups unique working stages within an
island, and sets them aside as a logical SNS. In our exam-
ple, this results in having only one working SNS: F3, D3,
I4, E3.

Overlapping Crossbar Configuration: The overlap-
ping crossbars provide additional connectivity for re-
sources from two neighboring SW islands. For the ex-

SNS 0

F1

F2

F3

F4

D1

D2

D3

D4

I1

I2

I3

I4

E1

E2

E3

E4

Is
la
n
d
1

Is
la
n
d
2

Figure 8: Configuration of SW with single crossbars. The
marked stages and interconnections are dead. Island 1 is not
able to form any logical SNS, whereas island 2 forms only one
logical SNS (SNS 0).

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 105 DSN 2010: Gupta et al.

F1

F2

F3

F4

D1

D3

D4

I1

I3

I4

E1

E2

E3

E4

D2 I2

SNS 0

SNS 1

Is
la
n
d
1

Is
la
n
d
2

Is
la
n
d
3

Figure 9: Configuration of SW with overlapping crossbars. The
red marked stages and interconnections are dead. The partially
marked stages are dead for one island, but are available for use
in the other. Island 1 is not able to form any logical SNS, island
2 and 3 form one logical SNS each.

planation of this algorithm, we will use the same SW ex-
ample from before. The addition of overlapping crossbars
makes the tally for the number of logical SN islands three
(see Figure 9). Also, note the change in shading used for
stages D2 and I2. The top half of these stages are lightly
shaded, and the bottom half is clear. This is to denote that
these stages are dead for use in island 1, but are available
for use in island 2.

Given the fault-map, and the proper abstraction of in-
terconnection faults as stage faults, the single crossbar
configuration algorithm is used to form logical SNSs for
one island at a time. This process is started at one end of
the SW fabric, and is swept across the entire SW. When
this process is started at the top of the fabric, working
stages from the top of the pile within each island are given
preference to form logical SNSs. This heuristic helps in
keeping more resources free when the succeeding islands
are configured. Figure 9 illustrates this logical progres-
sion from island 1 to island 3 in our example. The steps
for each island configuration are detailed below, and result
in a total of two logical SNSs.
1. Island 1: Free working stages: fetch {F1}, decode

{}, issue {I1}, execute/memory {E1,E2}.
Logical SNSs: none.

2. Island 2: Free working stages: fetch {F3}, decode
{D2, D3}, issue {I2}, execute/memory {E2, E3}.
Logical SNSs: F3, D2, I2, E2.

3. Island 3: Free working stages: fetch {F4}, decode
{D3}, issue {I4}, execute/memory {E3}.
Logical SNSs: F4, D3, I4, E3.

Front-Back Crossbar Configuration: The front-back
crossbars are only used to connect the front-end (fetch-
decode pair) with the back-end (issue-execute/memory
pair). This requires their use to be in conjunction
with some other crossbar configuration (see Section 3.2).
Henceforth, we will refer to this other crossbar config-
uration as the first-level interconnect. Nevertheless, the
configuration algorithm for front-back crossbars is inde-
pendent of the choice made for the first-level interconnec-
tion. The running example from the previous algorithms
will again be employed in this section (see Figure 10). In
our example (Figure 10) front-back crossbars are assumed
to be fault-free. The front-back algorithm can be divided
into three phases:
1. First-level Interconnect: For this example, we em-

F1

F2

F3

F4

D3

D4

I1

I3

I4

E1

E2

E3

E4

D2 I2

SNS 0

SNS 1

Front-End Back-End

SNS 2 D1

Figure 10: Configuration of SW with overlapping and front-
back crossbars. The front-back crossbars add one more logical
SNS (SNS 2) over the configuration result of overlapping cross-
bars, making the total three.

ploy overlapping crossbars as the first-level intercon-
nection. This results in forming two logical SNSs:
F3, D2, I2, E2 and F4, D3, I4, E3.

2. Front-back Bundling: In this step, the resources re-
maining in the SW fabric are individually bundled
up in the front-end and the back-end. Figure 10 ex-
ample forms one front-end bundle (F1, D1) and one
back-end bundles (I1, E1).

3. Front-back Integration: The last phase in the config-
uration is to combine pairs of front-end and back-end
bundles and form logical SNSs. Figure 10 forms one
logical SNS using the front-back crossbars: F1, D1,
I1, E1.

The configuration algorithms discussed in this section
can cover all possible interweaving candidates discussed
in Section 3.2. It is noteworthy that the algorithms pre-
sented here are not optimal (in specific, the latter two),
and are based on heuristics. This was done in order to
keep their run-times linear (O(n)), thereby, minimizing
the overheads from manufacture-time and in-field recon-
figuration.

3.4 Interconnection Reliability

Interconnection reliability can be divided into link re-
liability and crossbar reliability. The link reliability is ac-
counted for, to a certain extent, by the interconnection al-
ternatives which introduce redundancy. Further, they are
not as vulnerable to wearout and variation as logic. For
crossbar reliability, SW can use three alternatives:
1. Simple Crossbar: This is the simplest scenario with

a single crossbar switch used at each interconnection
spot. No redundancy is maintained in this case.

2. Simple Crossbar with spare(s): In this set-up, one
spare is maintained for every crossbar in the system.
The cold spare corresponding to a crossbar switch is
only brought into use when the latter develops a cer-
tain number of port failures.

3. Fault-Tolerant Crossbar (no spares): The most ex-
pensive alternative is to deploy one-sided fault-
tolerant (FT) crossbars [24] that nearly eliminate the
chances of crossbar failures. Note that in a FT cross-
bar, multiple paths exist from a given input port to
the output port. This is unlike a regular crossbar that
have a unique path for every input-output pair. How-
ever, FT crossbars tend to be two/three times the size
of a regular crossbar.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 106 DSN 2010: Gupta et al.

3.5 Variation Tolerance

Process variation introduces slower circuit components
throughout a chip. This presence of slower components
results in a wide distribution of operational frequencies for
different structures on the die. For instance, in a conven-
tional CMP, the slowest structure within each core would
determine the best frequency achievable by that core. Sim-
ilarly, in the case of SW, this impact can be observed at the
granularity of pipeline stages, a few of which will be much
slower than others. However, unlike a conventional CMP,
SW can selectively salvage faster pipeline stages from the
grid of resources and construct logical pipelines that can
operate at a higher frequency. This will result in an im-
proved distribution of core frequencies as compared to a
traditional CMP with isolated cores.

The configuration methodology of SW in the presence
of process variation builds upon the algorithms discussed
earlier. The key observation is that for a given frequency
target (and fixed supply voltage), pipeline stages can be
marked functional or non-functional. Once this level of
abstraction is reached, the non-functional stages can be
treated in the same manner as broken stages were earlier
in this section. Given a SW chip with a wide variation
in pipeline stage frequencies, the algorithm proceeds as
follows. It start with the highest possible frequency, and
marks the working stages in the grid. The standard con-
figuration algorithm is used to form logical pipelines. The
frequency is now reduced by a unit step, and the process
is repeated. This is continued until the configuration is de-
fined for the lowest operational frequency of the system.
At this point, the number of cores functional at each fre-
quency point can be tabulated.

Apart from enhancing the performance, the improve-
ment in core frequencies using SW can also be translated
into energy savings relative to a conventional CMP. The
insight here is that given a system utilization level (frac-
tion of cores occupied), SW can form the fastest cores
from its pool of stages and meet the frequency target at
a lower operational voltage than a CMP. Since the CMP
lacks the flexibility to combine faster stages across its
cores, it will be forced to run at a higher voltage to meet
the same frequency target. This difference in voltage
translates to (quadratic) dynamic power savings and (cu-
bic) static power savings [7]. As both systems operate at
the same frequency, these power savings map directly to
energy savings.

4 Evaluation
4.1 Methodology

Microarchitectural Simulation: The microarchitec-
tural simulator for the SW evaluation was developed us-
ing the Liberty Simulation Environment (LSE) [23]. Two
flavors of the microarchitectural simulator were imple-
mented in sufficient detail to provide cycle accurate re-
sults for single thread performance. The first simulator
models a five stage pipeline, which is used as the base-
line. The second simulator models the decoupled SNS
pipeline microarchitecture with all its enhancements (see
Section 2.1). Table 1 lists the parameters for the core and
the memory hierarchy used for the simulations. These

parameters and the baseline microarchitecture pipeline
stages are modeled after the OR1200 processor [14], an
open source RISC microprocessor.

Table 1: Architectural parameters.

Pipeline 4-stage in-order OR1200 RISC [14]
Frequency 400 MHz
Area 1mm

2 (90nm process)
Branch predictor Global, 16-bit history, gshare predictor

BTB size - 2KB
L1 I$, D$ 4-way, 16 KB, 1 cycle hit latency
L2 $ 8-way, 64 KB (per core), 5 cycle hit latency
Memory 40 cycle hit latency

Wearout and Process Variation Modeling: For the
wearout failures, the mean-time-to-failure (MTTF) was
calculated for the various stages and crossbars in the sys-
tem using the empirical models from [21]. The entire core
was qualified to have a MTTF of 10 years. These wearout
models heavily depend on the module (stages and cross-
bar) temperatures that were generated using HotSpot [10].
A customized floorplan was created for StageWeb to ac-
count for the lateral heat transfer on the die. Finally, the
calculated MTTFs are used as the mean of the Weibull
distributions for generating time to failures (TTF) for each
module (stage/crossbar) in the system. The stages are con-
sidered dead as a whole when a fault occurs, whereas, the
crossbar failures are modeled at the crossbar-port granu-
larity.

Process variation was modeled using VARIUS [19].
Given a chip’s floorplan, and σ/μ for a technology pro-
cess, VARIUS can be used to obtain the spread of opera-
tional frequencies for all structures on the die. In our ex-
periments, we use σ/μ of 0.25, as a representative value
for technologies beyond 32nm.

Area, Power and Timing: Industry standard CAD tools
with a library characterized for a 90nm process are used
for estimating the area, power and timing for all de-
sign blocks. A Verilog description for the OR1200 mi-
croprocessor was obtained from [14]. All other design
blocks, SNS enhancements, and crossbar configurations
were hand-coded in Verilog. The area for the interconnec-
tion links between stages and crossbars (interweavings)
was estimated using the same methodology as in [12] with
intermediate wiring-pitch at 90nm taken from the ITRS
road map [11]. The power consumption for all struc-
tures was computed using Synopsys Power Compiler. For
the power saving experiments, we assume that dynamic
power scales quadratically with supply voltage, and lin-
early with frequency [17]. The synthesis tool chain (used
for area) was also employed to find the target frequency
for the design. The interconnection link delay between
stages and crossbars was estimated using the intermediate
wiring-delay from the ITRS road map [11].

CMP Simulations: A thorough simulation infrastruc-
ture was developed to simulate a variable-size regular
CMP system and SW system. This infrastructure inte-
grates all components of our evaluation methodology and
SW design: single thread performance, wearout model-
ing, interweaving alternatives, configuration algorithms

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 107 DSN 2010: Gupta et al.

and crossbar models. To obtain statistically significant re-
sults, 1000 Monte-Carlo runs were conducted for every
lifetime reliability experiment.

For lifetime reliability experiments, the
stages/crossbars fail as they reach their respective
time-to-failures (TTFs). The system gets reconfigured
over its lifetime whenever a failure is introduced. The
instantaneous throughput of the system is computed for
each new configuration using the number of logical SNSs.
This way, we can obtain the chip’s throughput over its
lifetime.

4.2 StageWeb Design Space

For the latest generation Intel Core 2 processors, about
60% die area is occupied by the processing cores. With
that estimate, in order to accommodate 64 OR1200 RISC
cores (our baseline in-order core) we assume a 100mm2

die (a typical value for multicore parts). We use this die
area as the basis for constructing various SW chip config-
urations. There are a total of twelve SW configurations
that we evaluate, distinguished by their choice of inter-
weaving candidates (single, single with front-back, over-
lap, overlap with front-back) and the crossbars (no spare,
with spare, fault-tolerant). Table 2 shows the twelve con-
figurations that form the SW design space. The cap on the
processing area guarantees an area-neutral comparison in
our results. In the base CMP case, the entire processing
area can be devoted to the cores, giving it a full 64 cores.

Table 2: Design space for SW. The rows span the different inter-
connection types (F/B denotes front-back), and the columns span
the crossbar type: crossbar w/o (without) sp (spares), crossbar w/
sp and fault-tolerant (FT) crossbar. Each cell in the table men-
tions the number of pipeline slices, in each SW configuration,
given the overall chip area budget (100mm

2).
Xbar (w/o sp) Xbar (w/ sp) FT Xbar

Single Xbar 56 55 54
Single + F/B Xbar 55 53 52
Overlap Xbar 55 53 52
Overlap + F/B Xbar 54 51 50

The interconnection (crossbar + link) delay acts as a
limiting factor while connecting a single crossbar to a
group of slices. As per our timing analysis, the maxi-
mum number of slices that can be connected using a single
crossbar is 6. This is for the 90nm technology node and a
single-cycle crossbar. A two-cycle crossbar (that is used
as the Front-Back crossbar) can connect up to 12 slices
together.

4.3 Cumulative Work

The lifetime reliability experiments, as discussed in the
evaluation methodology, track the system throughput over
its lifetime. The cumulative work, used in this section, is
defined as the total work a system can accomplish during
its entire lifetime, while operating at its peak throughput.
In simpler terms, one can think of this as the total number
of instructions committed by a CMP during its lifetime.
This metric is same as the one used in [9]. All results
shown in this section are for 1000 iteration Monte-Carlo
simulations.

Figure 11 shows the cumulative work results for all

0.8

1

1.2

1.4

1.6

1.8

Xbar (w/o spare) Xbar (w/ spare) Fault-Tolerant Xbar

N
o
rm

a
li

ze
d

 C
u

m
u

la
ti

v
e

W
o

rk

Single Xbar Single + F/B Xbar Overlap Xbar Overlap + F/B Xbar

0.8

1

1.2

1.4

1.6

1.8

Xbar (w/o spare) Xbar (w/ spare) Fault-Tolerant Xbar

N
o
rm

a
li

ze
d

 C
u

m
u

la
ti

v
e

W
o

rk

Single Xbar Single + F/B Xbar Overlap Xbar Overlap + F/B Xbar

Figure 11: Cumulative work performed by the twelve SW con-
figuration normalized to a CMP system. The cumulative work
improves with the richer choices for interweaving, as well as
with the more resilient crossbars.

1

1.1

1.2

1.3

1.4

1.5

ed
 C

u
m

u
la

ti
v
e

W
o
rk

Single Xbar Single + F/B Xbar Overlap Xbar Overlap + F/B Xbar

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Xbar (w/o spare) Xbar (w/ spare) Fault-Tolerant XbarN
o
rm

a
li

ze
d

 C
u

m
u

la
ti

v
e

W
o
rk

Single Xbar Single + F/B Xbar Overlap Xbar Overlap + F/B Xbar

Figure 12: Cumulative work performed by the twelve SW con-
figuration normalized to a CMP system (area-neutral study).
The cumulative work improves with more resilient crossbar
choice. However, richer interweaving does not map directly to
better results. In the best case, a SW system achieves 40% more
cumulative work relative to the CMP system.

twelve SW configurations, normalized to what is achiev-
able using a 64 core traditional CMP. The results categor-
ically improve with increasing interweaving richness, and
better crossbar reliability. The biggest gains are achieved
when transitioning from the regular crossbar to the fault-
tolerant crossbar. This is due to the ability of the fault-
tolerant crossbar to effectively use its internal fine-grained
cross-point redundancy [24], while maintaining fault-free
performance. When using the fault-tolerant crossbars,
SW system can deliver up to 70% more cumulative work
(overlapping with front-back configuration) over a regular
CMP.

The same set of experiments were repeated in an area-
neutral fashion for the twelve SW configurations (using
the data from Table 2). Figure 12 shows the cumulative
work results for the same. The trend of improving bene-
fits while transitioning to a more reliable crossbar remains
true here as well. However, the choice of the best inter-
weaving candidate is not as obvious as before. Since the
area of each interconnection alternative is factored-in, the
choice to use a richer interconnect has to be made at the
cost of losing computational resources (pipelines). For in-
stance, the (fault-tolerant) overlapping crossbar configura-
tion (column 11) fares better than the (fault-tolerant) over-
lapping with front-back crossbar configuration (column
12). The best result in this plot (fault-tolerant overlap-
ping crossbar) achieves 40% more cumulative work than
the baseline CMP.

8

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 108 DSN 2010: Gupta et al.

4.4 Throughput Behavior

The cumulative work done by the system is a useful
metric, but is insufficient in showing the quality of sys-
tem’s behavior during its lifetime. For this purpose, we
conducted an experiment to track the system throughput
over its lifetime (Figure 13), as wearout failures occur.
Three systems configurations are compared head-to-head:
SW’s best configuration fault-tolerant overlapping cross-
bars, area-neutral version of fault-tolerant overlapping
crossbars, and the baseline CMP. As evident from Fig-
ure 13, the throughput for the SW system exhibits a very
graceful degradation with the progression of time. At the
beginning of life, the CMP system has an edge over the
SW system. This is due to the higher number of pipeline
resources a CMP system initially possesses. However, the
SW catches up soon enough into the lifetime, and main-
tains its advantage for the remaining lifetime.

10

20

30

40

50

60

k
 T

h
ro

u
g
h

p
u

t
(I

P
C

)

CMP StageWeb StageWeb (area neutral)

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

P
ea

k
 T

h
ro

u
g
h

p
u

t
(I

P
C

)

Time (in years)

CMP StageWeb StageWeb (area neutral)

Figure 13: This chart shows the throughput over the lifetime for
the best SW configurations and the baseline CMP. The through-
put for the SW system degrades much more gradually, and in the
best case (around the 8 year mark), SW delivers 4X the through-
put of CMP.

4.5 Variation Mitigation

In addition to wearout tolerance, the interconnection
flexibility of SW can also be leveraged to mitigate process
variation. As discussed in Section 4.5, the basic idea is
to group together faster pipeline stages to form pipelines
that can run at higher frequencies. This way, the slower
resources are isolated, reducing their overall performance
impact. Figure 14 shows the distribution of core frequen-
cies for a regular CMP system and a SW CMP with over-
lapping configuration. In this experiment, both systems
contain 64 cores each, and process variation is injected
with σ/μ = 0.25. The results confirm that the distribution
of core frequencies in a SW CMP are considerably bet-
ter than that of a conventional CMP. The mean increase in
the core frequencies is 7%. It is noteworthy that the slow-
est cores in both systems operate at the same frequency
(0.73). This is true by construction, since even in a SW
CMP, some logical pipeline has to absorb the slowest stage
and operate at that frequency.

4.6 Power Saving

The better distribution of frequencies, as discussed in
Section 4.5, can also translate into power/energy savings.
For a given system utilization, SW can scale down the sup-
ply voltage (reducing power quadratically) and still pro-
vide the same level of performance as a baseline CMP.

20

Traditional CMP StageWeb CMP

15

20

f
co

re
s

Traditional CMP StageWeb CMP

5

10

15

20

u
m

b
er

 o
f

co
re

s

Traditional CMP StageWeb CMP

0

5

10

15

20

0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1

N
u

m
b

er
 o

f
co

re
s

Traditional CMP StageWeb CMP

0

5

10

15

20

0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1

N
u

m
b

er
 o

f
co

re
s

Frequency (normalized)

Traditional CMP StageWeb CMP

0

5

10

15

20

0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1

N
u

m
b

er
 o

f
co

re
s

Frequency (normalized)

Traditional CMP StageWeb CMP

0

5

10

15

20

0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1

N
u

m
b

er
 o

f
co

re
s

Frequency (normalized)

Traditional CMP StageWeb CMP

Figure 14: The distribution of core frequencies in 64-core CMP
and StageWeb chips. Facing the same level of process variation,
SW enables a noticeable improvement in the frequency distribu-
tion.

Note that a single global supply voltage is assumed in all
our experiments. This is a commonly accepted practice as
multiple supply sources introduce significant noise. Fig-
ure 15 shows the power savings obtained at different levels
of system utilization (fraction of cores occupied) when us-
ing SW. Each bar is normalized to the CMP power at that
utilization level. The results range from 16% power sav-
ing at 12.5% utilization to a small loss in power at 100%
utilization. When the utilization is low, more opportunity
exists for SW to gather faster stages, and switch off the
slowest ones. But, at full utilization, everything (includ-
ing the slowest stage) has to be switched on, requiring
the global supply voltage to be scaled back to its original
level. Most commercial servers have time-varying utiliza-
tion [2] (segments of high and low utilization), and can
be expected to create many opportunities where SW saves
power. Since this power is saved without any accompany-
ing loss in performance (frequency), it translates directly
to energy savings.

80

85

90

95

100

105

rm
a

li
ze

d
 P

o
w

er

SW pipeline stage power SW crossbar power

70

75

80

85

90

95

100

105

12.5 25 50 75 100

N
o
rm

a
li

ze
d

 P
o
w

er

% system utilization (number of threads / number of cores)

SW pipeline stage power SW crossbar power

Figure 15: Power saving using SW relative to a CMP at different
system utilization levels.

5 Related Work
High-end server systems (such as Tandem NonStop

and IBM zSeries [4]) designed with reliability as a first-
order design constraint have been around for decades but
have typically relied on coarse grain replication to pro-
vide a high degree of reliability However, dual and triple
modular redundant systems incur significant overheads in
terms of area and power, and cannot tolerate a high failure
rate. Configurable Isolation [1], and Architectural Core
Salvaging [16] are more recent proposals for multipro-
cessor fault tolerance. Configurable Isolation disables the
broken cores for tolerating faults, whereas Core Salvaging
enables use of a broken core in 20-30% of the cases by

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 109 DSN 2010: Gupta et al.

re-scheduling a thread to a fully functional core right be-
fore a failure is encountered. Unfortunately, these recent
proposals are also designed to work at small failure rates.

A newer category of techniques use stage-level recon-
figuration for reliability. StageNet (SN) [9] groups to-
gether a small set of pipelines stages with a simple cross-
bar interconnect. By enabling reconfiguration at the gran-
ularity of a pipeline stage, SN can tolerate many more fail-
ures. Romanescu et al. [18] also propose a multicore ar-
chitecture, Core Cannibalization Architecture (CCA), that
exploits stage level reconfigurability. However, CCA al-
lows only a subset of pipelines to lend their stages to other
broken pipelines, thereby avoiding full interconnection.

The prior research efforts on tolerating process varia-
tion have mostly relied on using fine-grained VLSI tech-
niques such as adaptive body biasing / adaptive supply
voltage [22], voltage interpolation [13], and frequency
tuning. Although effective, all such solutions can have
high overheads, and their feasibility has not been estab-
lished in mass productions. SW stays clear of any such
dependence on circuit techniques, and mitigates process
variation with a fixed global supply voltage and frequency.

6 Conclusion
With the looming reliability challenge in the future

technology generations, mitigating process variation and
tolerating in-field silicon defects will become necessities
in future computing systems. In this paper, we propose
a scalable alternative to the tiled CMP design, named
StageWeb (SW). SW fades out the inter-core boundaries
and applies a scalable interconnection between all the
pipeline stages of the CMP. This allows it to salvage
healthy stages from different parts of the chip to create
working pipelines. In our proposal, the flexibility of SW
is further enhanced by exploring a range of interconnec-
tion alternatives and the corresponding configuration algo-
rithms. In addition to tolerating failures, the flexibility of
SW is also used to create more power-efficient pipelines,
by assembling faster stages and scaling down the supply
voltage. The best interconnection configuration for the
SW architecture was shown to achieve 70% more cumu-
lative work over a regular CMP containing equal number
of cores. Even in an area-neutral study, SW system de-
livered 40% more cumulative work than a regular CMP.
And lastly, in low system utilization phases, its variation
mitigation capabilities enable SW to achieve up to 16%
energy savings.

7 Acknowledgements
We thank the anonymous referees for their valuable

comments and suggestions. The authors acknowledge the
support of the Gigascale Systems Research Center, one of
five research centers funded under the Focus Center Re-
search Program, a Semiconductor Research Corporation
program. This research was also supported by National
Science Foundation grants CCF-0916689 and ARM Lim-
ited.

References
[1] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith. Con-

figurable isolation: building high availability systems with com-
modity multi-core processors. In Proc. of the 34th Annual In-

ternational Symposium on Computer Architecture, pages 470–481,
2007.

[2] A. Andrzejak, M. Arlitt, and J. Rolia. Bounding the resource sav-
ings of utility computing models, Dec. 2002. HP Laboratories,
http://www.hpl.hp.com/techreports/2002/HPL-2002-339.html.

[3] A. Ansari, S. Gupta, S. Feng, and S. Mahlke. Zerehcache: Ar-
moring cache architectures in high defect density technologies. In
Proc. of the 42nd Annual International Symposium on Microarchi-
tecture, 2009.

[4] W. Bartlett and L. Spainhower. Commercial fault tolerance: A tale
of two systems. IEEE Transactions on Dependable and Secure
Computing, 1(1):87–96, 2004.

[5] J. Blome, S. Feng, S. Gupta, and S. Mahlke. Self-calibrating on-
line wearout detection. In Proc. of the 40th Annual International
Symposium on Microarchitecture, pages 109–120, 2007.

[6] S. Borkar. Designing reliable systems from unreliable components:
The challenges of transistor variability and degradation. IEEE Mi-
cro, 25(6):10–16, 2005.

[7] D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao, C. Ziesler,
D. Blaauw, T. Austin, and T. Mudge. Razor: A low-power pipeline
based on circuit-level timing speculation. In Proc. of the 36th An-
nual International Symposium on Microarchitecture, pages 7–18,
2003.

[8] S. Gupta, A. Ansari, S. Feng, and S. Mahlke. Adaptive online
testing for efficient hard fault detection. In Proc. of the 2009 Inter-
national Conference on Computer Design, 2009.

[9] S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke. The sta-
genet fabric for constructing resilient multicore systems. In Proc.
of the 41st Annual International Symposium on Microarchitecture,
pages 141–151, 2008.

[10] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, and
S. Ghosh. Hotspot: A compact thermal modeling method for cmos
vlsi systems. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 14(5):501–513, May 2006.

[11] ITRS. International technology roadmap for semiconductors 2008,
2008. http://www.itrs.net/.

[12] R. Kumar, N. Jouppi, and D. Tullsen. Conjoined-core chip multi-
processing. In Proc. of the 37th Annual International Symposium
on Microarchitecture, pages 195–206, 2004.

[13] X. Liang, R. Canal, G.-Y. Wei, and D. Brooks. Replacing 6t srams
with 3t1d drams in the l1 data cache to combat process variability.
IEEE Micro, 28(1):60–68, 2008.

[14] OpenCores. OpenRISC 1200, 2006.
http://www.opencores.org/projects.cgi/web/ or1k/openrisc 1200.

[15] L.-S. Peh and W. Dally. A delay model and speculative architecture
for pipelined routers. In Proc. of the 7th International Symposium
on High-Performance Computer Architecture, pages 255–266, Jan.
2001.

[16] M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee. Ar-
chitectural core salvaging in a multi-core processor for hard-error
tolerance. In Proc. of the 36th Annual International Symposium on
Computer Architecture, page To Appear, June 2009.

[17] J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated
Circuits, 2nd Edition. Prentice Hall, 2003.

[18] B. F. Romanescu and D. J. Sorin. Core cannibalization architec-
ture: Improving lifetime chip performance for multicore processor
in the presence of hard faults. In Proc. of the 17th International
Conference on Parallel Architectures and Compilation Techniques,
2008.

[19] S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari,
and J. Torrellas. Varius: A model of process variation and result-
ing timing errors for microarchitects. In IEEE Transactions on
Semiconductor Manufacturing, pages 3–13, Feb. 2008.

[20] P. Shivakumar, S. Keckler, C. Moore, and D. Burger. Exploiting
microarchitectural redundancy for defect tolerance. In Proc. of
the 2003 International Conference on Computer Design, page 481,
Oct. 2003.

[21] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. Exploiting
structural duplication for lifetime reliability enhancement. In Proc.
of the 32nd Annual International Symposium on Computer Archi-
tecture, pages 520–531, June 2005.

[22] A. Tiwari and J. Torrellas. Facelift: Hiding and slowing down ag-
ing in multicores. In Proc. of the 41st Annual International Sym-
posium on Microarchitecture, pages 129–140, Dec. 2008.

[23] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome,
S. Malik, and D. I. August. The liberty simulation environment:
A deliberate approach to high-level system modeling. ACM Trans-
actions on Computer Systems, 24(3):211–249, 2006.

[24] K. Wang and C.-K. Wu. Design and implementation of fault-
tolerant and cost effective crossbar switches for multiprocessor
systems. IEE Proceedings on Computers and Digital Techniques,
146(1):50–56, Jan. 1999.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE 110 DSN 2010: Gupta et al.

