
LLS: Cooperative Integration of Wear-Leveling and Salvaging

for PCM Main Memory

Lei Jiang t, Yu Du t, Youtao Zhang t, Bruce R. Childerst, Jun Yang t

t Electrical and Computer Engineering Department
University of Pittsburgh

t Computer Science Department
University of Pittsburgh

Pittsburgh, PA 15260 Pittsburgh, PA 15261
t {lej 16,juy9}@pitt.edu

Abstract-Phase change memory (PCM) has emerged as a
promising technology for main memory due to many advan­
tages, such as better scalability, non-volatility and fast read
access. However, PCM's limited write endurance restricts its
immediate use as a replacement for DRAM. Recent studies
have revealed that a PCM chip which integrates millions
to billions of bit cells has non-negligible variations in write
endurance. Wear leveling techniques have been proposed to
balance write operations to different PCM regions. To further
prolong the lifetime of a PCM device after the failure of weak
cell, techniques have been proposed to remap failed lines to
spares and to salvage a PCM device that has a large number
of failed lines or pages with graceful degradation.

However, current wear-leveling and salvaging schemes have
not been designed and integrated to work cooperatively to
achieve the best PCM device lifetime. In particular, a non­
contiguous PCM space generated from salvaging complicates
wear leveling and incurs large overhead. In this paper, we
propose LLS , a Line-Level mapping and Salvaging design. By
allocating a dynamic portion of total space in a PCM device
as backup space, and mapping failed lines to backup PCM,
LLS constructs a contiguous PCM space and masks lower­
level failures from the OS and applications. LLS seamlessly
integrates wear leveling and salvaging and copes well with
modern OSs , including ones that support multiple page sizes.
Our experimental results show that LLS achieves 24% longer
lifetime than a state-of-the-art technique. It has negligible
hardware cost and performance overhead.

Keywords-Salvaging; Wear Leveling; Hard Faults; Phase
Change Memory; Reliability;

I. INTRODUCTION

As technology scales, the number of cores in mod­

ern chip multiprocessors (CMPs) is increasing fast (e.g.,

Nvidia's 480-core GTX-480 GPU [19] and Intel's 80-core

TeraFlops [9]). With more threads enabled to run concur­

rently, there is an increasing demand for large main memory.

Unfortunately, traditional charge-based DRAM, despite its

wide use for over 30 years, now faces severe scalability

and leakage problems due to today's small feature size. A

recent ITRS report [8] indicates that there is no known

path forward to scale DRAM below 22nm. To overcome

this looming crisis, it is vital to exploit novel memory

978-1-4244-9233-6/11/$26.00 ©2011 IEEE 221

t {fisherdu,zhangyt,childers }@cs.pitt.edu

technologies to satisfy memory capacity requirements of

future high performance computing systems.

Phase change memory (PCM) has emerged as one of

the most promising new memory technologies. A PCM cell

consists of phase change material (e.g., Ge2 Sb2 Te5 or GST)

and its peripheral logic. While PCM has many advantages,

such as scalability beyond 9nm [8], non-volatility, fast read

access, it also has limitations. One major drawback is poor

write endurance - a PCM cell can be reliably written only a

limited number of times. It has been reported that PCM chips

can survive only 107 to 109 write cycles [1], [8], [27]. This

write endurance is significantly worse than DRAM, which

promises at least 1015 write cycles. Without proper protec­

tion and wear leveling, a PCM chip can fail in as little as 2

minutes [23]. Recent studies proposed several techniques to

prolong the lifetime of PCM devices. The average number

of writes to each PCM cell can be reduced through DRAM

write buffer [14], [18], differential-write [29], and flip-N­

write [5]. And uneven writes to different PCM regions can

be balanced with Start-Gap [16], security refresh [23], and

table-driven segment swapping [29], [6]. Here the lifetime of

a PCM chip is defined as the duty cycles until the appearance

of the first failed cell (or the (m+ 1)-th line failure when

using a small m-entry spare line buffer [16]).

When millions to billions of PCM cells are integrated

into PCM arrays and chips, these cells show non-negligible

variations - some fail much earlier than others, even under

the same write conditions. To mitigate the problem that the

lifetime of a PCM chip is determined by weak cells and

lines, two recent proposals studied how to salvage PCM

chips after a significant number of cell failures (e.g., up

to 50% of total cells). Ipek et at. proposed to pair-up two

pages that have failed cells [10]. A usable page is constructed

with healthy cells from these two pages. Schechter et at.

proposed to use Error Correcting Pointers (ECP) instead of

traditional Error Correction Code (ECC) to replace failed

cells in a memory line [24]. These techniques degrade both

performance and usable memory space.

The past work on wear leveling and salvaging clearly

demonstrates that both are necessary for PCM-based main

memory. However, the simple integration of these ap­

proaches results in a non-contiguous PCM space [10], [24].

This characteristic is mainly due to the "marking page

retirement" mechanism adopted in salvaging. When failures

are propagated from the device level to the operating system

(OS), the as marks corresponding pages as unavailable

and retires them by not allocating them to the kernel or

user applications in the future. This mechanism has two

limitations. First, exposing device-level failures to the as
implicitly binds the mappings between physical address

(PA) and PCM device address (DA). It complicates wear

leveling designs that use randomized PA-DA mapping, and

often requires frequent data movement at runtime. Second, a

marked page may still contain a few healthy memory lines.

Retiring the whole page loses the opportunity to exploit the

remaining endurance of these lines.

In this paper we propose LLS (Line-Level mapping and

Salvaging) to effectively integrate wear leveling and sal­

vaging. LLS divides the PCM space into a main PCM space

and a backup space. Only the main PCM space is visible

to the as and user applications. Instead of marking failed

lines and corresponding pages, LLS maps failed lines in

main PCM to healthy lines in backup PCM such that a

contiguous main PCM space is constructed. The size of

the main PCM is reduced in proportion to the number of

failed cells. We adopt intra-line salvaging, such as ECP or

ECC, in our baseline configuration. Thus, a line failure is

encountered only if intra-line salvaging cannot correct all

failed cells in the line. In the paper we describe the low­

cost LLS address translation hardware and illustrate how

to seamlessly integrate LLS with wear leveling technique

that uses randomized mappings. In addition to providing a

contiguous PCM space, simulation results show that LLS

extends the lifetime of a PCM chip by 24% on average.

To summarize, our contributions include:

• We identify the limitations when integrating existing

line level wear-leveling and salvaging techniques, and

illustrate the importance of providing a contiguous

memory space for PCM-based main memory.

• We propose LLS, a novel hardware-based design that

smoothly integrate wear leveling and salvaging. LLS

transparently maps failed lines to backup lines and

relieves the as from managing failed pages at runtime.

• We elaborate the hardware design that effectively im­

plements LLS with low-cost. Our experimental results

show that LLS not only provides continguous memory

space but also extends chip lifetime.

In the rest of the paper, we discuss background in Sec­

tion II and motivate our design in Section III. We present

LLS in Section IV and discuss how to integrate it with

wear leveling in Section V. The evaluation is described in

Section VI. Section VII concludes the paper.

222

II. BACKGROUND

A. Phase Change Memory (PCM) and its Failure Model

A PCM cell represents a bit ("0" or "1") with two

reversible states that have a significant resistance difference.

To change state, a bit cell is heated and cooled by ap­

plying different currents ("reset" and "set" current). Due

to repeated heating, a PCM cell can be reliably written

only a limited number of times, which is referred to as

write endurance. While an individual PCM cell can handle

1012 write cycles [12], experiments with PCM to arrays and

chips have shown much lower endurance in the range of

107 -109 writes [1], [8], [27]. Write endurance is significant

obstacle that restricts PCM from serving as an immediate

and widespread replacement for DRAM.

B. Process Variation

For PCM chips with billions of cells, some cells tend

to fail earlier than others. One variation source is the

difficulty in controlling physical feature size in a nano-scale

regime [28]. Due to these variations, different cells have

different optimal reset-set current values. A cell suffers from

over-programming if a current higher than its optimal value

is used. An early report showed that every l Ox increase

in pulse energy results in 1000x lower endurance [13],

[11]. Recent measurements of failure rates on fabricated

PCM chips showed similar results - l Ox more failures

were observed when a cell is 60% overheated [7]. While

strong systematic process variations (PV) might be miti­

gated through circuit design, e.g., current provision [28] or

customized write circuit [15], there are still non-negligible

variations at the chip level.

To model PCM failures, we take the same approach as

[10], [24], which built PV and variance models with the

help of Numonyx engineers (a manufacturer of PCM). These

works adopted a normal distribution of cell failure with 108

nominal write cycles and cell level variances in the range

of 0.2 to 0.3. Their model was built to be a good match

to industrial observations of significant random variations at

the chip level.

Other failure mechanisms, such as resistance drift and

cross-talk, are neglected as described in [1]. For example, a

PCM cell, if it is written reliably, can retain data for more

than 10 years at 85°C. As such, PCM failures considered

in this paper can be immediately detected with read-after­

write. Each line write is followed by a line read to confirm

if the data was correctly written.

C. Wear Leveling, Built-in Spare-Line Replacement, and

Salvaging

Based on differences in how cell failures are handled

we divide current PCM endurance techniques into thre�
categories - wear leveling, built-in spare-line replacement,

and salvaging. Figure 1 presents a conceptual view of the

desired stages to apply these techniques and their impact to

system-visible PCM space and access latency.

t Service

� _____________ jJ:L ___________ --------J r (2) i ------: _______________ l3L ______________ :

Day-O Day-n

(1) apply wear leveling throughout the lifetime

(2) apply spare-line replacement for a small number

of failures at day-O and the early stage

(3) apply salvaging to sustain a large number of

failures

•
Lifetime

Figure I. Conceptual view of wear leveling, built-in replacement, and
salvaging.

Wear leveling aims to postpone the appearance of cell

failures by spreading and balancing write operations [16],

[23], [29] among all usable cells/lines. Early table-driven

wear-leveling techniques [29] require as management to

periodically swap data stored in different regions based on

write activity. To achieve better tradeoffs, write frequencies

are often recorded at a coarse-granularity in the table. Re­

cently proposed wear leveling techniques build a randomized

mapping between physical address (PA) and PCM device

address (DA) [16], [23]. In these designs, one PA may be

mapped to different DAs at different times. The mapping

is managed by simple hardware (including several registers

and control circuit) and is hidden from the as and user

applications.

To accommodate relatively high cell failures, PCM de­

vices include spare lines and use built-in hardware support

to automatically remap failed lines to spares early in a chip's

lifetime (i.e., with a small number of failures). Two types of

hardware designs may be adopted. One design re-wires the

address decoding logic (similar to a large capacity cache

design [3]) and the other uses a small remapping table.

Both designs incur large hardware overhead, and thus, can

only support remapping a small number of failed lines. For

example, Qureshi et at. [16] integrates a spare line buffer that

can remap 5% of total lines. The benefits of built-in spare­

line replacement are: it is transparent to upper level designs,

user visible PCM space is contiguous, and access latency is

little affected.

Salvaging techniques [24], [10] try to continue the duty

cycle of PCM chips that have even a significant amount

of failed cells, e.g., Ipek et at. [1 0] can tolerate up to one

half of all pages failing. Salvaging techniques gracefully

degrade in accordance with the number of failed cells, which

is a significant difference to built-in spare line replacement

that masks failures. To study the salvaging result in the

later stage of lifetime of PCM chip, we adopt ECP [24]

as our salvaging baseline. Given a 512-bit (64B) line, ECP

saves six 9-bit pointers and corresponding I-bit data in extra

storage that was traditionally used to hold ECC information.

Each pointer can fix any failed cell within a 64B line. ECP

significantly improves PCM lifetime over ECC and other

error correction techniques.

223

III. START-GAP AND ECP

Start-Gap uses a simple linear formulation, instead of a

large table, to evenly distribute write traffic across the entire

device address space. Figure 2 is an example of Start-Gap. In

Figure 2, numbers on the left side are device addresses, while

letters in the boxes are physical addresses. Start-Gap has two

registers: one is start, which records the device address of

the wear-leveling start point; the other is gap, which stores

the position of a non-writable spare line in the device. Write

operations cannot happen on gap, so that each device line

can have a non-writable period by moving gap. Figure 2(a) is

the initial state, where gap points to a spare line (device line

7) and start contains the device address of physical line, A.

No write request can reach device line 7 in Figure 2(a), since

only device line 0 to 6 are visible to the as and device line

7 is invisible. gap is reducing 1 (curve (1)) in Figure 2(b).

Now, device line 6 becomes the spare line. And physical

line G is mapped to device line 7. In Figure 2(c), when

start and gap overlap, a gap round is finished. In the next

gap round, as Figure 2(d) shows, start is increasing 1 and

gap is decreasing 1 (mod the number of all device lines). The

mappings between device address and physical address have

been shuffled in one gap round. When start comes back to

device line 0 again, a complete Start-Gap round is finished.

To accelerate address randomization, Start-Gap can move

gap by a random number, instead of 1, just like Figure 2(b)

curve (2) shows. Feistel Network and Random Invertible

Binary Matrix (RIB) are integrated into Start-Gap system to

realize a random move on gap. Since Feistel Network and

RIB are static random address generators, malicious attack

may fail PCM chip with Start-Gap within several minutes.

Security refresh [23] dynamically generating randomized

addresses is proposed to prevent malicious attack.

start-.0 A -.0 A -� O 0 G
B 1 B A -.1 A
C C B B
D D C C

4 4 (2) 4 D 4 D
5 5

(l)
5 E 5 E

6 G �) .6

gap .7 7 G G
(a) (b) (e) (d)

Figure 2. Start-Gap wear leveling on a memory containing 8 device lines.

Each gap move in Start-Gap is triggered by a threshold

of cumulative write traffic. If this threshold is too high, the

effect of wear leveling can not be significant. On the other

hand, if this threshold is too low, frequent gap movement

brings a lot of extra write operations into the PCM chip.

Therefore, Start-Gap adopts a hierarchical wear-leveling

design: Regional-Based Start-Gap (RBSG). In Figure 3, a

PCM chip is divided into several memory regions, where

Start-Gap does as regional wear leveling. Another copy of

Start-Gap with independent start and gap registers works

across all the regions as chip-level wear leveling scheme.

When a write operation happens in a region, both the chip­

level Start-Gap and the target-regional Start-Gap move a gap

step. Only with a small extra write overhead, hierarchical

design makes write traffic balanced across the entire chip as

fast as possible.

chip

region 0 C:> start

gap

region 1 C:> � gap

'ChiP level region n C:> start-gap

regional start-gap

Figure 3. Region-Based Start-Gap wear leveling.

Due to natural immunity to soft errors, ECP replaces

Hamming (72, 64) ECC Code on PCM. In Figure 4, a ECP

entry consists of a 9-bit pointer field and I bit replacement

cell. The pointer field records '2', which is the position of

the fail bit in the memory line. The replacement cell stores

data of the hard fault bit. The storage overhead of 6 ECPs is

60 bits. Typically, there are 6 ECPs in one memory line. 1

bit FULL field indicates whether these 6 ECPs are all used.

The total storage overhead for one memory line is 61 bits.

correction entry .
replacement cell

� I 0 I 0 I 0 I 0 i 0 i-O-�:�-l-�:-�
8 7 6 5 4 3 2 l O R 6 , --./ I

correctio";, pointer �

loI111 Iol �
511 510 509 508 3 2 1 0 \�------�yr------�

data cells

Figure 4. The 6 ECPs in one memory line.

IV. THE MOTIVATION FOR A CONTIGUOU S PCM SPACE

As wear leveling should be used throughout the whole

lifetime of a PCM chip, it is important to achieve com­

patibility with both built-in spare line replacement and

salvaging. Wear leveling and built-in spare line replacement

are compatible as the latter is a transparent hardware design.

Unfortunately, as we show next, current wear leveling and

salvaging techniques are not optimized to cooperatively

work together.

With an increasing number of failed cells, a salvaging

scheme such as ECP cannot mask all failures. When there

224

is a cell failure that cannot be corrected, ECP marks the as
memory page associated with the uncorrectable failure as

non-usable. ECP relies on the as to retire the page from

further allocation to the kernel or user applications. This

implicitly creates and binds a mapping between the physical

address (PA) and the PCM device address (DA), and thus,

it restricts the use of wear-leveling techniques based on

randomized mapping. We illustrate the problem as follows.

Consider Start-Gap when failed addresses are marked by

ECP. Start-Gap does randomized address mapping in two

steps as shown in Figure S. In step 1, PAs are randomized

with a pseudo-random function, such as random invertible

binary matrix (RIB) [16]. In step 2, the randomized PAs

(RPAs) are mapped to DAs based on the current start
and gap locations. Figure S shows that PA- IOO and PA-SOO

are randomized to RPA-l and RPA-(N- l) where N is the

maximum size of the PCM memory. Assume PA- I00 and

PA-SOO are mapped to DA- l at time 1 and 2, respectively.

If DA- l fails at runtime (solid black block), then a (failure­

aware) as needs a DAJPA mapping table to expose the

DA failure to the PA level. Managing this table incurs

large overhead as the information is constantly updated with

different start/gap combinations. For example, from time

1 to 2, PA-SOO changes from usable to non-usable. If this

address has already been allocated to a user application, then

the data needs to be explicitly reallocated to a new location

before this start/gap combination is used. The complication

we face from this simple way to integrate Start-Gap and

ECP is due to the fact that Start-Gap prefers a contiguous

memory space such that PA-DA mappings can be freely built

and changed at runtime without the costly involvement of

the as. Start-Gap works well with ECP when all in-line

errors are masked and no page is marked as non-usable. The

non-contiguous memory space also limits normal operations

of Security Refresh [23], which performs wear leveling by

dynamically swapping two random memory lines across the

entire device address space.

We discuss a strawman solution that extends current

salvaging schemes with a hardware-managed mapping table,

similar to the one used in built-in spare-line replacement.

For a 8GB PCM space, a 21-bit table entry is required for

each 4KB page if remapping is done at the page level. A

27-bit entry is required for each 64B line if remapping is

done at the line level. Due to space constraints, suppose the

table is created at the page level. Whenever a 4KB-sized

page A fails, the hardware maps it to the last healthy page

B in the whole space. Page B, instead of page A, is marked

as non-usable. Future accesses to page A are redirected to

page B with the mapping table. In this way, a contiguous

usable PCM space is created in the lower address space

while contiguous higher addresses are marked as non-usable.

The difference between this solution and LLS is that LLS

does remapping at the line level, which helps to achieve

better lifetime as shown later in our experiments.

p_�y.�!��!_�.c!���ss !:.����r:r:'!.z_�_�_P.�_Y?!E�!_�_�_�!.��s
/' // PA RPA

o

1-----1 ___ ---�1 100 f----,,-a---l

500 I---",----b-/
\

'� N-1

a

b

Step 1: Address Randomization

Snapshot 1:
RPA-l maps to

DA-l (failed addr)

DA DA
0: Start 0
1: �,----J 1

Start
Snapshot 2:

> RPA-(N-l} maps to

DA-l (failed addr)
Gap

N-1: b N-1: N: Gap N
Step 2: Start-gap Wear Leveling

Figure 5. Start-Gap [16] prefers a contiguous peM space (black block indicates the failed line).

V. LLS: L INE-LEV EL MAP P ING AND SALVAGING

A. Overview

An overview of Line-Level mapping and Salvaging

scheme (LLS) is shown in Figure 6. The whole PCM device

space M is divided into 28 chunks. A contiguous subset of

these chunks, starting from address 0, are used as the main

PCM. The rest of memory space is the backup PCM. Each

chunk consists of PCM arrays from all banks, and thus,

allocating a subset of chunks to backup PCM does not bias

PCM accesses to certain banks. Only main PCM is visible

to the OS, but backup PCM is not. Initially the whole visible

address space is in main PCM. Even though no chunk is in

backup PCM at this stage, a small number of cell failures

can be corrected by line-level (64B) ECP, or built-in spare­

line replacement hardware.

Eventually, with enough write cycles, there are more cell

failures and a line will evenutally fail that cannot be rescued

by ECP. The system then activates LLS which moves the last

chunk from the main space to backup space such that failed

lines are marked and re-mapped to healthy lines in backup

PCM. Future accesses to failed lines will be automatically

redirected by hardware to the mapped lines. The failure

details (e.g., the total number and the exact locations of

failed lines) are hidden from the OS and user applications.

LLS implicitly binds backup PCM to higher address space

at the device address level. However, as we show next, LLS

does not restrict any particular PA-DA address mapping.

Instead, it supports randomized PA-DA mappings at runtime.

As more lines fail, the backup PCM space will eventually

become insufficient. LLS then dynamically resizes main

PCM and moves up to half of all chunks to backup PCM.

In this way, main PCM is resized in a step-down fashion to

accommodate more failed lines. At any given time, the OS

and user applications can only see and access a contiguous

physical address space whose size is equal to main PCM's.

B. Mapping Failed Lines to the Backup PCM

Figure 7 illustrates mapping to smoothly resize PCM

memory. LLS first constructs a global bitmap using one

225

bit per line to indicate current line status: "0" represents

a healthy line and "1" represents a failed line. If a broken

line is in main PCM space, then it needs to be remapped.

If a broken line is in backup PCM, then it cannot be used

to rescue other failed lines. The bitmap is organized as a

two dimensional array. One row (Figure 7) in the bitmap

records the status of a salvaging group that is constructed

as follows.

Suppose the PCM space is divided into 28 chunks. We

choose consecutive 2t lines from each chunk such that the bit

vector for a salvaging group has 2(8+t) bits. As an example,

if we divide a 8GB PCM into 128 chunks, and choose 4

lines from each chunk, then there are 128x4=512 lines in a

salvaging group. In total, we have 8GB/64B/(l28x4)=256K

groups. Given a bit vector for a salvaging group, all the bits

belong to main PCM when the system was first built. As the

PCM is resized, the bit vector is split. Each PCM resizing

moves 2t bits to backup PCM. The offset is recorded in

a space split register Rloe. In this example, initially Rloe

is 512. After moving one chunk to backup PCM, Rloe is

508(=512-4).

LLS adopts in-group sequential mapping to map failed

lines to backup PCM. That is, the first broken main PCM

line is mapped to the first healthy backup line, the second

broken main PCM line is mapped to the second healthy

backup line; and so on. In main PCM space, we count from

low to high address. In backup space, we count in the reverse

direction, i.e., from higher to lower addresses. We use the

reverse direction in backup PCM to avoid data movement

during PCM resizing. Since there are more lines in main

PCM than in backup PCM, and there might be failed lines

in backup PCM, the address mapping involves two subtasks.

Given a broken line x, LLS will:

(I) Determine the broken line rank y in X's salvaging

group. The broken line rank y is I plus the number

of preceding broken lines in X's salvaging group. Y

means that the broken line should be mapped to the Y­

th healthy line in backup PCM of the salvaging group.

(2) Determine the mapped address W for X in backup PCM.

R, > R
,--j , -- I

main R main

� PCM PCM

, --
backup

I PCM

Initially, the complete space After the first line failure,

data in one chunk is

I
{ R} interleaved in all banks

> main \
a broken line PCM , - - I
In main PCM is

i
mappedto a

}_

in bankO

in bank!

in bank7

healthy line in

backup PCM backup 1
PCM

in bankO

in bank!

in bank7

is used as main PCM allocate one chunk into backup PCM

With more failed lines, allocate up to half of

total space into backup PCM

Figure 6. Splitting the peM memory to main and backup space (To achieve graceful degradation, each chunk contains data from all banks).

PCM
wear VA -TLB-+PA-1 I" �DA-"'�------+� -{� r I eve mg .. A global bitmap: �-

mm (i) one bit per line i
(ii) Bit value 0: healthy line : { Main 5

1: broken line : PCM
2 Chunks

�'�_j�l-'�' CCCCi i� 11i
M.;" PCM """" ;" """ PCM """" �.
this direction R - 2(s+t) _ 2t

lac -
in this direction

Grey blocks belong to one group.

Dark blocks are broken lines.

Figure 7. A salvaging group contains 28+t lines (i.e., 2t line from each of 28 chunks).

With the computed rank Y, if there is no broken line

in backup PCM, then the Y -th healthy line is the w-th

line in backup PCM. If there are broken lines between

o and Y, then the mapped line might be different. In

Figure 7, the 2nd broken line is mapped to the 3rd line

(i.e., the 2nd healthy line) in backup PCM. Note we

count in reverse order in backup PCM.

In LLS, each line stores a status bit in the PCM array.

The line status information is distributed in both the line cell

array and the centralized bitmap. This redundancy removes

bitmap access from the critical path. When the memory

controller gets a device address (DA), it is sent directly

to the PCM bank if it is the next access to be scheduled.

This speculation introduces no performance penalty for

accesses to healthy lines. If the line is broken, then the

bank access fails based on the line status bit in the PCM

array, which enables the bitmap access to compute the

mapped address. The second PCM access is then sent to

access the (healthy) mapped line. Due to speculation penalty,

LLS enables speculation at early stages when most lines

are healthy and disables speculation when more than 30%

of chunks have been moved to the backup PCM. When

speculation is disabled, the bitmap is accessed before all

bank accesses.

226

C. Dynamic PCM Resizing

In this section, we describe when and how to perform

PCM resizing, (i.e., moving chunks to backup PCM). In

LLS, PCM resizing is triggered by a write operation, either

to main PCM or to backup PCM. When a write operation

fails to save data in a line and the failure cannot be rescued

by ECP, then the line status bit (in the above bitmap) is

set. When there are more broken lines in main PCM than

healthy lines in backup PCM, PCM resizing is triggered.

In most cases, PCM resizing is triggered by write opera­

tions to the main PCM. Assume one salvaging group already

has 9 broken lines in main PCM and a new write operation

fails in another main PCM line. If the newly broken line

takes the rank 6, then broken lines with old ranks 6, 7, and

8 need to change their ranks to 7, 8 and 9, respectively. The

change requires line shifting in the backup space such that

the new broken line can take the 7th healthy line in backup

space. As there are now 10 broken lines, there may not be

enough healthy lines in backup PCM. An exception is raised

in this situation to pause the system to resize the PCM.

In the other cases, writes to backup PCM may also fail.

If there are still healthy lines left in backup PCM, then only

the affected lines are shifted. Otherwise, the failed writes

will trigger PCM resizing. These writes include (1) writes

to a broken line in main PCM. This write is redirected to

backup PCM. (2) Writes generated from maintenance such

as line shifting in backup PCM.

To perform PCM resizing, we need to consider its impact

at the physical address (PA) and device address (DA) levels.

At the PA level, enforced by the space split register Rloe,

the OS and user applications cannot access any physical

address beyond the main PCM boundary after resizing. For

this reason, any data allocated in the affected (moved) chunk

needs to be re-allocated to other locations. In the worst case,

the OS needs to move a full chunk with data. For example,

given a 8GB PCM divided into 128 chunks, the worst

case data movement is 64MB (the chunk size). While it

is relatively expensive, PCM resizing is done rarely relative

to device lifetime. If a PCM chip is discarded after 50%

capacity fail, then LLS only does 64 resize operations during

the chip lifetime.

At the DA level, the space split register Rloe identifies

what bits can be used to salvage failed main PCM lines.

Thus, the corresponding device space should not contain

any useful data. If a direct map is used between PA and

DA, then it is straightforward - reallocating OS pages

moves useful data out of the affected chunk at the DA

level automatically. However, when wear leveling with ran­

domized address mapping is adopted, the PA-DA mapping

is randomized such that the affected chunk may contain

useful data that cannot be expunged by physical address re­

allocation. Reallocating OS pages cannot clean up this chunk

because the mapping is invisible to the OS. Therefore, a way

to to ensure correctness is necessary. We describe the details

of how LLS ensures correct operation when we present the

integration of techniques in Section 5.

VI. INTEGR ATION OF W EAR LEV E L ING AND SALVAGING

By providing a contiguous PCM space, LLS hides lower­

level line failures from the OS and user applications. When

salvaging (LLS) is integrated with wear leveling based on

randomized address mappings, the only support that LLS

needs to provide is a one-to-one PA-DA mapping over the

contiguous space. The mapping should maintain consistency

before and after a PCM resizing. We next elaborate on how

LLS supports Start-Gap.

A. Integrating LLS and Start-Gap

To defend against repeated address attacks, a VarIatlOn

of the baseline Start-Gap, called Region-Based Start-Gap

(RBSG), was proposed to enhance security. RBSG divides

the whole PCM into 64MB or smaller regions in the second

step of baseline Start-Gap, and performs the wear-leveling

algorithm in each region independently. Address random­

ization is performed in the first step of RBSG. RBSG is

still vulnerable to specially designed attacks such as birthday

227

paradox attacks [25], [23]. The authors of [16] later proposed

enhancements to defend against such attacks [17].

To integrate with RBSG, LLS slightly modifies address

randomization in RBSG's first step. The PCM space is

divided into two halves, the first half of PA is randomized

to the second half of RPA, and vice versa (Figure 8(a». A

chunk in LLS is equal to or larger than a region in RBSG.

At the physical address level, a chunk is failure-free such

that RBSG can be performed without any modification. If

the chunk is smaller than 64MB, for example, we may get

a 32MB chunk size after dividing 4GB into 128 chunks.

Performing RBSG on each 32MB region slightly increases

overhead: it doubles the number of start/gap registers and

control logic. However, this overhead is very low as shown

in [16].

When there is a need to resize PCM, LLS pauses execu­

tion and notifies the OS about the resizing with an interrupt.

After moving one chunk to the backup PCM, the system

cleans up the data in the affected chunk at both the physical

and device levels. At the physical address level, the OS needs

to reallocate pages in the affected chunk to other locations

as discussed in Section 4.

At the device level, since we map the first half of PA to

the second half of RPA, every line in the affected chunk is

from the first half of PA. As shown in Figure 8(b), given a

DA address DA-7800, we first use RBSG-1 to find its RPA

address RPA-7200. We then pick up PA-7200 and use the

randomization function RIB to find PA-7200's RPA address,

RPA-1100. The actual DA address of RPA-1100 is DA-1500.

Since PA-7200 is invisible to the OS after PCM resizing,

DA-1500 must be an unused line. Therefore, we can safely

relocate DA-7800 to DA-1500.

Given a PA after resizing, if its randomized address RPA

is within the PCM size, then we follow the original RBSG

mapping to access the DA address in the corresponding

region. If RPA is bigger than PCM size, then we perform an­

other round of randomization, i.e., RIB(RIB(PA-1 OO»=RPA-

1100, to find the mapped RPA address. We need at most two

rounds of randomization due to our half-to-half mapping.

Our approach seamlessly integrates LLS and Start-Gap.

We also have developed a scheme for Security Re­

fresh [23] to overcome the non-contiguous memory space

problem in LLS. The main idea is to add a small map­

ping table to guide chip-level Security Refresh to perform

swapping operations in a non-2n size memory space. Due

to limited space, we do not expand on this topic.

VII. EVALUATION

A. Experimental Methodology

In this paper, we evaluate our design with a two-fold

approach. For performance, we evaluate LLS using Sim­

ics [26]. We simulate a four-core 3.2GHz CMP; the detailed

simulator parameters are summarized in Figure 9. Each core

has private L1 and L2 caches and a shared DRAM L3

PA RPA DA PA RPA DA To relocate DA-7800:

R�
b-vEWi

100� � II 14110 �l II' II 15001 - l
(1) RBSG "(DA-7800)= RPA-7200

Main
PCM D \/ D c::::::::J: (2) RPA-7200 contains useful data

RIB"(RPA-7200) = PA-100

�fl--l�� R/\R R: (3) PA-7200 is no long used

RIB(PA-7200) = RPA-ll00

IiI 'II r-l I (4) RBSG(RPA-ll00) = DA-ls00

D�
Backup! � -'0 - � . I PCM --('200L-.] 7200: 780� (5) relocate DA-7800 to DA-ls00

(a) enhancing Start-Gap for smooth (b) at DA level, relocate useful data for

PCM resizing PCM resizing

Figure 8. Integrating Start-Gap and LLS with the support for PCM resizing.

cache. Each L2 cache is 4MB and 8-way set associative. The

shared DRAM cache is 64MB and 16-way set associative.

As shown in [18], [16], a large DRAM cache is essential

as it reduces the number of writes to PCM and enables

practical use of PCM as main memory. Only data evicted

from DRAM are stored in PCM. We evaluate a subset of

benchmark programs (the programs that compile in our set­

ting) from SPEC 2006. These programs have good coverage

- the programs include ones with intensive memory accesses

(e.g., mcf) and light memory accesses (e.g., gcc) [2]. We

evaluate performance after different portions of memory

cells fail. At each point, we simulate 1 billion instructions

after 1 billion warmup instructions. Checkpoints are set after

skipping the warmup phase in each program. We use recent

latency numbers from Numonyx - PCM read and write

latencies are 50ns and 1000ns respectively [20].

CPU core 4-core CMP, 3.2GHz
Ll cache private, separate I-/D- caches,

32K, 4-way, 2-cycle hit latency
L2 Cache private, 4MB, 8-way, LRU,

writeback, l2-cycIe hit latency
DRAM L3 cache 64MB, shared, 16-way, LRU,

64B linesize, writeback, l5ns hit latency
Main Memory 8GB PCM, 4 ranks of 8 banks each
PCM latency read: 50ns, write: IOOOns

Figure 9. Baseline configurations.

Since it is impractical to simulate the whole lifetime of

PCM chips of this size, we follow the same simplified

approach from [24]. We assume uniform wear leveling that

evenly distributes write operations to all lines in the usable

memory space. Each write alters 50% cells within one line.

When distributing a fixed number of writes to PCM, the

number of writes to each line is slightly higher after resizing.

Therefore we report the total number of write operations

rather than the number to each line.

228

B. Lifetime Study

To evaluate the effectiveness of LLS, we compared it to

ECP-M and Page-Ideal, which are enhanced versions

of two existing salvaging schemes. The enhancements were

added to support a contiguous usable PCM space, and have

no impact on lifetime. ECP-M was enhanced from ECP

[24] with a mapping table at the page level (discussed

in Section 3). Page-Ideal is an ideal version of [10]

to support contiguous PCM space. In this implementation,

when there is a need to match two pages with failed cells,

we optimistically assume that one of them always has the

biggest address of all usable pages. We use the lower page

address as the one to identify the page pair. Therefore, the

visible PCM space is contiguous before and after pairing up

these two pages.

Figure 10 summarizes the lifetime comparison of different

salvaging schemes. We chose the same cell variances as [24]

(discussed in Section 2.1). The x-axis shows the total number

of write operations. We normalized this number to the setting

in which all cells have the same 108 write endurance, i.e.,

no PV for x= 1. The y-axis shows the percentage of pages

that survived over the time.

In the figure, we show the result from an oracle that

writes each line exactly w times to cause its six weakest cells

to fail. All failed cells are then rescued by ECP. Clearly

w varies across different lines due to process variations.

Oracle gives the upper bound from perfect PV-aware

wear leveling, perfect line salvaging, and perfect cooperation

among both. The gap between oracle and ECP motivates

our design of a line-level salvaging scheme to work with

wear leveling.

In these experiments, LLS divides the space into 128

chunks and selects 4 lines from each chunk to form a

salvaging group. From the figure, we observed that LLS

shrinks more space than ECP for the first batch of failures.

To handle the first line failure, LLS requires one PCM

resizing and removes 64MB from the main PCM; ECP-M

only marks one page as non-usable. LLS has smaller usable

.._.- Page·ldeal-· _. -lLS·ldeal- - - ECp·M -- llS·128x4 _ .. _ .. Oracle
100% 100%

90% ��' �'�\��·�·�·�·�·�·�·����\�> ����i��� � 1
90% ---------------\

\
-- l\� -----1---

80%
� 70% .;::; .. -... -.-... -\-.-.-.----.-------.----4---- --------j-.--- �

��:---------------�--- -----1---
.� - ------------'-------'----------T-----' ---'-----T-----

co a. 60% co
'. I . '---'---'---'-� '---'---'------------T --' -------1-'--- a. 60% \ _____________ . ___ . __ . ___ . __ 1.. ______ -------i----

a '. I . U 50% ..., ..
._._. ___ ._._. __ L_ , . . _ .. __ ._._._!_._. ____ ._._j_._._

i I, 50% · ··-----r-·-·-·-·-·-·-·-· r ·-·---· '-" --'-'1 " --'-
.� 40% __ . _______ ._.i. ___ . __ ._._. __ L ___ .. ,-'--'--1----40% .!:! iii

------------�------�-- ----�---
I I . .�·�·�.�.�.�·�.�.�.�.�-�t��·�.�-�-� .�.� t��t�� "'i ! I , .

! ��:�������E ������E��· E ��E�� E :s z

30%

20%

10%
i i i .

------------�-------�-- i ---�----
0% ! . r-J-....--. 0% ! I i L

0.00 0.05 0.10 0.15 0.20 0.25 0.550.60 0.00 0.05 0.10 0.15 0.20 0.40.50.6
Normalized Number of Writes (variation=O.2) Normalized Number of Writes (variation=O.25)

Figure 10. Lifetime comparison of different salvaging schemes with different variances.

space at this stage. However, LLS quickly overtakes ECP­

M by exploiting line-level salvaging opportunities, and thus,

achieves a longer lifetime. On average, LLS achieves 24%

extra lifetime when compared to the baseline ECP - 14%,

24%, and 41 % for three variances respectively.

In Figure 10, LLS-Ideal shows the total usable space

at the line level, which gives an upper bound of all line

level salvaging techniques. oracle assumes PV-aware wear

leveling and LLS-Ideal assumes wear leveling scheme

that evenly distributes writes. The difference between LLS
and LLS-Ideal are the idle lines in the backup, i.e., no

broken main PCM lines are mapped to them. From the

figure, idle lines account for a small percentage. The loss

of exploiting their available endurance is small.

Projected lifetime in months. The above results are pre­

sented based on normalized number of writes. The actual

PCM lifetime in months depends on many factors. As

an example, if we assume each bank has 256MB (as in

Figure 9), a cache line has 64B, PCM experiences stream

write traffic, each write alters half of a cache line and the

cell variance is 0.25, then the projected lifetime with ECP

is about 28 months before we see many failed cells -

256MB-;-64B x 108 xO.18x 1000ns=7.2e8 ns = 28 months.

0.18 represents that the exploited PCM endurances when

PV is 0.18 of the 108 no-PV chip (from Figure lOeb)). In

other scenarios, attack traffic to a subset of addresses may

shorten lifetime [23] while normal traffic having less writes

will prolong the lifetime.

C. Hardware Cost

We next study the hardware cost to enable LLS. The

hardware cost includes bitmap storage, and the control logic

to enable fast address translation from main PCM to backup

PCM.

1) Bitmap Storage: Each 64B line has one status bit that

indicates if the line is broken or not. This bit is needed by

ECP and LLS. This accounts for 0.2% off-chip storage, or

16MB for a 8GB PCM memory in our setting. In addition to

229

storing each status bit with a line, LLS redundantly gathers

all bits into a global bit map as shown in Figure 7. Due to

its low modification frequency, the bitmap can be stored in

PCM and protected using ECP.

In comparison, to support contiguous PCM space, current

salvaging schemes [24] [10] also need a mapping table. A

simple page-level mapping needs 8GB/4KB = 2M entries.

Given a 21-bit page index, the overhead is about 4.2MB.

While LLS has more metadata storage, the overhead is

modest compared to the PCM space saved from exploiting

line-level endurance.

Since the bitmap is stored in PCM, it is slow to access.

Therefore, it is beneficial to integrate a small on-chip bitmap

cache to store frequently used entries. We chose 256KB

as a good trade-off between cost and performance. Since

the need to access the bitmap cache varies with percentage

of failed cells, we measured the hit rate under different

percentages of survived lines. The results are summarized in

Figure 11. The y-axis is the percentage of accesses to failed

lines hit in bitmap cache. We observed slightly higher cache

hit rates due to more reuse of fetched bit vectors with more

accesses. We also evaluated larger cache sizes, but observed

no significant improvement.

2) Translation Logic: Hardware-assisted address transla­

tion is designed to solve the following problem - given

a broken line X in main PCM, how to quickly identify its

mapped line W in the same group in backup PCM? Since

address translation is always performed in one group, in the

following description, we use group offset to indicate a line.

As described above, in the corresponding group, X is the y­

th broken line in the main PCM while W is the y-th healthy

line in backup PCM.

We show the address translation logic in Figures 12 and

13. We divide the PCM space into 128 chunks and choose

4 lines from each chunk. The PCM fails if more than

half of the space moves into the backup PCM. Therefore,

each salvaging group has 128x4=512 bits, and at most,

the last 256 bits belong to the backup space. To simplify

Figure II. The effectiveness evaluation of an on-chip bitmap cache.

Step 2: backup Step 3: return
broken line Step 1: broken rank subgroup address

address X=465 Y=15 identify the Z=30 return the device W=494 compute the , broken rank Y , subgroup index , line address in , , , , in backup PCM , backup PCM , , , , , , , , , , , , , , -----------------------1------------1
y; # 'of 1s : X;465

t ' , r---------------------------�-----------�

, ,
, r--------------�

I 2nd sub-group i W;;;494
t ' J'------------t--\

o 1 14 15 1 6 17 30 31 ,::.:464:::.r46:;5 __ ,.:4":.:78:,.::4.:.;79 480 492493494495 49 6 497 508 51 1
""::1 0"T1 0.:...,1------r1 0':"1':'::'1 I L-l 0 ! 1 1_----L.1 1 1 I ::: I 0 1 1 I 1 0 1 0 I I 0 1 11 i 0 1 0 11 IL-l 0--'-1 11_----'-1 0---,1_1 -,-1 0--'.1---,0 1

'--------v-----

t from one chunk

----------------------�v�------------------------/ \-----�v�------
Main PCM R'oc=492 Backup PCM

Figure 12. Address mapping in three steps.

the discussion, we assume five chunks are currently in the

backup space.

Figure 12 shows an overview of our three step implemen­

tation. Given a broken line x=465 (group offset),

• Step I: Compute X's broken line rank Y by counting

the preceding broken lines. Assume Y=15.

• Step 2: Split the bits from backup space into 16-bit

subgroups and identify which subgroup holds the line.

Here, we have z=30 indicating the mapped backup line

is in the 2nd subgroup in reverse order.

• Step 3: Return the location after identifying the backup

line in a 16-bit subgroup.W=494 is referred in this

example.

Figure 13 presents three bit operations to assist address

translation. The mapping from a PCM device address to

its salvaging group (group id, offset) is shown in Figure

13(a). We generate two 512-bit bit-masks -- A-mask and

B-mask as shown in Figure 13(b). Given a group offset

X=465, bits 0 to 465 of A-mask are set, indicating that the

broken line rank only counts Is of these positions. B-mask

is generated from Rloe to differentiate the bits in main PCM

and backup spaces. Given Rloe=492 (i.e., 5 chunks in backup

PCM), we set the last 5x4=20 bits of the B-mask.

Given an address x, we fetch X's bit vector for its

salvaging group and filter the result with A-mask. We then

divide 512 bits into 32 16-bit subgroups. A 32-way parallel

16-bit population counter is used to count the number of

ls in each subgroup. We use the fast population counting

230

32 26 25 2 1 0

Device Address I Offset High I Group ID I Offset Low 1

32 >:f t o
Salvaging Group I Group ID I Offset

(a) DA and group offset mapping
a 465 Sl1

A-Mask X; 465 � 11111111... 11111111000 0001

B-Mask R,oc; 492
256 492 511

-------�) 1 0000 .. 000011 .. 111
(b) Two bits masks for logic selection

Figure 13. Bit operations to assist address translation.

logic proposed in [22]. Ramanarayanan et al. used a 3:2

compressor and Wallace-tree structure to implement a 64-bit

population counter in a single cycle on a 2.1GHz low power

CPU using 65nm technology [22]. The 32 5-bit results are

again summarized using 3:2 compressor and Wallace-tree

structure to get the broken line rank Y.

Due to space constraints, we omit circuit details of the

second and the third steps. We reuse the population counting

logic in these steps to reduce hardware cost. Step 2 can be

skipped if backup PCM contains less than 5 chunks (only

one group exists).

We did a custom design of the proposed logic using PTM

45nm technology [21]. Our design needs 55K transistors

and 13KfLm2 die area. The total latency is 2.68ns (=O.98ns+

_ ECP-M _ l-ECP � lLS-128x4

j �::OllU�::um�::OllU�:um�::DllUOU�:mu � M M M M M M § � � � � � � � M M M M M M

� ·0 co "'-co U .., .. .!::! � E !; Z

100% 90% 80% 70% 50% 100% 90% 80% 70% 50% 100% 90% 80% 70% 50% 100% 90% 80% 70% 50% 100% 90% 80% 70% 50% 100% 90% 80% 70% 50%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

gee gemsFDTD mgrid art bwaves met
Percentage of Hea lthy Lines

Figure 14. Performance comparison of ECP, L-ECP, and LLS.

_ . _ . _ . - ECP-M - - - L-ECP -- LLS-64x4 -- LLS-128x4 -- LLS-256x4 Oracle
�����. ��-�-��=-=-=-=-=-=-=-=-=-�'t=-=- ���l�OO�%������.�- -�-����=-=-=-=-=-=-=-�r=-�� ��������-�-�-� �-------l---

'
_
' _ '_ ' _'_'_ '_ ' _'�:"".,'_ ' _'_ ' _' i_._ ._

.
_ ._ ._ ._

.
_
.
_ ._. _

.
_ 90% " . I

. _
.
_
. _

. _
._._

.
_ ._ .

_ ._ :-- .
_
.
_ ._ ._

. - - - - - ' - - - - - ' - ' - - - - --1- - - - '�co>u- ;:: � � � � � � � � � � �\i� � � � � �\:' � � � � � � �{ � � � � � � � � � �'t� � � � � � : � � � � � � �[� �
100%

90%

80%

. � . � .� .� .� .� . � . � . �j.� � � � �L - � � � � � � j� � t · · " 1 � ::: .� .� .� .� .� .� .� .� .� .� .� .� -�,: � : � :� :� :� : �,:� :- , - . �:� :� : � : tt .�.� � � � � � � � � �j\� � � � � �i, � - - - �ji� :� :� :�
� 70% ·0 co "'- 60% co U 50% .., -.-_-.-_-.-_-.-_-.-_-.-_-.-_-.-_-.-_-.-_-.-_-.\ '. -_-. -_ -.-_-.-_-.t_, -. -_-. -.-_-. -_-.-_-.-_-.-_-.-_-. 1 -_-.-_ .. • -t .t:::!. 40% . _ ._ ._ ._ . _ ._._ ._ ._ ._ ._ ._.-i - ._ ._ ._ . _. ;- _._ . _ ._ ._ ._ . . _. - ._ ._ ._ ._ ._ ._ . _ ._ ._ ._ . -!- ._._ ._ ._ ._ .-t- ._.- , - - - , -1- , - - - , -

'- '- '- '- ' - '- '- '- ' -.- .- .� . _._._._.! ._.- - .- .- .- .- .- .- . �.- .- � 30% ' - ' - ' - ' - ' - ' - ' - ' - ' - ' - ' - ' - ' -L ._._. - . - --:-- -- - - -- -- -- - � -- --
-

- -- - - - - - - - - - - - - - - - - - - -t - - - - - - - - - - - -�
- --

- - -
. -_-. -_

-
.-_

I
,i -_

.
. -_

-
.-_-.-_

..
40% .!::! iii E 30%

.
. -_

.

. -_
.
. -_

.
. _

_ .
. -_

.
. -_

.
. -_

.
. -_

.
. -_

.
. -_

.
. -_

.
.
-
11. -_

.
. -_·.-_·. -_·.lJ·.-_·. ·.-_·.-_·.-_·.-_·.-_·.-_·.l -_ ·.-_

!; 20% Z
10%

1 1 j z� 20% _ _ _ _ __ __ ___ __ _ __ __ _ _ __ ____ .Lj _ _ __ __ __ _ -1, _ __ _ - -- -- - -- tl _ _ __ _ _ __ _ _ _ _ __ ___ __ _ _ _ __ _ __ � _ _ __ __ __ _ _ __ I __ __ _
-+ 10% - -

- - -- - - - - -- -- -- -- -- -- -- -- -t -- -- ---- --1 ----
- -- - - -- - -- -- -- -- -- -- -- - - -- -- -- -- -- -i -- -- -- -- -- --:- - - -- -- -- --1- -- -- --

0% ! ' � 0%
. , -;---J.---, . ' .L.-.-0%

0.18 0.20 0.22 0.24 0.26 0.28 0.5 0.6 0.10 0.12 0.14 0.16 0.18 0.20 0.220.4 0.5 0.06 0.08 0.10 0.12 0.14 0.16 0.36
Normalized Number of Writes (variation=0.2) Normalized Number of Writes (variation=0.25) Normalized Number of Writes (variation=0.3)

Figure 15. Comparing the lifetime of different grouping choices.

1.24ns+0.46ns) if step 2 is enabled, and 1.44ns if step 2 is

skipped. The translation logic is activated only if the line is

broken.

a bit is associated with each line, which indicates if there

are more failed cells in the extra line (i.e., if the reserved

line needs to be accessed).

Energy consumption overhead comes from accesses to the

bitmap cache and translation logic. From CACTI, it costs

about O.4nJ per access for a 256K DRAM bitmap cache.

The translation logic consumes <0.1 nJ per access. However,

note that PCM energy consumption is dominated by write

access, which is InJ per bit accessed. The PCM read energy

consumption is < <O. l nJ per bit accessed [20], and thus,

this cost can be omitted. Given that a cache line contains

512 bits, and the read/write ratios of normal benchmarks

is less than 10, energy overhead from the bitmap cache

access and address translation is a modest 2% of total energy

consumption: (O.4nJ+O. lnJ) out of (InJx512xO.5+c5)/11). c5

indicates the omitted read energy consumption.

To study the sensitivity in forming salvaging groups,

we chose a different number of chunks. The results are

summarized in Figure 15. We found that the setting using

128 chunks with 4 lines per chunk gives a better trade-off

between lifetime and overhead.

D. LLS and Layered-ECP

We next discuss layered-ECP (L-ECP), a page-level sal­

vaging scheme proposed in [24]. L-ECP reserves one 64B

line for each 4KB page, i.e., 64 lines. If a line contains more

failed cells than what ECP can fix per line, then the reserved

line is used to fix these cells. To mitigate energy overhead,

231

LLS can be built on L-ECP to gain additional salvaging

opportunities at the cost of hardware overhead. The inte­

gration has two benefits. First, line failures appear late.

Second, when L-ECP marks a line as broken and activates

LLS to remap it to backup PCM, the line can release its

occupied cells in the reserved L-ECP line such that these

cells may be used to rescue other lines. While the integration

is transparent to upper levels, it needs additional hardware

to ensure correctness.

In this section we only evaluated and compared their

stand-alone implementations, i.e. no integration of L-ECP

and LLS. Figure 15 shows that L-ECP extends 10-20%

extra lifetime from ECP while LLS achieves about 8%

more lifetime beyond L-ECP' L-ECP's performance over­

head comes from the extra access to the reserved line. Figure

14 compares the performance of ECP-M, L-ECP, and LLS

with different percentages of surviving memory space. On

average, L-ECP has a 10% and 18% performance overhead

when 90% and 60% pages survive. Instead, LLS introduces

only 0.5% and 5% overhead, respectively.

VIII. C O NCLU SION

In this paper, we proposed LLS, a line-level mapping

and salvaging scheme that integrates state-of-the-art wear

leveling and low level salvaging techniques. LLS helps

provide a contiguous PCM space such that lower level-line

failures are hidden from the OS and user applications. In

addition, LLS extends PCM lifetime by 24% on average

with modest hardware cost and performance overhead.

IX. ACKNOWLEDGMEMNTS

We thank the anonymous referees for their valuable

comments and suggestions. The authors acknowledge the

support from PCM@ pitt research group. This research is

also supported by National Science Foundation grants CNS­

CAREER-0747242, CNS-1012070, CCF-0811295, CCF-

0811352, and CNS-0702236.

REFER ENCES

[1] G. W. Burr, et aI . , "Phase Change Memory Technology," J. of
Vacuum Science & Technology B , 28(2), 20 1 0.

[2] S. Bird, A. Phansalkar, L. K. John, A. Mericas, and R. In­
dukuru, "Performance Characterization of SPEC CPU Bench­
marks on Intel ' s Core Microarchitecture based Processor,"
SPEC Benchmark Workshop, 2007.

[3] A. Ansari , S. Gupta, S. Feng, and S. Mahlke, "ZerehCache:
Armoring Cache Architectures in High Defect Density Tech­
nologies," IEEElACM International Symposium on Microar­
chitecture, 2009 .

[4] A. Beaumont-Smith, and C.C. Lim, "Parallel Prefix Adder
Design," IEEE Symposium on Computer Arithmetic, 200 1 .

[5] S . Cho, and H . Lee, "Flip-N-Write: A Simple Deterministic
Technique to Improve PRAM Write Performance, Energy and
Endurance," IEEElACM International Symposium on Microar­
chitecture, 2009 .

[6] A. P. Ferreira, M. Zhou, S. Bock, B. R. Childers, R. Melhem,
and D. Mosse, "Increasing PCM Main Memory Lifetime,"
Design, Automation and Test in Europe (DATE), 20 1 0.

[7] B. Gleixner, F. Pellizzer, and R. Bez, "Reliability Characteri­
zation of Phase Change Memory," EPCOS 2009.

[8] The International Technology Roadmap for Semiconductors
report, 2007, 2009 . http://www.itrs.netJ.

[9] Intel Tera-scale research chip overview, http://www.inteI.comJ.

[1 0] E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and T.
Moscibroda, "Dynamically Replicated Memory: Building Re­
liable System from Nanosc1e Resistive Memories," Interna­
tional Conference on Architectural Support for Programming
Languages and Operating Systems, 20 1 0 .

[1 1] K. Kim and S . J . Ahn, "Reliability Investigation for Man­
ufacturable High Density PRAM ," 43rd Annual International
Reliability Physics Symposium, 2005.

[1 2] S . Lai , and T. Lowrey, "OUM - A 1 80nm NVM cell element
technology for stand alone and embedded applications ," IEDM
Technical Digest, 200 1 .

[1 3] S . Lai , "Current Status o f the Phase Change Memory and its
Future," IEDM Technical Digest, 2003 .

[1 4] B. Lee, E. Ipek, O. Mutlu, and D. Burger, "Architecting
Phase-Change Memory as a Scalable DRAM Alternative,"
International Symposium on Computer Architecture, 2009 .

232

[1 5] M. Lee, M. J. Breitwisch, and C. H. Lam, "Phase Change
Memory Program Method without Over-Reset," US Patent
Application, US20 1 0/0 1 1 0778 A I .

[1 6] M . K . Qureshi , J . Karidis , M . Franceschini, V. Srinivasan, L.
Lastras, B . Abali, "Enhancing lifetime and security of PCM­
based main memory with start-gap wear leveling," IEEElACM
International Symposium on Microarchitecture, pages 1 4--23 ,
2009.

[1 7] M. K. Qureshi , L. A. Lastras-Montano, M. M. Franceschini ,
and J. P. Karidis, "Practical and Secure PCM-Based Main­
Memory System via Online Attack Detection," Workshop on
the Use of Emerging Storage and Memory Technologies, co­
located with HPCA 20 1 0 , 20 1 0 .

[1 8] M. K. Qureshi , V. Srinivasan, and J . A. Rivers, "Scalable
High Performance Main Memory System using Phase-Change
Memory Technology," International Symposium on Computer
Architecture, 2009 .

[1 9] Nvidia GeForce GTX-480 GPU Specification,
http://www.nvidia.comJ.

[20] Numonyx white paper, "Phase Change Memory (PCM): A
new memory technology to enable new memory usage models,
''http ://numonyx.comJDocumentslWhitePaperslNumonyx_Phase
ChangeMemory _ WhitePaper. pdf.

[2 1] Y. Cao, "Predictive Technology Model ,"
http ://www.eas.asu.edu/�ptm.

[22] R. Ramanarayanan, S. Mathew, V. Erraguntla, R. Krishna­
murthy, and S. Gueron, "A 2. 1 GHz 6.5mW 64-bit Unified
PopCountlBitScan Datapath Unit for 65nm High-Performance
Microprocessor Execution Cores ," International Conference on
VLSI Design, 2008.

[23] N. H. Seong, D. H. Woo, and H. S . Lee, "Security Refresh:
Prevent Malicious Wear-out and Increase Durability for Phase­
Change Memory with Dynamically Randomized Address Map­
ping," International Symposium on Computer Architecture,
20 1 0.

[24] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, "Use
ECP, not ECC, for Hard Failures in Resistive Memories,"
International Symposium on Computer Architecture, 20 1 0 .

[25] A. Seznec, "A Phase Change Memory a s a Secure Main
Memory," Computer Architecture Letters, Jan. 20 1 0 .

[26] http ://www. simics.comJ.

[27] F. Yeung, et aI . , "Ge2 Sb2Te5 Confined Structures and In­
tegration of 64Mb Phase-Change Random Access Memory,"
Japanese Journal of Applied Physics, 2005.

[28] W. Zhang, and T. Li , "Characterizing and Mitigating the
Impact of Process Variations on Phase Change based Memory
Systems, " IEEElACM International Symposium on Microar­
chitecture, 2009 .

[29] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, "A Durable and
Energy Efficient Main Memory Using Phase Change Memory
Technology," International Symposium on Computer Architec­
ture, 2009.

