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Abstract-Phase change memory (PCM) has emerged as a 
promising technology for main memory due to many advan­
tages, such as better scalability, non-volatility and fast read 
access. However, PCM's limited write endurance restricts its 
immediate use as a replacement for DRAM. Recent studies 
have revealed that a PCM chip which integrates millions 
to billions of bit cells has non-negligible variations in write 
endurance. Wear leveling techniques have been proposed to 
balance write operations to different PCM regions. To further 
prolong the lifetime of a PCM device after the failure of weak 
cell, techniques have been proposed to remap failed lines to 
spares and to salvage a PCM device that has a large number 
of failed lines or pages with graceful degradation. 

However, current wear-leveling and salvaging schemes have 
not been designed and integrated to work cooperatively to 
achieve the best PCM device lifetime. In particular, a non­
contiguous PCM space generated from salvaging complicates 
wear leveling and incurs large overhead. In this paper, we 
propose LLS , a Line-Level mapping and Salvaging design. By 
allocating a dynamic portion of total space in a PCM device 
as backup space, and mapping failed lines to backup PCM, 
LLS constructs a contiguous PCM space and masks lower­
level failures from the OS and applications. LLS seamlessly 
integrates wear leveling and salvaging and copes well with 
modern OSs , including ones that support multiple page sizes. 
Our experimental results show that LLS achieves 24% longer 
lifetime than a state-of-the-art technique. It has negligible 
hardware cost and performance overhead. 

Keywords-Salvaging; Wear Leveling; Hard Faults; Phase 
Change Memory; Reliability; 

I. INTRODUCTION 

As technology scales, the number of cores in mod­

ern chip multiprocessors (CMPs) is increasing fast (e.g., 

Nvidia's 480-core GTX-480 GPU [19] and Intel's 80-core 

TeraFlops [9]). With more threads enabled to run concur­

rently, there is an increasing demand for large main memory. 

Unfortunately, traditional charge-based DRAM, despite its 

wide use for over 30 years, now faces severe scalability 

and leakage problems due to today's small feature size. A 

recent ITRS report [8] indicates that there is no known 

path forward to scale DRAM below 22nm. To overcome 

this looming crisis, it is vital to exploit novel memory 
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technologies to satisfy memory capacity requirements of 

future high performance computing systems. 

Phase change memory (PCM) has emerged as one of 

the most promising new memory technologies. A PCM cell 

consists of phase change material (e.g., Ge2 Sb2 Te5 or GST) 

and its peripheral logic. While PCM has many advantages, 

such as scalability beyond 9nm [8], non-volatility, fast read 

access, it also has limitations. One major drawback is poor 

write endurance - a PCM cell can be reliably written only a 

limited number of times. It has been reported that PCM chips 

can survive only 107 to 109 write cycles [1], [8], [27]. This 

write endurance is significantly worse than DRAM, which 

promises at least 1015 write cycles. Without proper protec­

tion and wear leveling, a PCM chip can fail in as little as 2 

minutes [23]. Recent studies proposed several techniques to 

prolong the lifetime of PCM devices. The average number 

of writes to each PCM cell can be reduced through DRAM 

write buffer [14], [18], differential-write [29], and flip-N­

write [5]. And uneven writes to different PCM regions can 

be balanced with Start-Gap [16], security refresh [23], and 

table-driven segment swapping [29], [6]. Here the lifetime of 

a PCM chip is defined as the duty cycles until the appearance 

of the first failed cell (or the (m+ 1)-th line failure when 

using a small m-entry spare line buffer [16]). 

When millions to billions of PCM cells are integrated 

into PCM arrays and chips, these cells show non-negligible 

variations - some fail much earlier than others, even under 

the same write conditions. To mitigate the problem that the 

lifetime of a PCM chip is determined by weak cells and 

lines, two recent proposals studied how to salvage PCM 

chips after a significant number of cell failures (e.g., up 

to 50% of total cells). Ipek et at. proposed to pair-up two 

pages that have failed cells [10]. A usable page is constructed 

with healthy cells from these two pages. Schechter et at. 

proposed to use Error Correcting Pointers (ECP) instead of 

traditional Error Correction Code (ECC) to replace failed 

cells in a memory line [24]. These techniques degrade both 

performance and usable memory space. 

The past work on wear leveling and salvaging clearly 

demonstrates that both are necessary for PCM-based main 



memory. However, the simple integration of these ap­

proaches results in a non-contiguous PCM space [10], [24]. 

This characteristic is mainly due to the "marking page 

retirement" mechanism adopted in salvaging. When failures 

are propagated from the device level to the operating system 

(OS), the as marks corresponding pages as unavailable 

and retires them by not allocating them to the kernel or 

user applications in the future. This mechanism has two 

limitations. First, exposing device-level failures to the as 
implicitly binds the mappings between physical address 

(PA) and PCM device address (DA). It complicates wear 

leveling designs that use randomized PA-DA mapping, and 

often requires frequent data movement at runtime. Second, a 

marked page may still contain a few healthy memory lines. 

Retiring the whole page loses the opportunity to exploit the 

remaining endurance of these lines. 

In this paper we propose LLS (Line-Level mapping and 

Salvaging) to effectively integrate wear leveling and sal­

vaging. LLS divides the PCM space into a main PCM space 

and a backup space. Only the main PCM space is visible 

to the as and user applications. Instead of marking failed 

lines and corresponding pages, LLS maps failed lines in 

main PCM to healthy lines in backup PCM such that a 

contiguous main PCM space is constructed. The size of 

the main PCM is reduced in proportion to the number of 

failed cells. We adopt intra-line salvaging, such as ECP or 

ECC, in our baseline configuration. Thus, a line failure is 

encountered only if intra-line salvaging cannot correct all 

failed cells in the line. In the paper we describe the low­

cost LLS address translation hardware and illustrate how 

to seamlessly integrate LLS with wear leveling technique 

that uses randomized mappings. In addition to providing a 

contiguous PCM space, simulation results show that LLS 

extends the lifetime of a PCM chip by 24% on average. 

To summarize, our contributions include: 

• We identify the limitations when integrating existing 

line level wear-leveling and salvaging techniques, and 

illustrate the importance of providing a contiguous 

memory space for PCM-based main memory. 

• We propose LLS, a novel hardware-based design that 

smoothly integrate wear leveling and salvaging. LLS 

transparently maps failed lines to backup lines and 

relieves the as from managing failed pages at runtime. 

• We elaborate the hardware design that effectively im­

plements LLS with low-cost. Our experimental results 

show that LLS not only provides continguous memory 

space but also extends chip lifetime. 

In the rest of the paper, we discuss background in Sec­

tion II and motivate our design in Section III. We present 

LLS in Section IV and discuss how to integrate it with 

wear leveling in Section V. The evaluation is described in 

Section VI. Section VII concludes the paper. 
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II. BACKGROUND 

A. Phase Change Memory (PCM) and its Failure Model 

A PCM cell represents a bit ("0" or "1") with two 

reversible states that have a significant resistance difference. 

To change state, a bit cell is heated and cooled by ap­

plying different currents ("reset" and "set" current). Due 

to repeated heating, a PCM cell can be reliably written 

only a limited number of times, which is referred to as 

write endurance. While an individual PCM cell can handle 

1012 write cycles [12], experiments with PCM to arrays and 

chips have shown much lower endurance in the range of 

107 -109 writes [1], [8], [27]. Write endurance is significant 

obstacle that restricts PCM from serving as an immediate 

and widespread replacement for DRAM. 

B. Process Variation 

For PCM chips with billions of cells, some cells tend 

to fail earlier than others. One variation source is the 

difficulty in controlling physical feature size in a nano-scale 

regime [28]. Due to these variations, different cells have 

different optimal reset-set current values. A cell suffers from 

over-programming if a current higher than its optimal value 

is used. An early report showed that every l Ox increase 

in pulse energy results in 1000x lower endurance [13], 

[11]. Recent measurements of failure rates on fabricated 

PCM chips showed similar results - l Ox more failures 

were observed when a cell is 60% overheated [7]. While 

strong systematic process variations (PV) might be miti­

gated through circuit design, e.g., current provision [28] or 

customized write circuit [15], there are still non-negligible 

variations at the chip level. 

To model PCM failures, we take the same approach as 

[10], [24], which built PV and variance models with the 

help of Numonyx engineers (a manufacturer of PCM). These 

works adopted a normal distribution of cell failure with 108 

nominal write cycles and cell level variances in the range 

of 0.2 to 0.3. Their model was built to be a good match 

to industrial observations of significant random variations at 

the chip level. 

Other failure mechanisms, such as resistance drift and 

cross-talk, are neglected as described in [1]. For example, a 

PCM cell, if it is written reliably, can retain data for more 

than 10 years at 85°C. As such, PCM failures considered 

in this paper can be immediately detected with read-after­

write. Each line write is followed by a line read to confirm 

if the data was correctly written. 

C. Wear Leveling, Built-in Spare-Line Replacement, and 

Salvaging 

Based on differences in how cell failures are handled 

we divide current PCM endurance techniques into thre� 
categories - wear leveling, built-in spare-line replacement, 

and salvaging. Figure 1 presents a conceptual view of the 



desired stages to apply these techniques and their impact to 

system-visible PCM space and access latency. 

t Service 

� _____________ jJ:L ___________ --------J r (2) i ------: _______________ l3L ______________ : 

Day-O Day-n 

(1) apply wear leveling throughout the lifetime 

(2) apply spare-line replacement for a small number 

of failures at day-O and the early stage 

(3) apply salvaging to sustain a large number of 

failures 

• 
Lifetime 

Figure I. Conceptual view of wear leveling, built-in replacement, and 
salvaging. 

Wear leveling aims to postpone the appearance of cell 

failures by spreading and balancing write operations [16], 

[23], [29] among all usable cells/lines. Early table-driven 

wear-leveling techniques [29] require as management to 

periodically swap data stored in different regions based on 

write activity. To achieve better tradeoffs, write frequencies 

are often recorded at a coarse-granularity in the table. Re­

cently proposed wear leveling techniques build a randomized 

mapping between physical address (PA) and PCM device 

address (DA) [16], [23]. In these designs, one PA may be 

mapped to different DAs at different times. The mapping 

is managed by simple hardware (including several registers 

and control circuit) and is hidden from the as and user 

applications. 

To accommodate relatively high cell failures, PCM de­

vices include spare lines and use built-in hardware support 

to automatically remap failed lines to spares early in a chip's 

lifetime (i.e., with a small number of failures). Two types of 

hardware designs may be adopted. One design re-wires the 

address decoding logic (similar to a large capacity cache 

design [3]) and the other uses a small remapping table. 

Both designs incur large hardware overhead, and thus, can 

only support remapping a small number of failed lines. For 

example, Qureshi et at. [16] integrates a spare line buffer that 

can remap 5% of total lines. The benefits of built-in spare­

line replacement are: it is transparent to upper level designs, 

user visible PCM space is contiguous, and access latency is 

little affected. 

Salvaging techniques [24], [10] try to continue the duty 

cycle of PCM chips that have even a significant amount 

of failed cells, e.g., Ipek et at. [1 0] can tolerate up to one 

half of all pages failing. Salvaging techniques gracefully 

degrade in accordance with the number of failed cells, which 

is a significant difference to built-in spare line replacement 

that masks failures. To study the salvaging result in the 

later stage of lifetime of PCM chip, we adopt ECP [24] 

as our salvaging baseline. Given a 512-bit (64B) line, ECP 

saves six 9-bit pointers and corresponding I-bit data in extra 

storage that was traditionally used to hold ECC information. 

Each pointer can fix any failed cell within a 64B line. ECP 

significantly improves PCM lifetime over ECC and other 

error correction techniques. 
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III. START-GAP AND ECP 

Start-Gap uses a simple linear formulation, instead of a 

large table, to evenly distribute write traffic across the entire 

device address space. Figure 2 is an example of Start-Gap. In 

Figure 2, numbers on the left side are device addresses, while 

letters in the boxes are physical addresses. Start-Gap has two 

registers: one is start, which records the device address of 

the wear-leveling start point; the other is gap, which stores 

the position of a non-writable spare line in the device. Write 

operations cannot happen on gap, so that each device line 

can have a non-writable period by moving gap. Figure 2(a) is 

the initial state, where gap points to a spare line (device line 

7) and start contains the device address of physical line, A. 

No write request can reach device line 7 in Figure 2(a), since 

only device line 0 to 6 are visible to the as and device line 

7 is invisible. gap is reducing 1 (curve (1)) in Figure 2(b). 

Now, device line 6 becomes the spare line. And physical 

line G is mapped to device line 7. In Figure 2(c), when 

start and gap overlap, a gap round is finished. In the next 

gap round, as Figure 2(d) shows, start is increasing 1 and 

gap is decreasing 1 (mod the number of all device lines). The 

mappings between device address and physical address have 

been shuffled in one gap round. When start comes back to 

device line 0 again, a complete Start-Gap round is finished. 

To accelerate address randomization, Start-Gap can move 

gap by a random number, instead of 1, just like Figure 2(b) 

curve (2) shows. Feistel Network and Random Invertible 

Binary Matrix (RIB) are integrated into Start-Gap system to 

realize a random move on gap. Since Feistel Network and 

RIB are static random address generators, malicious attack 

may fail PCM chip with Start-Gap within several minutes. 

Security refresh [23] dynamically generating randomized 

addresses is proposed to prevent malicious attack. 

start-.0 A -.0 A -� O 0 G 
B 1 B A -.1 A 
C C B B 
D D C C 

4 4 (2) 4 D 4 D 
5 5 

(l) 
5 E 5 E 

6 G �) .6 

gap .7 7 G G 
(a) (b) (e) (d) 

Figure 2. Start-Gap wear leveling on a memory containing 8 device lines. 

Each gap move in Start-Gap is triggered by a threshold 

of cumulative write traffic. If this threshold is too high, the 

effect of wear leveling can not be significant. On the other 

hand, if this threshold is too low, frequent gap movement 

brings a lot of extra write operations into the PCM chip. 

Therefore, Start-Gap adopts a hierarchical wear-leveling 

design: Regional-Based Start-Gap (RBSG). In Figure 3, a 

PCM chip is divided into several memory regions, where 

Start-Gap does as regional wear leveling. Another copy of 



Start-Gap with independent start and gap registers works 

across all the regions as chip-level wear leveling scheme. 

When a write operation happens in a region, both the chip­

level Start-Gap and the target-regional Start-Gap move a gap 

step. Only with a small extra write overhead, hierarchical 

design makes write traffic balanced across the entire chip as 

fast as possible. 

chip 

region 0 C:> start 

gap 

region 1 C:> � gap 

'ChiP level region n C:> start-gap 

regional start-gap 

Figure 3. Region-Based Start-Gap wear leveling. 

Due to natural immunity to soft errors, ECP replaces 

Hamming (72, 64) ECC Code on PCM. In Figure 4, a ECP 

entry consists of a 9-bit pointer field and I bit replacement 

cell. The pointer field records '2', which is the position of 

the fail bit in the memory line. The replacement cell stores 

data of the hard fault bit. The storage overhead of 6 ECPs is 

60 bits. Typically, there are 6 ECPs in one memory line. 1 

bit FULL field indicates whether these 6 ECPs are all used. 

The total storage overhead for one memory line is 61 bits. 

correction entry . 
replacement cell 

� I 0 I 0 I 0 I 0 i 0 i-O-�:�-l-�:-� 
8 7 6 5 4  3 2 l O R  6 , --./ I 

correctio";, pointer � 

loI111 Iol ...... � 
511 510 509 508 3 2 1 0 \�------�yr------� 

data cells 

Figure 4. The 6 ECPs in one memory line. 

IV. THE MOTIVATION FOR A CONTIGUOU S PCM SPACE 

As wear leveling should be used throughout the whole 

lifetime of a PCM chip, it is important to achieve com­

patibility with both built-in spare line replacement and 

salvaging. Wear leveling and built-in spare line replacement 

are compatible as the latter is a transparent hardware design. 

Unfortunately, as we show next, current wear leveling and 

salvaging techniques are not optimized to cooperatively 

work together. 

With an increasing number of failed cells, a salvaging 

scheme such as ECP cannot mask all failures. When there 
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is a cell failure that cannot be corrected, ECP marks the as 
memory page associated with the uncorrectable failure as 

non-usable. ECP relies on the as to retire the page from 

further allocation to the kernel or user applications. This 

implicitly creates and binds a mapping between the physical 

address (PA) and the PCM device address (DA), and thus, 

it restricts the use of wear-leveling techniques based on 

randomized mapping. We illustrate the problem as follows. 

Consider Start-Gap when failed addresses are marked by 

ECP. Start-Gap does randomized address mapping in two 

steps as shown in Figure S. In step 1, PAs are randomized 

with a pseudo-random function, such as random invertible 

binary matrix (RIB) [16]. In step 2, the randomized PAs 

(RPAs) are mapped to DAs based on the current start 
and gap locations. Figure S shows that PA- IOO and PA-SOO 

are randomized to RPA-l and RPA-(N- l )  where N is the 

maximum size of the PCM memory. Assume PA- I00 and 

PA-SOO are mapped to DA- l at time 1 and 2, respectively. 

If DA- l fails at runtime (solid black block), then a (failure­

aware) as needs a DAJPA mapping table to expose the 

DA failure to the PA level. Managing this table incurs 

large overhead as the information is constantly updated with 

different start/gap combinations. For example, from time 

1 to 2, PA-SOO changes from usable to non-usable. If this 

address has already been allocated to a user application, then 

the data needs to be explicitly reallocated to a new location 

before this start/gap combination is used. The complication 

we face from this simple way to integrate Start-Gap and 

ECP is due to the fact that Start-Gap prefers a contiguous 

memory space such that PA-DA mappings can be freely built 

and changed at runtime without the costly involvement of 

the as. Start-Gap works well with ECP when all in-line 

errors are masked and no page is marked as non-usable. The 

non-contiguous memory space also limits normal operations 

of Security Refresh [23], which performs wear leveling by 

dynamically swapping two random memory lines across the 

entire device address space. 

We discuss a strawman solution that extends current 

salvaging schemes with a hardware-managed mapping table, 

similar to the one used in built-in spare-line replacement. 

For a 8GB PCM space, a 21-bit table entry is required for 

each 4KB page if remapping is done at the page level. A 

27-bit entry is required for each 64B line if remapping is 

done at the line level. Due to space constraints, suppose the 

table is created at the page level. Whenever a 4KB-sized 

page A fails, the hardware maps it to the last healthy page 

B in the whole space. Page B, instead of page A, is marked 

as non-usable. Future accesses to page A are redirected to 

page B with the mapping table. In this way, a contiguous 

usable PCM space is created in the lower address space 

while contiguous higher addresses are marked as non-usable. 

The difference between this solution and LLS is that LLS 

does remapping at the line level, which helps to achieve 

better lifetime as shown later in our experiments. 
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Figure 5. Start-Gap [16] prefers a contiguous peM space (black block indicates the failed line). 

V. LLS: L INE-LEV EL MAP P ING AND SALVAGING 

A. Overview 

An overview of Line-Level mapping and Salvaging 

scheme (LLS) is shown in Figure 6. The whole PCM device 

space M is divided into 28 chunks. A contiguous subset of 

these chunks, starting from address 0, are used as the main 

PCM. The rest of memory space is the backup PCM. Each 

chunk consists of PCM arrays from all banks, and thus, 

allocating a subset of chunks to backup PCM does not bias 

PCM accesses to certain banks. Only main PCM is visible 

to the OS, but backup PCM is not. Initially the whole visible 

address space is in main PCM. Even though no chunk is in 

backup PCM at this stage, a small number of cell failures 

can be corrected by line-level (64B) ECP, or built-in spare­

line replacement hardware. 

Eventually, with enough write cycles, there are more cell 

failures and a line will evenutally fail that cannot be rescued 

by ECP. The system then activates LLS which moves the last 

chunk from the main space to backup space such that failed 

lines are marked and re-mapped to healthy lines in backup 

PCM. Future accesses to failed lines will be automatically 

redirected by hardware to the mapped lines. The failure 

details (e.g., the total number and the exact locations of 

failed lines) are hidden from the OS and user applications. 

LLS implicitly binds backup PCM to higher address space 

at the device address level. However, as we show next, LLS 

does not restrict any particular PA-DA address mapping. 

Instead, it supports randomized PA-DA mappings at runtime. 

As more lines fail, the backup PCM space will eventually 

become insufficient. LLS then dynamically resizes main 

PCM and moves up to half of all chunks to backup PCM. 

In this way, main PCM is resized in a step-down fashion to 

accommodate more failed lines. At any given time, the OS 

and user applications can only see and access a contiguous 

physical address space whose size is equal to main PCM's. 

B. Mapping Failed Lines to the Backup PCM 

Figure 7 illustrates mapping to smoothly resize PCM 

memory. LLS first constructs a global bitmap using one 
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bit per line to indicate current line status: "0" represents 

a healthy line and "1" represents a failed line. If a broken 

line is in main PCM space, then it needs to be remapped. 

If a broken line is in backup PCM, then it cannot be used 

to rescue other failed lines. The bitmap is organized as a 

two dimensional array. One row (Figure 7) in the bitmap 

records the status of a salvaging group that is constructed 

as follows. 

Suppose the PCM space is divided into 28 chunks. We 

choose consecutive 2t lines from each chunk such that the bit 

vector for a salvaging group has 2(8+t) bits. As an example, 

if we divide a 8GB PCM into 128 chunks, and choose 4 

lines from each chunk, then there are 128x4=512 lines in a 

salvaging group. In total, we have 8GB/64B/( l28x4)=256K 

groups. Given a bit vector for a salvaging group, all the bits 

belong to main PCM when the system was first built. As the 

PCM is resized, the bit vector is split. Each PCM resizing 

moves 2t bits to backup PCM. The offset is recorded in 

a space split register Rloe. In this example, initially Rloe 

is 512. After moving one chunk to backup PCM, Rloe is 

508(=512-4). 

LLS adopts in-group sequential mapping to map failed 

lines to backup PCM. That is, the first broken main PCM 

line is mapped to the first healthy backup line, the second 

broken main PCM line is mapped to the second healthy 

backup line; and so on. In main PCM space, we count from 

low to high address. In backup space, we count in the reverse 

direction, i.e., from higher to lower addresses. We use the 

reverse direction in backup PCM to avoid data movement 

during PCM resizing. Since there are more lines in main 

PCM than in backup PCM, and there might be failed lines 

in backup PCM, the address mapping involves two subtasks. 

Given a broken line x, LLS will: 

(I) Determine the broken line rank y in X's salvaging 

group. The broken line rank y is I plus the number 

of preceding broken lines in X's salvaging group. Y 

means that the broken line should be mapped to the Y­

th healthy line in backup PCM of the salvaging group. 

(2) Determine the mapped address W for X in backup PCM. 
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Figure 7. A salvaging group contains 28+t lines (i.e., 2t line from each of 28 chunks). 

With the computed rank Y, if there is no broken line 

in backup PCM, then the Y -th healthy line is the w-th 

line in backup PCM. If there are broken lines between 

o and Y, then the mapped line might be different. In 

Figure 7, the 2nd broken line is mapped to the 3rd line 

(i.e., the 2nd healthy line) in backup PCM. Note we 

count in reverse order in backup PCM. 

In LLS, each line stores a status bit in the PCM array. 

The line status information is distributed in both the line cell 

array and the centralized bitmap. This redundancy removes 

bitmap access from the critical path. When the memory 

controller gets a device address (DA), it is sent directly 

to the PCM bank if it is the next access to be scheduled. 

This speculation introduces no performance penalty for 

accesses to healthy lines. If the line is broken, then the 

bank access fails based on the line status bit in the PCM 

array, which enables the bitmap access to compute the 

mapped address. The second PCM access is then sent to 

access the (healthy) mapped line. Due to speculation penalty, 

LLS enables speculation at early stages when most lines 

are healthy and disables speculation when more than 30% 

of chunks have been moved to the backup PCM. When 

speculation is disabled, the bitmap is accessed before all 

bank accesses. 
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C. Dynamic PCM Resizing 

In this section, we describe when and how to perform 

PCM resizing, (i.e., moving chunks to backup PCM). In 

LLS, PCM resizing is triggered by a write operation, either 

to main PCM or to backup PCM. When a write operation 

fails to save data in a line and the failure cannot be rescued 

by ECP, then the line status bit (in the above bitmap) is 

set. When there are more broken lines in main PCM than 

healthy lines in backup PCM, PCM resizing is triggered. 

In most cases, PCM resizing is triggered by write opera­

tions to the main PCM. Assume one salvaging group already 

has 9 broken lines in main PCM and a new write operation 

fails in another main PCM line. If the newly broken line 

takes the rank 6, then broken lines with old ranks 6, 7, and 

8 need to change their ranks to 7, 8 and 9, respectively. The 

change requires line shifting in the backup space such that 

the new broken line can take the 7th healthy line in backup 

space. As there are now 10 broken lines, there may not be 

enough healthy lines in backup PCM. An exception is raised 

in this situation to pause the system to resize the PCM. 

In the other cases, writes to backup PCM may also fail. 

If there are still healthy lines left in backup PCM, then only 

the affected lines are shifted. Otherwise, the failed writes 



will trigger PCM resizing. These writes include (1) writes 

to a broken line in main PCM. This write is redirected to 

backup PCM. (2) Writes generated from maintenance such 

as line shifting in backup PCM. 

To perform PCM resizing, we need to consider its impact 

at the physical address (PA) and device address (DA) levels. 

At the PA level, enforced by the space split register Rloe, 

the OS and user applications cannot access any physical 

address beyond the main PCM boundary after resizing. For 

this reason, any data allocated in the affected (moved) chunk 

needs to be re-allocated to other locations. In the worst case, 

the OS needs to move a full chunk with data. For example, 

given a 8GB PCM divided into 128 chunks, the worst 

case data movement is 64MB (the chunk size). While it 

is relatively expensive, PCM resizing is done rarely relative 

to device lifetime. If a PCM chip is discarded after 50% 

capacity fail, then LLS only does 64 resize operations during 

the chip lifetime. 

At the DA level, the space split register Rloe identifies 

what bits can be used to salvage failed main PCM lines. 

Thus, the corresponding device space should not contain 

any useful data. If a direct map is used between PA and 

DA, then it is straightforward - reallocating OS pages 

moves useful data out of the affected chunk at the DA 

level automatically. However, when wear leveling with ran­

domized address mapping is adopted, the PA-DA mapping 

is randomized such that the affected chunk may contain 

useful data that cannot be expunged by physical address re­

allocation. Reallocating OS pages cannot clean up this chunk 

because the mapping is invisible to the OS. Therefore, a way 

to to ensure correctness is necessary. We describe the details 

of how LLS ensures correct operation when we present the 

integration of techniques in Section 5. 

VI. INTEGR ATION OF W EAR LEV E L ING AND SALVAGING 

By providing a contiguous PCM space, LLS hides lower­

level line failures from the OS and user applications. When 

salvaging (LLS) is integrated with wear leveling based on 

randomized address mappings, the only support that LLS 

needs to provide is a one-to-one PA-DA mapping over the 

contiguous space. The mapping should maintain consistency 

before and after a PCM resizing. We next elaborate on how 

LLS supports Start-Gap. 

A. Integrating LLS and Start-Gap 

To defend against repeated address attacks, a VarIatlOn 

of the baseline Start-Gap, called Region-Based Start-Gap 

(RBSG), was proposed to enhance security. RBSG divides 

the whole PCM into 64MB or smaller regions in the second 

step of baseline Start-Gap, and performs the wear-leveling 

algorithm in each region independently. Address random­

ization is performed in the first step of RBSG. RBSG is 

still vulnerable to specially designed attacks such as birthday 

227 

paradox attacks [25], [23]. The authors of [16] later proposed 

enhancements to defend against such attacks [17]. 

To integrate with RBSG, LLS slightly modifies address 

randomization in RBSG's first step. The PCM space is 

divided into two halves, the first half of PA is randomized 

to the second half of RPA, and vice versa (Figure 8(a». A 

chunk in LLS is equal to or larger than a region in RBSG. 

At the physical address level, a chunk is failure-free such 

that RBSG can be performed without any modification. If 

the chunk is smaller than 64MB, for example, we may get 

a 32MB chunk size after dividing 4GB into 128 chunks. 

Performing RBSG on each 32MB region slightly increases 

overhead: it doubles the number of start/gap registers and 

control logic. However, this overhead is very low as shown 

in [16]. 

When there is a need to resize PCM, LLS pauses execu­

tion and notifies the OS about the resizing with an interrupt. 

After moving one chunk to the backup PCM, the system 

cleans up the data in the affected chunk at both the physical 

and device levels. At the physical address level, the OS needs 

to reallocate pages in the affected chunk to other locations 

as discussed in Section 4. 

At the device level, since we map the first half of PA to 

the second half of RPA, every line in the affected chunk is 

from the first half of PA. As shown in Figure 8(b), given a 

DA address DA-7800, we first use RBSG-1 to find its RPA 

address RPA-7200. We then pick up PA-7200 and use the 

randomization function RIB to find PA-7200's RPA address, 

RPA-1100. The actual DA address of RPA-1100 is DA-1500. 

Since PA-7200 is invisible to the OS after PCM resizing, 

DA-1500 must be an unused line. Therefore, we can safely 

relocate DA-7800 to DA-1500. 

Given a PA after resizing, if its randomized address RPA 

is within the PCM size, then we follow the original RBSG 

mapping to access the DA address in the corresponding 

region. If RPA is bigger than PCM size, then we perform an­

other round of randomization, i.e., RIB(RIB(PA-1 OO»=RPA-

1100, to find the mapped RPA address. We need at most two 

rounds of randomization due to our half-to-half mapping. 

Our approach seamlessly integrates LLS and Start-Gap. 

We also have developed a scheme for Security Re­

fresh [23] to overcome the non-contiguous memory space 

problem in LLS. The main idea is to add a small map­

ping table to guide chip-level Security Refresh to perform 

swapping operations in a non-2n size memory space. Due 

to limited space, we do not expand on this topic. 

VII. EVALUATION 

A. Experimental Methodology 

In this paper, we evaluate our design with a two-fold 

approach. For performance, we evaluate LLS using Sim­

ics [26]. We simulate a four-core 3.2GHz CMP; the detailed 

simulator parameters are summarized in Figure 9. Each core 

has private L1 and L2 caches and a shared DRAM L3 
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Figure 8. Integrating Start-Gap and LLS with the support for PCM resizing. 

cache. Each L2 cache is 4MB and 8-way set associative. The 

shared DRAM cache is 64MB and 16-way set associative. 

As shown in [18], [16], a large DRAM cache is essential 

as it reduces the number of writes to PCM and enables 

practical use of PCM as main memory. Only data evicted 

from DRAM are stored in PCM. We evaluate a subset of 

benchmark programs (the programs that compile in our set­

ting) from SPEC 2006. These programs have good coverage 

- the programs include ones with intensive memory accesses 

(e.g., mcf) and light memory accesses (e.g., gcc) [2]. We 

evaluate performance after different portions of memory 

cells fail. At each point, we simulate 1 billion instructions 

after 1 billion warmup instructions. Checkpoints are set after 

skipping the warmup phase in each program. We use recent 

latency numbers from Numonyx - PCM read and write 

latencies are 50ns and 1000ns respectively [20]. 

CPU core 4-core CMP, 3.2GHz 
Ll cache private, separate I-/D- caches, 

32K, 4-way, 2-cycle hit latency 
L2 Cache private, 4MB, 8-way, LRU, 

writeback, l2-cycIe hit latency 
DRAM L3 cache 64MB, shared, 16-way, LRU, 

64B linesize, writeback, l5ns hit latency 
Main Memory 8GB PCM, 4 ranks of 8 banks each 
PCM latency read: 50ns, write: IOOOns 

Figure 9. Baseline configurations. 

Since it is impractical to simulate the whole lifetime of 

PCM chips of this size, we follow the same simplified 

approach from [24]. We assume uniform wear leveling that 

evenly distributes write operations to all lines in the usable 

memory space. Each write alters 50% cells within one line. 

When distributing a fixed number of writes to PCM, the 

number of writes to each line is slightly higher after resizing. 

Therefore we report the total number of write operations 

rather than the number to each line. 
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B. Lifetime Study 

To evaluate the effectiveness of LLS, we compared it to 

ECP-M and Page-Ideal, which are enhanced versions 

of two existing salvaging schemes. The enhancements were 

added to support a contiguous usable PCM space, and have 

no impact on lifetime. ECP-M was enhanced from ECP 

[24] with a mapping table at the page level (discussed 

in Section 3). Page-Ideal is an ideal version of [10] 

to support contiguous PCM space. In this implementation, 

when there is a need to match two pages with failed cells, 

we optimistically assume that one of them always has the 

biggest address of all usable pages. We use the lower page 

address as the one to identify the page pair. Therefore, the 

visible PCM space is contiguous before and after pairing up 

these two pages. 

Figure 10 summarizes the lifetime comparison of different 

salvaging schemes. We chose the same cell variances as [24] 

(discussed in Section 2.1). The x-axis shows the total number 

of write operations. We normalized this number to the setting 

in which all cells have the same 108 write endurance, i.e., 

no PV for x= 1. The y-axis shows the percentage of pages 

that survived over the time. 

In the figure, we show the result from an oracle that 

writes each line exactly w times to cause its six weakest cells 

to fail. All failed cells are then rescued by ECP. Clearly 

w varies across different lines due to process variations. 

Oracle gives the upper bound from perfect PV-aware 

wear leveling, perfect line salvaging, and perfect cooperation 

among both. The gap between oracle and ECP motivates 

our design of a line-level salvaging scheme to work with 

wear leveling. 

In these experiments, LLS divides the space into 128 

chunks and selects 4 lines from each chunk to form a 

salvaging group. From the figure, we observed that LLS 

shrinks more space than ECP for the first batch of failures. 

To handle the first line failure, LLS requires one PCM 

resizing and removes 64MB from the main PCM; ECP-M 

only marks one page as non-usable. LLS has smaller usable 
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Figure 10. Lifetime comparison of different salvaging schemes with different variances. 

space at this stage. However, LLS quickly overtakes ECP­

M by exploiting line-level salvaging opportunities, and thus, 

achieves a longer lifetime. On average, LLS achieves 24% 

extra lifetime when compared to the baseline ECP - 14%, 

24%, and 41 % for three variances respectively. 

In Figure 10, LLS-Ideal shows the total usable space 

at the line level, which gives an upper bound of all line 

level salvaging techniques. oracle assumes PV-aware wear 

leveling and LLS-Ideal assumes wear leveling scheme 

that evenly distributes writes. The difference between LLS 
and LLS-Ideal are the idle lines in the backup, i.e., no 

broken main PCM lines are mapped to them. From the 

figure, idle lines account for a small percentage. The loss 

of exploiting their available endurance is small. 

Projected lifetime in months. The above results are pre­

sented based on normalized number of writes. The actual 

PCM lifetime in months depends on many factors. As 

an example, if we assume each bank has 256MB (as in 

Figure 9), a cache line has 64B, PCM experiences stream 

write traffic, each write alters half of a cache line and the 

cell variance is 0.25, then the projected lifetime with ECP 

is about 28 months before we see many failed cells -

256MB-;-64B x 108 xO.18x 1000ns=7.2e8 ns = 28 months. 

0.18 represents that the exploited PCM endurances when 

PV is 0.18 of the 108 no-PV chip (from Figure lOeb)). In 

other scenarios, attack traffic to a subset of addresses may 

shorten lifetime [23] while normal traffic having less writes 

will prolong the lifetime. 

C. Hardware Cost 

We next study the hardware cost to enable LLS. The 

hardware cost includes bitmap storage, and the control logic 

to enable fast address translation from main PCM to backup 

PCM. 

1) Bitmap Storage: Each 64B line has one status bit that 

indicates if the line is broken or not. This bit is needed by 

ECP and LLS. This accounts for 0.2% off-chip storage, or 

16MB for a 8GB PCM memory in our setting. In addition to 
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storing each status bit with a line, LLS redundantly gathers 

all bits into a global bit map as shown in Figure 7. Due to 

its low modification frequency, the bitmap can be stored in 

PCM and protected using ECP. 

In comparison, to support contiguous PCM space, current 

salvaging schemes [24] [10] also need a mapping table. A 

simple page-level mapping needs 8GB/4KB = 2M entries. 

Given a 21-bit page index, the overhead is about 4.2MB. 

While LLS has more metadata storage, the overhead is 

modest compared to the PCM space saved from exploiting 

line-level endurance. 

Since the bitmap is stored in PCM, it is slow to access. 

Therefore, it is beneficial to integrate a small on-chip bitmap 

cache to store frequently used entries. We chose 256KB 

as a good trade-off between cost and performance. Since 

the need to access the bitmap cache varies with percentage 

of failed cells, we measured the hit rate under different 

percentages of survived lines. The results are summarized in 

Figure 11. The y-axis is the percentage of accesses to failed 

lines hit in bitmap cache. We observed slightly higher cache 

hit rates due to more reuse of fetched bit vectors with more 

accesses. We also evaluated larger cache sizes, but observed 

no significant improvement. 

2) Translation Logic: Hardware-assisted address transla­

tion is designed to solve the following problem - given 

a broken line X in main PCM, how to quickly identify its 

mapped line W in the same group in backup PCM? Since 

address translation is always performed in one group, in the 

following description, we use group offset to indicate a line. 

As described above, in the corresponding group, X is the y­

th broken line in the main PCM while W is the y-th healthy 

line in backup PCM. 

We show the address translation logic in Figures 12 and 

13. We divide the PCM space into 128 chunks and choose 

4 lines from each chunk. The PCM fails if more than 

half of the space moves into the backup PCM. Therefore, 

each salvaging group has 128x4=512 bits, and at most, 

the last 256 bits belong to the backup space. To simplify 
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Figure 12. Address mapping in three steps. 

the discussion, we assume five chunks are currently in the 

backup space. 

Figure 12 shows an overview of our three step implemen­

tation. Given a broken line x=465 (group offset), 

• Step I: Compute X's broken line rank Y by counting 

the preceding broken lines. Assume Y=15. 

• Step 2: Split the bits from backup space into 16-bit 

subgroups and identify which subgroup holds the line. 

Here, we have z=30 indicating the mapped backup line 

is in the 2nd subgroup in reverse order. 

• Step 3: Return the location after identifying the backup 

line in a 16-bit subgroup.W=494 is referred in this 

example. 

Figure 13 presents three bit operations to assist address 

translation. The mapping from a PCM device address to 

its salvaging group (group id, offset) is shown in Figure 

13(a). We generate two 512-bit bit-masks -- A-mask and 

B-mask as shown in Figure 13(b). Given a group offset 

X=465, bits 0 to 465 of A-mask are set, indicating that the 

broken line rank only counts Is of these positions. B-mask 

is generated from Rloe to differentiate the bits in main PCM 

and backup spaces. Given Rloe=492 (i.e., 5 chunks in backup 

PCM), we set the last 5x4=20 bits of the B-mask. 

Given an address x, we fetch X's bit vector for its 

salvaging group and filter the result with A-mask. We then 

divide 512 bits into 32 16-bit subgroups. A 32-way parallel 

16-bit population counter is used to count the number of 

ls in each subgroup. We use the fast population counting 
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(b) Two bits masks for logic selection 

Figure 13. Bit operations to assist address translation. 

logic proposed in [22]. Ramanarayanan et al. used a 3:2 

compressor and Wallace-tree structure to implement a 64-bit 

population counter in a single cycle on a 2.1GHz low power 

CPU using 65nm technology [22]. The 32 5-bit results are 

again summarized using 3:2 compressor and Wallace-tree 

structure to get the broken line rank Y. 

Due to space constraints, we omit circuit details of the 

second and the third steps. We reuse the population counting 

logic in these steps to reduce hardware cost. Step 2 can be 

skipped if backup PCM contains less than 5 chunks (only 

one group exists). 

We did a custom design of the proposed logic using PTM 

45nm technology [21]. Our design needs 55K transistors 

and 13KfLm2 die area. The total latency is 2.68ns (=O.98ns+ 
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Figure 15. Comparing the lifetime of different grouping choices. 

1.24ns+0.46ns) if step 2 is enabled, and 1.44ns if step 2 is 

skipped. The translation logic is activated only if the line is 

broken. 

a bit is associated with each line, which indicates if there 

are more failed cells in the extra line (i.e., if the reserved 

line needs to be accessed). 

Energy consumption overhead comes from accesses to the 

bitmap cache and translation logic. From CACTI, it costs 

about O.4nJ per access for a 256K DRAM bitmap cache. 

The translation logic consumes <0.1 nJ per access. However, 

note that PCM energy consumption is dominated by write 

access, which is InJ per bit accessed. The PCM read energy 

consumption is < <O. l nJ per bit accessed [20], and thus, 

this cost can be omitted. Given that a cache line contains 

512 bits, and the read/write ratios of normal benchmarks 

is less than 10, energy overhead from the bitmap cache 

access and address translation is a modest 2% of total energy 

consumption: (O.4nJ+O. lnJ) out of ( InJx512xO.5+c5)/11). c5 

indicates the omitted read energy consumption. 

To study the sensitivity in forming salvaging groups, 

we chose a different number of chunks. The results are 

summarized in Figure 15. We found that the setting using 

128 chunks with 4 lines per chunk gives a better trade-off 

between lifetime and overhead. 

D. LLS and Layered-ECP 

We next discuss layered-ECP (L-ECP), a page-level sal­

vaging scheme proposed in [24]. L-ECP reserves one 64B 

line for each 4KB page, i.e., 64 lines. If a line contains more 

failed cells than what ECP can fix per line, then the reserved 

line is used to fix these cells. To mitigate energy overhead, 
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LLS can be built on L-ECP to gain additional salvaging 

opportunities at the cost of hardware overhead. The inte­

gration has two benefits. First, line failures appear late. 

Second, when L-ECP marks a line as broken and activates 

LLS to remap it to backup PCM, the line can release its 

occupied cells in the reserved L-ECP line such that these 

cells may be used to rescue other lines. While the integration 

is transparent to upper levels, it needs additional hardware 

to ensure correctness. 

In this section we only evaluated and compared their 

stand-alone implementations, i.e. no integration of L-ECP 

and LLS. Figure 15 shows that L-ECP extends 10-20% 

extra lifetime from ECP while LLS achieves about 8% 

more lifetime beyond L-ECP' L-ECP's performance over­

head comes from the extra access to the reserved line. Figure 

14 compares the performance of ECP-M, L-ECP, and LLS 

with different percentages of surviving memory space. On 

average, L-ECP has a 10% and 18% performance overhead 

when 90% and 60% pages survive. Instead, LLS introduces 

only 0.5% and 5% overhead, respectively. 

VIII. C O NCLU SION 

In this paper, we proposed LLS, a line-level mapping 

and salvaging scheme that integrates state-of-the-art wear 

leveling and low level salvaging techniques. LLS helps 



provide a contiguous PCM space such that lower level-line 

failures are hidden from the OS and user applications. In 

addition, LLS extends PCM lifetime by 24% on average 

with modest hardware cost and performance overhead. 
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