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Abstract—A dependable software system must contain error
detection mechanisms and error recovery mechanisms. Soft-
ware components for the detection of errors are typically
designed based on a system specification or the experience
of software engineers, with their efficiency typically being
measured using fault injection and metrics such as coverage
and latency. In this paper, we introduce a methodology for
the design of highly efficient error detection mechanisms. The
proposed methodology combines fault injection analysis and
data mining techniques in order to generate predicates for
efficient error detection mechanisms. The results presented
demonstrate the viability of the methodology as an approach
for the development of efficient error detection mechanisms,
as the predicates generated yield a true positive rate of almost
100% and a false positive rate very close to 0% for the
detection of failure-inducing states. The main advantage of the
proposed methodology over current state-of-the-art approaches
is that efficient detectors are obtained by design, rather than
by using specification-based detectors or the experience of
software engineers.

Keywords-Software Dependability; Fault Injection; Data Min-
ing; Error Detection Mechanisms; Decision Tree Induction

I. INTRODUCTION

The design of dependable software systems is known to be
an inherently difficult problem [1]. A dependable software
system must contain two types of dependability component,
viz., error detection mechanisms and error recovery mech-
anisms [2], which are commonly known as detectors and
correctors respectively. A detector component is a program
component that asserts the validity of a predicate in a
program at a given location [2] [3]. To evaluate the effi-
ciency of a detector component in a software system, fault
injection is used to evaluate metrics [4], such as coverage
and latency [5], that capture efficiency properties [6] [7].
If the values of these efficiency metrics do not reach a
given threshold, the detector component under test must be
redesigned or relocated and the efficiency metrics evaluated
once more. This process is repeated until the efficiency prop-
erties of the detector component satisfy the dependability
requirements placed on the software system.

Detector components are currently designed based on
a system specification [6] or the experience of software
engineers [8]. It has been shown that the efficiency properties
of detectors can be classified along two dimensions; (i)
completeness and (ii) accuracy [3]. The completeness of a

detector component relates to its ability to detect erroneous
states, i.e., to flag true positives, whilst accuracy relates to
its ability to avoid making incorrect detections, i.e., to avoid
false positives. An erroneous state is one that will lead to
failure if the error is not handled. Failure is characterised
as a violation of the system specification. A detector that is
both complete and accurate is known as a perfect detector.
However, due to implementation constraints, e.g., read/write
restrictions, it is, in general, not possible to develop perfect
detectors [9]. A perfect detector at a given location in a
program is therefore the most efficient detector for that
location. In this paper, we use the term efficient detector to
refer to a detector with high completeness and high accuracy.

Research that has addressed the systematic design of effi-
cient detectors has generally focused on finite-state software
systems [2] [3] [10] [11]. However, little work has focused
on the systematic design of efficient detectors for real-world
(infinite-state) software systems. In this paper, we address
this problem through a novel methodology for the design
of efficient detector components. Most significantly, the
proposed methodology is applicable to infinite-state software
systems and generates detector components whose efficiency
is guaranteed by design. The premise of the methodology is
that, given a program location at which a detector component
will be located and for which the detector must be obtained,
optimised data mining techniques can be used to analyse
fault injection data in order to obtain efficient predicates for
that detector component.

A. Contributions

In this paper, we make the following specific contributions:
• We propose a methodology for the generation of effi-

cient predicates for detectors based on the application
of data mining techniques to fault injection data.

• We apply the proposed methodology to modules in
three complex software systems using the PROPANE
tool [12] and the Weka Data Mining suite [13].

• We evaluate the effectiveness and complexity of the
generated error detection mechanisms using ten-fold
cross validation, as well as documenting the variance
associated with the models generated by this process
and showing that our the methodology produces effi-
cient detection predicates.



The overarching contribution of this paper is to propose
a data mining-based approach as an effective methodology
for the generation of efficient error detection mechanisms.
The generality of the proposed methodology is based on
the premise that fault injection analysis performed under a
known fault model can capture some relationship between
the states of an executing program and the behaviours
exhibited by that program. Typically fault injection data
is interpreted with respect to the goal of understanding
situations that lead to failure. The approach advocated in
this paper takes this notion further, in that data mining
algorithms are used to generate predicates which capture
aspects of program correctness to be used in error detection
mechanisms. The generated predicates are efficient, in the
sense that they have a high accuracy and completeness.

B. Paper Structure

The remainder of this paper is structured as follows: In
Section II we provide a survey of existing work in the area of
detector design. We then detail the adopted system and fault
models in Section III. In Section IV we provide background
on data mining techniques that are relevant to the proposed
methodology. In Section V we provide an overview of the
methodology, as well as a description of each step required
for its application. In Section VI we explain the experimental
setup used to validate the proposed methodology. In Section
VII we demonstrate the type of results the methodology is
capable of generating. In Section VIII we discuss the main
characteristics and limitations of the methodology, before
concluding in Section IX with a paper summary and a
discussion of future work.

II. RELATED WORK

When designing a dependable software system, two impor-
tant challenges exist, namely (i) the design of the depend-
ability components, i.e, detectors and correctors, and (ii) the
subsequent location/placement of these components [14] to
contain the propagation of errors. Metrics, such as coverage
and latency [5], are often used to evaluate the efficiency
of dependability components. In general, coverage relates
to the design problem, while latency relates to the location
problem. In this paper, we focus on the design problem and
assume that the program locations are known, e.g., through
techniques such as [14].

A. Detector Design

Several previous approaches to the detector design problem
have focused on experimentally evaluating the coverage and
latency of executable assertions (EAs) using fault injection.
Through these approaches, it was established that EAs ex-
hibiting high coverage and low latency serve to reduce error
propagation. However, designing such EAs is difficult and
error-prone, as demonstrated in [8], where it was remarked
that “...the process of writing self checks is obviously

difficult”. To remedy this the authors in [8] suggested that
“...more training or experience might be helpful”.

One approach for designing EAs uses the specification of
a software system, or the constraints placed on its signals,
i.e., parameters, to design corresponding EAs, e.g., [6] [7].
These EAs may not exhibit the high efficiency needed in
dependable systems [15]. Specifically, it has been shown
in [15] that such EAs may not flag erroneous states, i.e.,
false negatives, or may incorrectly flag correct states as
being erroneous, i.e., false positives. When EAs do not meet
the coverage threshold required of a system, they must be
redesigned. However, very little work exists that helps with
the refinement of EAs in practical software. The refinement
of detectors has been investigated in finite-state systems,
represented as state transition systems, e.g., [3] [11]. In
these approaches, polynomial-time algorithms have been
developed to automatically refine detectors. As a matter of
contrast, we target the refinement of predicates for EAs for
real-world (infinite state) software systems, through the use
of data mining techniques. This problem has received very
little attention in existing literature.

B. Data Mining Techniques

Data mining techniques have been used in the analysis of
failure data for dependable software. For example, Pintér
et.al [16] used data mining techniques on raw data obtained
during dependability benchmarking to identify key infras-
tructural factors for determining the behaviour of systems
in the presence of faults. These investigations can help to
identify weaknesses or vulnerabilities in a software system.
As a matter of contrast, we propose a new approach, which
complements existing ones, where by predicates for error
detection mechanisms are discovered in order to limit error
propagation, i.e, we develop detection mechanisms that ad-
dress vulnerabilities. Data mining techniques have also been
applied to address a number of other software dependability
issues. For example, in the context of computer security,
data mining has been shown to be an effective approach to
intrusion detection and anomaly identification [17] [18].

C. Static Analysis

A static analysis of a program is performed without ex-
ecuting the program. Techniques that implement notions
of static analysis include model checking [19], data-flow
analysis [20] and abstract interpretation [21]. Model check-
ing approaches generally consider systems that have finite
state or may be reduced to finite state by some degree
of abstraction, whilst data-flow analysis is a lattice-based
technique for gathering information about a possible set of
permissible values. Abstract interpretation is a technique
where the aim is to model the effect that every statement
has on the state of an abstract machine, i.e., it executes
the software based on the mathematical properties of each
statement and declaration. Such an abstract machine is



known to over-approximate the behaviours of a system.
The abstract system is therefore made simpler to analyse
at the expense of incompleteness, as not every property that
is true of the original system is also true of the abstract
system. However, if properly done, abstract interpretation
is sound, meaning that every property that is true of the
abstract system can be mapped to a property that is true of
the original system.

It is well-known that, barring some hypothesis that the
state space of programs is finite and small, finding all
possible run-time errors, or more generally any kind of
violation of a specification on the final result of a program, is
undecidable. Thus, static analyses performed on a program
are, in general, sound, in the sense that the properties they
report are true.

D. Likely Program Invariants

An invariant is a property that holds at a certain point or
points in a program. Determining all the sound invariants for
a program may be undecidable. Further, invariants reported
may not be sound, i.e., an invariant may hold true for most
executions, but not for some. Thus, determining likely invari-
ants [22] may be the best approximation, though steps must
be taken to handle false positives. The use of invariants is
valuable in many aspects of software development, including
program design, implementation, testing and maintenance.
Unfortunately, explicit invariants are usually absent from
programs, depriving programmers and automated tools of
their benefits. The seminal work on discovering likely pro-
gram invariants [22] shows how invariants can be dynam-
ically detected from program traces that capture variable
values at program points of interest. The user runs the target
program over a test suite to create the traces, and an invariant
detector determines which properties and relationships hold
over both explicit variables and other expressions. A tool,
called Daikon, exists that supports the discovery of likely
program invariants. Subsequently, several applications of
the techniques have been proposed. For example, Demsky
et.al [23] applied these techniques to discover invariants of
abstract data types. More recently, these techniques have
been applied to detect permanent hardware failures [24].
Dynamic invariant detection is a machine learning technique
that can be applied to arbitrary data. However, invariants
generally do not hold in presence of transient failures. Our
approach differs from using Daikon as the tool has to be run
in parallel with the software under test, i.e., it is an online
approach, while our approach operates on data derived from
fault injection, i.e., it is an offline approach. Moreover, our
approach seeks to detect erroneous states that lead to failure
rather than all erroneous states.

III. MODELS

In this section, we present the system model and fault model
assumed by the analysis presented in this paper.

A. System Model

The methodology presented in this paper is concerned with
the analysis and enhancement of modular software, thus
we adopt a generic model of modular software systems. A
software system S is considered to be a set of intercon-
nected modules M1 . . .Mn. A module Mk contains a set
of non-composite variables Vk and a sequence of actions
Ak1 . . . Aki. The variables in Vk have a specific domain of
values. Each action in Ak1 . . . Aki may read or write to a
subset of variables in

⋃
k Vk.

In this paper we assume software to be grey box, meaning
that access to source code is permitted, but knowledge of
functionality and structure is not assumed, i.e., white box
access with black box knowledge.

B. Fault model

We assume a transient data value fault model [25], which
occurs when internal variables of a system hold erroneous
values. The transient fault model is generally used to model
hardware faults in which bit flips occur in memory areas that
causes instantaneous changes to values held in memory.

IV. DATA MINING

Given a real-world process, great strides have been made
with respect to the modelling, collection, storage and query-
ing of data generated by the process. The process data is
usually modelled by a set of entities, their attributes and
their relationship to other entities. This is commonly known
as the relational model of data. Data generated, and hence
stored, within such a relational data model is a sample of all
the data that may be generated by the process. Often, rather
than being interested in the retrieval of stored data, we are
more interested in forecasting behaviours of the process not
previously encountered or learning some knowledge about
the process if the process itself is not well understood. For
example. we might be interested to learn how a software
system may behave when faced with an injected fault.

Data mining aims to learn useful and actionable knowl-
edge from large collections of data. In simple domains, it
is not unusual to assume that the data is a single relation
consisting of a set of n input attributes that define an n-
dimensional space called the Instance Space, I . Every point
in I is a potential state of the process being modelled. In
supervised learning the data mining algorithm is tasked with
learning a good approximation,f̂ , of an unknown function f
(referred to as the target function) given a training data set,
T ⊆ I , consisting of the N pairs 〈xi, f(xi)〉. If the function
is a discrete one the task is referred to as classification. In
the case of learning a function from data generated through
fault injection, the function is binary as a program state
is either going to lead to a failure or not. The task of
learning a binary function is often referred to as concept
learning, a special case of classification. Instances of the
class of interest, known as the concept, are referred to as



Table I
CONFUSION MATRIX EXAMPLE

Predicted Class
Pos. Neg. Marginal Sum

Actual Class
Pos. TP FN npos

Neg. FP TN nneg

Marginal Sums n̂pos n̂neg n

positive instances as opposed to negative instances, which
are instances that do not belong to the concept.

A number of algorithms have been proposed for classifica-
tion, including Naı̈ve Bayes, nearest neighbour, support vec-
tor machines (SVM), logistic regression, neural networks,
decision tree induction and rule induction. They each differ
in the kind of decision boundary they define between classes,
i.e., their functional form and the set of parameters they fit,
and the heuristic they employ in searching for the “optimal”
function, also known as hypothesis, within the space of
possible hypotheses as defined by the functional form of the
hypotheses. Of these algorithms, given that the goal of this
paper is to learn predicates for efficient detector components,
we focus on evaluatingsymbolic pattern learning algorithms,
such as decision tree induction and rule induction, as their
outputs can be represented as first-order predicates.

The function approximation learnt (often referred to as
the model) by the classification algorithm from training
instances needs to be evaluated to obtain a measure of
the expected accuracy of the model on previously unseen
data. Typically the accuracy of a model is measured by
the percentage of test data instances correctly classified and
hence most algorithms learn hypotheses that minimise the
number of errors. However this measure implicitly assumes
that all types of misclassifications incur an equal cost. This
is of course not always the case. For example, in a safety
critical software system, if a model incorrectly classifies a
faulty state as not faulty, the cost will be a lot greater than
a not faulty state being classified as a faulty state.

In such a situation, the predictions of the model on
a test data set is cross tabulated with the actual classes
assigned to the instances by the target function to produce
a confusion matrix (CM). Table I shows the general form
of a confusion matrix for a concept learning problem. Here
TP is the number of positives instances predicted (labelled)
as being positive instances by f̂ (known as true positives),
FN is the number of positive instances labelled negative
(known as false negatives), FP is the number of negative
instances labelled positive (known as false positives), TN
is the number of negative instances labelled negative (true
negatives), npos(nneg) are the number of positive (negative)
instances in the test data and n̂pos(n̂neg) are the number
of instances predicted as positive (negative). In the design
of efficient detector components, we endeavour to maximise
TP and minimise FP.

A number of evaluation metrics have been proposed in
literature based on the confusion matrix. The most common
of these are specificity or true negative rate ( TN

TN+FP ) and
sensitivity or true positive rate ( TP

TP+FN ). Kubat et al. [26]
used the geometric mean of the true positive rate and true
negative rate as their evaluation metric. ROC analysis [27]
is based on a plot in two dimensions where each model is a
point defined by the coordinates (1-specificity, sensitivity),
where 1-specificity = FP

TN+FP is also referred to as the
false positive rate. For different settings, the same algorithm
will produce multiple points on the plot. The area under
the curve (AUC) obtained by joining these points to (0,0)
and (1,1) is a common measure of expected accuracy of the
algorithm. For a single model, the simple trapezoid obtained
by connecting the coordinates (0,0), (fpr,tpr), (1,1) and (1,0)
has an area of tpr−fpr+1

2 , which is used as a measure of the
quality of the model. Alternatively, the Euclidean distance
from the perfect classifier, which has coordinates (0,1), i.e,
fpr = 0: no false positives, tpr = 1: all true positives, may
as be used as a way of ranking individual models. An
alternative measure from information retrieval literature is
the F1 measure that combines precision ( TP

TP+FP ) and recall
(sensitivity) by computing their harmonic mean.

When the cost associated with a false positive is different
from that of a false negative, a more appropriate measure of
the quality of a model is the expected misclassification cost,
rather that the expected error. This requires the definition of a
cost matrix. Assuming there are m class labels, Li, an m×m
cost matrix, C, needs to be defined such that the value C(i,j)
is the cost of misclassifying an instance of class Li to the
class Lj . Clearly C(i, i) = 0 as there is no cost associated
with correctly classifying an instance. Minimising the error
is a special case of minimising misclassification cost when
the cost matrix is defined as C(i, j) = 1, where i 6= j and
C(i, i) = 0. The expected misclassification cost is therefore
defined as

∑m
i

∑m
j C(i, j) ∗ CM(i, j).

Another assumption made by error minimisation based
concept learning algorithms is that the training data is well
balanced [28]. That is, the distribution of class labels is
approximately uniform. However there are a number of
domains such as network intrusion detection, fraud detec-
tion and software reliability where the number of positive
instances (intrusion/fraud/failure states) are much fewer than
the number of negative instances. In addition to the skewed
distribution, more often than not, it is the minority class that
is most interesting class to predict.

Two approaches have been used to address problem of
class imbalance. One is to act as if there is a higher cost as-
sociated with misclassifying instances of the minority class.
Specifically, a cost matrix can be defined based on the class
imbalance and methods that aim to minimise the number of
errors used as described previously. This assumes that such a
cost matrix can be incorporated within the learning process.
For example, this may be achieved using the altered priors



approach proposed by Breiman et al. [29]. The alternative
is to replace error minimisation based metrics with cost
minimisation metrics when searching the hypothesis space.
However, Pazzani et al. [30] showed that using misclassi-
fication costs as a greedy selection criteria in decision tree
induction does not provide cost minimisation for the overall
model learnt. Ting et al. compared instance weighting to
using minimum expected cost criteria [31] for assigning a
label to a leaf node of a decision tree induced to minimise
errors. Experiments suggest that instance weighting is more
effective than a cost minimisation approach.

The assignment of distinct costs/weights to training ex-
amples [32] [33] [30] [31], in effect, changes the data
distribution within the training data. The cost matrix must
be converted to a cost vector, V, which is not a trivial
exercise for multi-class classification problems. Breiman
et al. [29] suggest using the sum of all misclassification
costs for instances of the class, though alternatives such as
V (i) = argmaxj(C(i, j)) have also been proposed. Ting et
al. [31] assign the same weight to all instances of a particular
class, Lj , based on V(j) using the formula:

w(j) = V (j)
N∑

i V (i)Ni

where, Nj is the number of instances within the data labelled
Lj and N =

∑
i Ni. Algorithms such as C4.5 [34] can

incorporate these weights directly, as instance weights are
already used to deal with missing values.

An alternative to implicitly changing the data distribution
is to re-sample the original dataset, either by oversam-
pling the minority class and/or under-sampling the majority
class [28] [35] [36] to make the class distribution more uni-
form. A number of approaches to resampling have been in-
vestigated in literature. The most common approaches being
those of resampling with replacement and sampling without
replacement (for undersampling the majority class). Japkow-
icz [28] also experimented with some focussed sampling
approaches that oversampled from the boundary regions and
undersampled from regions far from the decision boundary
but experiments suggested little value over random sampling
approaches. Chawla et al. [37] proposed the generation of
synthetic data for minority classes along the line segment
joining an example to k minority class nearest neighbours
rather than simply sampling with replacement. Empirical
tests showed their method, called SMOTE, to outperform
simple sampling with replacement. Zadrozny et al. [38]
proposed the use of cost-proportionate rejection sampling
while Kubat and Matwin [35] suggest undersampling by
removing redundant and borderline negative examples.

One of the criticisms of the over (under) sampling ap-
proach is that it is not clear how much over (under) sampling
should be carried out. Chawla et al. [39] proposed the use
of cross validation for setting the level of over- and under-
sampling of the majority and minority classes automatically.

They showed that using such a process can improve the
accuracy of the resulting models.

V. METHODOLOGY

In this section we provide a full description of our method-
ology for the design of efficient error detection mechanisms.

A. Methodology Overview

The proposed methodology is based on the premise that the
data generated during fault injection captures aspects, i.e.,
patterns, of system states that lead to system failure, as well
as states that do not. Based on these states, a machine learn-
ing algorithm will then generate error detection predicates
through learning of these patterns. However, fault injection
data are often imbalanced, in the sense that most of the
logged states will not lead to a system failure, i.e., only a
small proportion of runs lead to failure. Such an imbalance
has to be addressed for learning to be effective.

The methodology we thus propose is a four stage process.
In the first stage, fault injection is performed on a target
system in order to generate data logs about the system
behaviour that can then be used to learn error detection
predicates. In the second stage, we first choose an appropri-
ate machine learning algorithms, as the data preprocessing
that needs to be performed before learning is based upon
the chosen learning algorithm. Then, a preprocessing is
performed on the data in order to (i) transform the format
of the data for analysis, (ii) address the class imbalance that
is prevalent in fault injection data sets, e.g., using Synthetic
Minority Over-sampling, and (iii) perform any operations
required to improve the effectiveness of the adopted learning
algorithm, e.g., using logarithmic mapping. In the third stage
of the methodology, the chosen learning algorithm is used
to analyse the transformed fault injection data in order
to generate and validate a first-attempt predicate for error
detection mechanism. In order to improve the accuracy and
completeness of the derived predicate for the error detection
mechanism, the final step of the methodology is to vary the
parameters associated with the adopted learning algorithm in
search of an improved detection predicate. The methodology
is depicted in Figure 1 and detailed in Sections V-B-V-E.

B. Step 1: Fault Injection Analysis

The first step of the methodology is to perform fault injection
on a target system in order to generate fault injection datasets
which capture aspects of the relationship between program
state and program behaviour/failure. The specific nature of
the fault injection performed will depend on the adopted
fault and system models, which will in-turn depend on
the characteristics and requirements of the target system.
It should be noted that there will be a direct relationship
between the nature of the fault and system models adopted
and the nature of the predicates that can be derived. For
example, in this paper we assume a single bit-flip fault
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Figure 1. The methodology for the generation of efficient error detection mechanisms

model, which means that the set of states from which a
relationship to program behaviour can be discerned is known
and constrained. Program states not captured by the adopted
fault model will not necessarily be accounted for by the
generated error detection predicates, which means that the
representativeness of the adopted models and test cases is,
as always in fault injection, of utmost importance if the
results generated are to be relevant. A further consideration
that must be made when performing fault injection in order
to generate datasets for the generation of error detection
predicates is the location at which program state is sampled,
as this will determine the location at which the generated
predicate will be relevant and, hence, the location at which
the associated error detection mechanism will be effective.

C. Step 2: Algorithm Selection and Preprocessing
Following the generation of the fault injection datasets, we
first choose an appropriate data mining algorithm. Here, a
symbolic pattern learning algorithm, such as decision tree
induction or rule induction, is chosen in order to derive
and evaluate a first-order predicate over the variables whose
values were captured during fault injection analysis. The
reason for choosing symbolic machine learning algorithms
is because symbolic learning algorithms learn concepts by
constructing a symbolic expression (such as a decision tree)
that describes a class (or classes) of objects (in our case,
system states). Many such algorithms work with represen-
tations equivalent to first order logic.

Then, the data collected from fault injection may be
preprocessed in order to maximise the likelihood that an
effective error detection mechanism will be generated. In
general, the motivations for this process are threefold:

1) To transform the format of the data for analysis by a
data mining algorithm.

2) To address the class imbalance that is prevalent in fault
injection data sets.

3) To perform any operations required to improve the
effectiveness of the adopted learning algorithm.

The transformation of fault injection data to a format that is
compatible with the adopted data mining analysis software
will be specific to the fault injection tool and data mining
suite used. In the case of the results presented in this paper,
the format transformation was between the logging format
of PROPANE [12] and the ARFF format used by the Weka
Data Mining suite [13].

An imbalance in class distribution, i.e., between failures
and non-failures, is common in fault injection datasets,

often due to the factors such as the inherent resilience
of software and the difficulty in inducing system failures
under a given fault model. In order for effective predicates
to be generated this imbalance must be addressed through
approaches such as undersampling and oversampling with
replacement for the minority class. Oversampling can be
viewed as a case of Synthetic Minority Over-sampling
TEchnique (SMOTE) [37]. In SMOTE, synthetic examples
are generated from each positive training instance, ti+, (the
seed instance) as follows. First the k nearest neighbours,
nit’s of ti+ are retrieved. Next r of these nearest neighbours
are chosen through sampling by replacement, where r is
the number of synthetic examples that each of the positive
training instances will contribute to the new oversampled
training data set. For example, if 300% oversampling is to
be carried out then r = 3. The synthetic data instance sij
is then generated as ~sij = ~ti+ + q.(~nij − ~ti+) where q
is a random number between 0 and 1. Oversampling with
replacement is a special case of SMOTE where q is 0.

The skewed nature of datasets generated by fault injection,
particularly when using a data value fault model, means that
it is appropriate, when using certain algorithms, to perform
some attribute transformation before data mining begins. For
example, when the intention is to use learning algorithms
such as Logistic Regression or Naı̈ve Bayes, it would be
appropriate to map the original attribute values using the
function:

g(xi) =

{
log(xi + 1) if xi ≥ 0
− log(|xi|+ 1) if xi < 0

In reality the three stated aims of data preprocessing may
not be fully realised at this stage of the methodology. For
example, the transformation of data formats and the learning
enhancement techniques are likely to be simple processes
that can be contained to the preprocessing stage. However,
the task of addressing class imbalance can not completed
until data mining has been used to generate some initial
model, hence it is an aim that is only realised during the
optimisation of the model, i.e. during the fourth step of the
methodology.

D. Step 3: Data Mining / Model Generation

The aim of this step is to generate predicates for error detec-
tion mechanisms from the transformed fault injection data.
We therefore use the symbolic machine learning algorithm
chosen in the previous step and apply it to the transformed



fault injection data. At this point the aim is not to generate
an efficient detector, where efficiency is defined with respect
to its accuracy and completeness, but to establish a baseline
model that can be subsequently optimised and refined. The
evaluation of the derived predicate may take place by equip-
ping the relevant location in the target system with a runtime
assertion that implements the predicate or by evaluating
the effectiveness with which the predicate classifies fault
injection data that was not used in predicate generation. In
either case, the aim is to evaluate the effectiveness of the
predicate on previously unseen data in order to measure its
accuracy and completeness.

E. Step 4: Model Refinement and Optimisation

Once a baseline predicate has been derived and evaluated, it
may be refined in order to improve its level of accuracy
and completeness. This can be achieved by varying the
parameters associated with the configuration of the adopted
learning algorithm. In particular, it is useful to vary the levels
of undersampling and oversampling, including number of
nearest neighbours used, in order to establish the parameters
which yield the most effect predicate.

It is possible to generate a predicate for a perfect error
detection mechanism, i.e., a predicate that is both accurate
and complete for a program location. However, due to
theoretical constraints, this is not always achievable [9].
Thus, it may often be the case that a predicate can not be
refined beyond a certain level of accuracy and completeness.

VI. EXPERIMENTAL SETUP

In this section we detail the experimental setup used in the
generation of the fault injection data sets.

A. Context

At this point, we wish to set the context: A target system
whose dependability is to be enhanced is instrumented so
that fault injection can be performed on it. When fault
injection is performed in a given module of the target system,
a set of fault injection locations is chosen, as well as a
set of sampling locations. The set of sampling locations
corresponds to the set of program locations in that module
where detectors may need to be located. Such locations can
be obtained using techniques such as in [14]. A set of fault
injection locations is chosen to determine whether learning
of predicates is improved. For example, we may wish to
injection errors at the start of a module, and sample at
the end. Such a process will yield one type of predicate.
On the other hand, we may inject errors at the end of a
module, and sample straight after the injection, as in [6],
yielding a potentially different predicate. In such a case,
the more efficient predicate can then be located at the end
of the module. As future work, we plan to investigate the
relationship between injection and sampling locations in the
generation of efficient predicates.

Once fault injection data is obtained, they are prepro-
cessed according to Step 2 of the methodology, as detailed
in Section V, and the chosen symbolic machine learning
algorithm is applied to the data to generate the required
predicates. Here, a state in the fault injection data is clas-
sified as either failure-inducing in that it leads to failure of
the system, which occurs when a specification is violated,
or non failure-inducing, when the state does not lead to a
failure of the system. Thus, a generated predicate will flag a
state that leads to system failure as erroneous. The predicate
is subsequently refined to improve its efficiency.

B. Target Systems

7-Zip (7Z): The 7-Zip utility is a high-compression archiver
which supports a variety of file archiving and encryption
formats [40]. The target system was chosen because it is
widely-used and has been developed by many different
software engineers. Most source code associated with this
target system is available under the GNU Lesser General
Public License.

Flightgear (FG): The FlightGear Flight Simulator project is
an open-source project which aims to develop an extensible
yet highly sophisticated flight simulator to serve the needs
of the academic and hobbyists communities [41]. The
target system was chosen because it is modular, contains
over 220,000 lines of code and simulates a situation where
dependability is critical. All source code and resources are
available under the GNU General Public License.

Mp3Gain (MG): The Mp3Gain file analyser is an open-
source volume normalisation software for mp3 files [42].
The system is modular and widely-used, but has been
predominantly developed by a single software engineer. All
source code and resources associated with this target system
are available under the GNU General Public License.

C. Test Cases

7Z: An archiving procedure was executed in all test cases.
A set of 25 files were input to the procedure, each of which
was compressed to form an archive and then decompressed
in order to recover the original content. The temporal
impact of faults was measured with respect to the number
of files processed. For example, if a fault were injected
during the processing of file 15 and persisted until the
end of a test case, then its temporal impact would be
10. To create a varied and representative system load, the
experiments associated with each instrumented variable
were repeated for 250 distinct test cases, where each test
case involved a distinct set of 25 input files.

FG: A takeoff procedure was executed in all test cases.
This procedure executed for 2700 iterations of the main
simulation loop, where the first 500 iterations correspond



to an initialisation period and the remaining 2200 iterations
correspond to pre-injection and post-injection periods. A
control module was used to provide a consistent input
vector at each iteration of the simulation. To create a varied
and representative system load, the experiments associated
with each instrumented variable were repeated for 9 distinct
test cases; 3 aircraft masses and 3 wind speeds uniformly
distributed across 1300-2100lbs and 0-60kph respectively.

MG: A volume-level normalisation procedure was executed
in all test cases. The procedure took a set of 25 mp3 files of
varying sizes as input and normalised the volume across each
file. The temporal impact of injected faults was measured
with respect to the number of files processed. To create
a varied and representative system load, the experiments
associated with each instrumented variable were repeated
for 250 distinct test cases, where each test case involved a
distinct set of 25 input files.

D. System Instrumentation

Instrumented modules in each target system were chosen
randomly from all sufficiently large modules used in the
execution of the aforementioned test cases. All variables
in the scope of each chosen module were instrumented
for fault injection. Code locations for instrumentation were
chosen based on the need to identify preconditions and
postconditions for the execution of instrumented modules.
Hence, the entry-point and exit-point of each module were
instrumented locations. An instrumentation location was a
point where a fault could be injected or the state of a
module sampled. A fault injection must be performed before
state was sampled, hence three fault injection data sets were
generated for each instrumented module. A description of
the fault injection data sets used in this paper can be found
in Table II.

E. Fault Injection and Logging

The Propagation Analysis Environment (PROPANE) was
used for fault injection and logging [12]. A golden run
was created for each test case, where a golden run is a
reproducible fault-free run of the system for a given test case,
capturing information about the state of the system during
execution. Bit flip faults were injected at each bit-position
for all instrumented variables. Each injected run entailed a
single bit-flip in a variable at one of these positions, i.e.
no multiple injection were performed. For FG each single
bit-flip experiment was performed at 3 distinct injection
times uniformly distributed across the 2200 simulation loop
iterations that follow system initialisation, i.e. 600, 1200 and
1800 control loop iterations after the initialisation period
of 500 iterations. For 7Z and M3, each single bit-flip
experiment was performed at 4 distinct injection times. The
state of all modules used in the execution of all test cases

Table II
SUMMARY OF FAULT INJECTION DATASETS

Dataset Target Module Injection Sample
Name System Name Location Location
7Z-A1 7-Zip FHandle Entry Entry
7Z-A2 7-Zip FHandle Entry Exit
7Z-A3 7-Zip FHandle Exit Exit
7Z-B1 7-Zip LDecode Entry Entry
7Z-B2 7-Zip LDecode Entry Exit
7Z-B3 7-Zip LDecode Exit Exit
FG-A1 FlightGear Gear Entry Entry
FG-A2 FlightGear Gear Entry Exit
FG-A3 FlightGear Gear Exit Exit
FG-B1 FlightGear Mass Entry Entry
FG-B2 FlightGear Mass Entry Exit
FG-B3 FlightGear Mass Exit Exit
MG-A1 MP3Gain GAnalysis Entry Entry
MG-A2 MP3Gain GAnalysis Entry Exit
MG-A3 MP3Gain GAnalysis Exit Exit
MG-B1 MP3Gain RGain Entry Entry
MG-B2 MP3Gain RGain Entry Exit
MG-B3 MP3Gain RGain Exit Exit

was monitored and recorded during each fault injection
experiment.

F. Failure Specification

7Z: A test case execution was considered a failure if the set
of archive files and recovered content files were different
from those generated by the corresponding golden run.

FG: A failure specification was established using of golden
run observation and relevant aviation information. A failure
in the execution of a test case was considered to fall into at
least one of three categories; speed failure, distance failure
and angle failure. A run was considered a speed failure if
the aircraft failed to reach a safe takeoff speed after first
passing through critical speed and velocity of rotation. A
run was considered a distance failure if the takeoff distance
exceeds that specified by the aircraft manufacturer, where
the specified distance is increased by 10 meters for every
additional 200lbs over the aircraft base-weight. A run was
considered an angle failure if a Pitch Rate of 4.5 degrees
is exceeded before the aircraft is clear of the runway or the
aircraft stalls during climb out.

MG: A test case execution was considered a failure if the
set of normalised output files were different from those
generated by the corresponding golden run.

VII. RESULTS

In this section, we demonstrate each step of our methodol-
ogy, as well as the quality of the results that can be achieved,
by applying the approach to three complex software systems.

A. Step 1: Fault Injection Analysis

Fault injection analysis was conducted on the target sys-
tems under the experimental conditions described in Section



VI. The results of this fault injection were stored in the
PROPANE logging format [12]. The large number of test
cases considered in the fault injection process meant that no
additional data was generated for the evaluation of derived
predicates. Instead, 10-fold cross validation was used in
order to estimate the effectiveness of the predicates derived.
The process by which predicates were evaluated is discussed
further in Section VII-C.

B. Step 2: Algorithm Selection and Preprocessing

During preprocessing a purpose-built software tool was used
to automatically convert from the PROPANE logging format
to the format used by the Weka Data Mining Suite. To
demonstrate the effectiveness of the proposed methodology,
even in its most basic application, no technique was em-
ployed to enhance the learning algorithm to be used during
preprocessing. However, it should be noted that the issue
of class imbalance was addressed, through undersampling,
oversampling and varying the number of nearest neighbours,
in order to to identify an algorithm configuration that would
yield the most effective predicate for each dataset. The
details of the undersampling and oversampling used in
finding the most effective predicates is detailed in Section
VII-D.

C. Step 3: Data Mining / Model Generation

In order to demonstrate the application of the methodology,
a specific symbolic pattern learning algorithm must be
used for the generation of predicates. In this paper we
use Decision Tree Induction for this purpose. Decision
Tree Induction is a symbolic pattern learning algorithm
that learns a disjunction of conjunctive rules describing a
concept. A decision tree consists of two types of nodes;
decision nodes and leaf nodes. A decision node contains
an input attribute value. Each edge emanating from a
decision node is labelled with one of the unique values in
the domain of the attribute labelling the decision node. A
leaf node is labelled using one of the classification labels.
Each path of the tree from the root node to a leaf node
is interpreted as a set of conjunctive expressions that lead
to the classification label at the associated leaf node. The
learning algorithm performs a greedy search of the space
of all possible trees choosing decision node attributes that
maximise the reduction in entropy of the class label. The
C4.5 decision tree induction algorithm was used to learn the
decision tree [34]. An example of the type of tree generated
by the algorithm can be seen in Figure 2, where non-leaf
nodes are labelled with variables, edges are labelled with
potential variable states and leaf nodes are labelled with a
failure classification. A predicate is derived by interpreting
this structure as a conjunction of disjunctions.

Evaluation Method: To evaluate the effectiveness of the
baseline predicate generated, 10-fold cross validation was
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Figure 2. Decision Tree Predicate Example

used to generate the confusion matrices for the adopted
data mining algorithm. The data was partitioned into 10
stratified samples, then for each cross validation run, one of
the partitions was used as the test sample, whilst the other
nine were used as the training set.

Table III shows the evaluation of the predicates that were
generated for all locations. The statistics shown in Table III
relate to predicates generated using a baseline configuration
of the Decision Tree Induction algorithm, i.e., no attempt
was made to search for algorithm parameters which would
yield the most effective predicates. In Table III the FPR
and TPR columns give the mean false positive and true
positive rates taken across all 10 cross validations. A false
positive here corresponds to the situation where a predicate
incorrectly detects a state as being failure-inducing, whilst a
true positive corresponds to a predicate correctly identifying
a failure-inducing state. The AUC column shows the area
under the ROC curve, as described in Section IV. The Comp
column gives the complexity of the derived predicates, where
the stated value corresponds to the mean number of nodes in
the decision tree for all 10 cross validations. The Var column
gives the AUC variance across all 10 cross validations.

We observe from Table III that the mean AUC for all
baseline models is greater than 0.896422. As this measure
reflects both FPR and TPR, this is an indication that the
predicates generated are effective classifiers for failure in-
ducing states. Observe also that, aside from datasets FG-
B1 and FG-B3, the mean TPR for all models is greater
than 0.943459, with the maximum observed being 0.998690.
Further, the mean FPR is extremely low in all cases, with
the maximum observed value being 0.0025. This indicates
the highly-discriminatory nature of the predicates generated.
Finally, it is interesting to note that the variance of all the
models generated is consistently low, thus demonstrating the



Table III
DECISION TREE INDUCTION RESULTS (NO SAMPLING)

Dataset FPR TPR AUC Comp Var
7Z-A1 2E-05 .9979 .9989 19.0 3E-08
7Z-A2 0 .9979 .9989 11.0 1E-08
7Z-A3 0 .9987 .9993 11.0 1E-08
7Z-B1 1E-04 .9435 .9717 58.1 3E-04
7Z-B2 0 .9691 .9845 5.0 1E-09
7Z-B3 0 .9654 .9827 9.0 9E-10
FG-A1 2E-04 .9906 .9951 100.3 7E-08
FG-A2 3E-03 .9807 .9891 136.4 3E-06
FG-A3 6E-04 .9878 .9936 75.9 3E-06
FG-B1 1E-04 .7929 .8964 61.1 1E-32
FG-B2 1E-05 .9584 .9791 172.3 1E-06
FG-B3 1E-04 .8223 .9111 62.8 6E-08
MG-A1 1E-09 .9938 .9969 7.0 1E-09
MG-A2 3E-04 .9938 .9967 7.2 7E-08
MG-A3 0 .9989 .9995 9.2 1E-32
MG-B1 0 .9740 .9870 7.0 1E-32
MG-B2 0 .9740 .9870 7.0 1E-32
MG-B3 0 .9728 .9864 3.2 1E-30

consistency with which effective predicates are generated.

D. Step 4: Model Refinement and Optimisation

Having generated and evaluated baseline predicates for error
detection mechanisms, these models can now be refined by
varying the parameters associated with the Decision Tree
Induction algorithm. The results of this process are shown
in Table IV. The columns of Table IV are the same as
those given in Table III except for the S and N columns,
which show the sampling level and the number of nearest
neighbours used to generate the associated model respec-
tively. Each entry in the S column also shows the type of
sampling performed, where an O indicates oversampling and
a U indicates undersampling. A total of 10 undersampling
and 15 oversampling percentage levels were used in model
refinement. These levels were distributed over the range
[5,100] and [100,1500] for undersampling and oversampling
respectively. The number of nearest neighbours considered
were distributed over the range [1,15].

The entries in Table IV show that each of the models
generated in the previous step were improved on, with
respect to the mean AUC measure, during the predicate
refinement process. In some cases this improvement is
relatively small, occasionally less than a 0.000001 increase,
but in the context of an error detection mechanism this
increase can be significant. In almost all cases the variance
of all models is increased, though it should be noted that
these values remain extremely low.

In order to further validate the correctness of the results
presented, a cross validation for each model had its predicate
implemented as a runtime assertion in its corresponding
code location, i.e., the location at which logging took place
in order to generate the corresponding dataset. All fault
injection experiments were then repeated to ensure that the

Table IV
DECISION TREE INDUCTION RESULTS (REFINED)

Dataset S N FPR TPR AUC Comp Var
7Z-A1 85(U) - 2E-05 .9982 .9991 19.0 2E-09
7Z-A2 300(O) 4 5E-05 .9983 .9991 34.3 5E-08
7Z-A3 500(O) 14 0 .9991 .9996 11.9 6E-32
7Z-B1 300(O) 12 1E-03 .9984 .9985 67.4 6E-07
7Z-B2 900(O) 6 3E-04 .9876 .9937 9.9 6E-05
7Z-B3 700(O) 7 7E-05 .9999 .9999 13.5 3E-08
FG-A1 500(O) 12 1E-03 .9966 .9977 113.7 8E-08
FG-A2 900(O) 1 4E-03 .9995 .9978 174.5 1E-08
FG-A3 500(O) 11 1E-03 .9963 .9974 113.2 1E-07
FG-B1 35(U) - 1E-02 .7963 .8964 68.3 2E-05
FG-B2 500(O) - 2E-04 .9628 .9813 173.1 3E-10
FG-B3 500(O) - 2E-04 .8229 .9114 61.2 3E-10
MG-A1 100(O) 2 0 .9938 .9969 7.0 1E-32
MG-A2 40(U) - 0 .9938 .9969 7.0 1E-32
MG-A3 5(U) - 0 .9989 .9995 9.0 1E-32
MG-B1 75(U) - 0 .9740 .9870 7.0 1E-32
MG-B2 5(U) - 0 .9740 .9870 7.0 4E-17
MG-B3 5(U) - 0 .9728 .9864 3.3 1E-28

observed FPR and TPR values were commensurate with the
rates presented previously.

VIII. DISCUSSION

The results presented in Section VII demonstrate that the
proposed methodology is capable of generating predicates
for efficient error detection mechanisms. In particular, De-
cision Tree Induction has, even under a basic configuration,
been shown to be an effective and consistent method for
generating predicates which exhibit a high true-positive rate
and a low false-positive rate. Crucially, as the best derived
predicate is represented as a decision tree, an example of
which is shown in Figure 2, it can easily be extracted by in-
terpreting the decision tree as a conjunction of disjunctions.
This means that implementing an error detection mechanism
based on a model generated using our methodology reduces
to the, almost trivial, process of interpreting a decision tree.

As fault injection analysis is commonly used in the
validation of dependable software, the availability of fault
injection data can often be assumed. This means that the
main cost of applying the proposed methodology is associ-
ated with data mining algorithms, which in-turn means that
the cost of generating efficient predicates using our approach
is related to dataset magnitude, the data mining algorithm
being applied and the comprehensiveness of the refinement
undertaken. In this paper, we have shown that using only
a baseline configuration of a learning algorithm can yield
highly efficient predicates and that even a naive parameter
search can allow the efficiency of those predicates to be
consistently improved.

The focus of this paper has been on generating predicates
for error detection mechanisms that are capable of detecting
failure inducing states. Hence, the fault injection analysis
performed focused on recording the state of an executing



program and whether that execution resulted in a failure.
This focus contrasts with existing work on fault injection,
which typically adopts the view that an error is any deviation
from a fault-free execution, i.e, golden run. Interestingly,
whilst the methodology proposed here is not directly appli-
cable in this context, we believe that it is possible to adopt a
similar approach in order to derive error detection predicates
that can identify such deviations from a fault-free execution.

The novelty of the proposed methodology is in the ap-
plication of data mining to fault injection data in order to
obtain predicates for efficient error detection mechanisms.
The main advantage of this approach to predicate generation
is that efficient error detection mechanisms can be obtained
by design. This contrasts with current approaches, which
often rely on the availability of a formal system specification
or the experience of software engineers.

IX. CONCLUSION

A. Summary

In this paper, we presented a methodology for the genera-
tion of predicates for efficient error detection mechanisms.
The premise of the methodology is that, given a program
location for which a detector component must be generated,
optimised data mining techniques can be used to analyse
fault injection data in order to generate efficient predicates
for an efficient error detection mechanism. In contrast to
current approaches, the methodology does not rely on a
system specification or the experience of software engineers.
In demonstrating the application of the methodology we
have validated this premise, illustrating how data mining
techniques can be used to generate predicates that exhibit
high accuracy and completeness.

B. Future Work

In future work we plan to explore alternative approaches
to the systematic design of predicates for error detection
mechanisms. In particular, we will evaluate the applicability
and impact of alternative data mining algorithms, fault
models and system models in the generation of efficient error
detection mechanisms.
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