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Abstract—In this paper we extend the class of MAP queueing
networks to include blocking models, which are useful to describe
the performance of service instances which have a limited con-
currency level. We consider two different blocking mechanisms:
Repetitive Service-Random Destination (RS-RD) and Blocking
After Service (BAS). We propose a methodology to evaluate MAP
queueing networks with blocking based on the recently proposed
Quadratic Reduction (QR), a state space transformation that
decreases the number of states in the Markov chain underlying
the queueing network model. From this reduced state space,
we obtain boundable approximations on average performance
indexes such as throughput, response time, utilizations. The two
approximations that dramatically enhance the QR bounds are
based on maximum entropy and on a novel minimum mutual
information principle, respectively. Stress cases of increasing
complexity illustrate the excellent accuracy of the proposed
approximations on several models of practical interest.

I. I NTRODUCTION

Blocking is the phenomenon where an IT service may not
be available for a period of time, therefore any request for this
service has to wait until the service becomes available again.
This service unavailability can stem from a physical limit
(e.g., memory or concurrency constraints) or it can relate to a
system management decision in order to overcome an overload
period and to guarantee QoS requirements. Consequently,
blocking can affect system performance significantly. Despite
its importance, blocking is a difficult phenomenon to model
analytically, because it creates strong inter-dependencies in
the system’s components. The blocking concept can be sum-
marized as follows: when a queue reaches its maximum
capacity, then the flow of customers entering the queue is
stopped. Queueing networks with blocking have been used to
model telecommunication and computer systems with limited
shared resources, such as interconnecting links or store-and-
forward buffers, as well as production systems with finite
storage buffers. We point the interested reader to [3], [16],
[17], [18] for an extensive bibliography of different blocking
mechanisms that model distinct behaviors of real systems
including computer systems [9], communication systems and
networks [1], [7], and software architectures [2].

Despite the practical applications of blocking queueing
models, there is a lack of robust methodologies for their
solution, which stems from the fact that general blocking
queueing networks are not separable. The problem is worsened
if the service processes of the various stations are non-renewal,
a case of increasing importance to represent real systems

such as multi-tier applications [13], [19]. Given the fact that
blocking creates performance dependencies that are hard to
understand without a sound methodology, there is a clear need
for robust and general solutions.

In this paper, we provide a robust approximation method-
ology for various performance measures for MAP queueing
networks with blocking, which relies on numerical optimiza-
tion techniques and that enjoys errors bounds. In particular,
we focus on the case of networks with a closed population of
jobs that are the most important for sizing computer systems
that have upper limits on the maximum number of concurrent
users, and generalize the class of MAP queueing networks
proposed in [5] to include blocking mechanisms. MAP queue-
ing networks admit service processes that are described by
Markovian Arrival Processes (MAPs), a class of Markov-
modulated point processes that can model general distributions
as well as the main features of non-renewal workloads, such
as autocorrelation in service times or burstiness. Naturally,
MAP queueing networks do not admit product form solutions
and can be viewed as a generalization of non-product form
networks with renewal service processes. In [5] the quadratic
reduction (QR) bounding methodology for the solution of
MAP queueing networks has been proposed. Applying the
QR bounds to MAP blocking networks is a challenging
problem because in presence of blocking the state space often
differs significantly with respect to the original MAP queueing
network state space, thus the QR characterizations obtained
in [5] is not directly applicable anymore. The contributions of
this paper can be summarized as follows:

• we provide a major extension to theQuadratic Reduc-
tion (QR) technique first introduced in [5] by including
blocking.

• we introduce approximations based on maximum en-
tropy [11] and a novel minimum mutual information
principle that are shown to accurately predict model per-
formance with only small error that dramatically improve
the quality of the extension of the QR technique for MAP
blocking networks.

Throughout this paper we consider a closed queueing net-
work with routing matrixP such that jobs departing from
queuei are directed to queuej with probability pij . If the
capacity of queuej isFj andnj denotes the current population
at queuej, then whennj = Fj queuej does not accept in its



waiting buffer anynew job before a departure occurs. Here, we
consider the Blocking After Service (BAS) and the Repetitive
Service-Random Destination (RS-RD) mechanisms [3].

• Blocking After Service (BAS) A queuei, if not empty,
processes a job regardless of the job population at its
destinationj. When nodei completes service and nodej
is full, nodei suspends any activity (i.e., it is blocked) and
the completed job waits until a departure occurs from node
j. At that moment two simultaneous transitions take place:
the completed/blocked job moves fromi to j (sincej can
now accept a job,i “unblocks”) and the job that leaves
j (which effectively “unblocks” serveri). In a general
network topology where more than one queue compete for
sending a job towards a full queuej, a policy regulating
the order in which queues unblock has to be defined.
Usually, the First Blocked First Unblocked (FBFU) policy
is considered fair: first unblock the queue that was blocked
first. In the remaining of this paper when we consider
BAS we assume that it uses the FBFU policy. BAS models
production systems and disk I/O subsystems [20].

• Repetitive Service-Random Destination (RS-RD) A
queuei, if not empty, processes a job regardless of the
job population at its destinationj. If node j is full, the
completed job is rerouted to nodei where it receives a
new service. During the new service, the job may select
a destination that is independent from its previous one.
Note that according to RS-RD blocking a node is never
actually blocked, but it “wastes” its service by repeating
it. RS-RD blocking is used to model congestion control in
telecommunications systems [1].

The above two blocking mechanisms introduce complexity
in the underlying Markov chains of MAP queueing networks.
On one hand, RS-RD restricts the original state space, while
preserving its regular structure, on the other hand BAS intro-
duces new states describing the order in which queues progres-
sively block once the capacity of the destination node becomes
full, this information is needed to implement the FBFU rule.
At a higher level, flows in a MAP network with blocking
are harder to understand than in a MAP network without
blocking because of the additional routing complication that
is introduced.

Here, we incorporate additional information in the QR
marginal probabilities and obtain a new class of specialized
conditions that allows to represent the simultaneous unblock-
ing and departure events that happen upon completion from
a node that is full. Such conditions can accomodate Markov-
modulated service rates, thus integrating within blockingmod-
els complex features such as higher-order moments and tem-
poral dependence yet are not sufficient to result in tight bounds
for blocking systems. The two approximation techniques that
we introduce for blocking networks here, i.e., the maximum
entropy method (MEM) and the minimal mutual information
(MIM), can be used to “correct” the QR bounds by driving
the estimation of the equilibrium probabilities of the model
using nonlinear optimization. This correction shows to be very

TABLE I
SUMMARY OF MAIN NOTATION FOR MAP QUEUEING NETWORKS WITH

BAS BLOCKING

b cardinality of the list of blocked queuesm
bi blocking state of nodei
B maximum number of queues that can block onf
f finite capacity queue
Fi capacity of queuei
Ki phases in the MAP service process of queuei
ki phase of the MAP service process of queuei
m list of queues blocked byf

Add(m, j) list obtained by addingj to the tail ofm
Head(m) first queue to unblock after a departure fromf

that is not self-routed
M number of queues in the network
N number of jobs in the network
ni number of jobs at queuei

π(ni, ki, nj , kj ,m) prob. ofni jobs in queuei in phaseki and
nj jobs in queuej in phasekj andm blocked

q
ki,k

′

i
i,j rate of job departures fromi to j when i’s MAP

is in phaseki leaving it in phasek′i

effective to address simultaneously (and very effectively) two
difficult problems: the complex features of blocking networks
and the complexities introduced by temporal dependence.

The rest of this paper is organized as follows. In Section II
we define MAP queueing networks with BAS blocking and
develop their analytical characterization by means of the QR
state space reduction. Section III extends the analysis to RS-
RD blocking. Section IV discusses the performance approx-
imations and bounds following from the characterization of
the QR marginal probabilities and illustrate them on a set of
models with BAS and RS-RD blocking. Section V presents
a set of experiments that illustrate the proximity of the two
approximations to exact solutions. Finally, Section VI gives
conclusions and outlines future work.

II. MAP QUEUEING NETWORKS WITH BAS BLOCKING

We introduce the class of MAP queueing networks support-
ing temporal dependent service. We first present the case of the
BAS blocking mechanism. The RS-RD blocking mechanism
is simpler and it is discussed in Section III.

We consider a closed MAP queueing network withN jobs
visiting M single-server queues having first-come first-serve
scheduling. For each queuei, its service time process is a
load-independent Markovian Arrival Process [6]. To reduce
the complexity of the notation, we present for the BAS case
only where a single queuef has finite capacityFf < N and
its sending nodes behave according to BAS blocking, while
all other queuesi 6= f have infinite capacity (i.e.,Fi = N )
such that they can accommodate all jobs in the network. The
generalization to networks with several finite capacity queues
is not difficult and follows an identical argument as shown in
[8]. RS-RD blocking is instead discussed in the general case
as it does not complicate notation significantly.

A. State Space for BAS blocking

A summary of the main notation is given in Table I. This is
consistent with the original notation defined for MAP queueing



networks [5] that it is here briefly reviewed.The service process
at queuei is modeled by a MAP withKi ≥ 1 phases.
It is worth noting that if a queue is blocked, it completely
stops its activity including MAP phase transitions. Note that
this holds for BAS blocking, but not for RS-RD where a
queue is never effectively blocked. Furthermore, MAP service
requires to maintain information at the process level on the
current service phase at each queue. A feasible network state
in the queueing network underlying Markov process is a tuple
s = (s1, s2, . . . , sM ) , where for queuei 6= f the local state
si = (ni, bi, ki) is defined as follows:ni is the current queue-
length including the job in service;bi is the blocking state
of node i (1=blocked, 0=active); k ∈ Ki is the phase of
queuei. Conversely, for the finite capacity queuef the state
is sf = (nf ,m, kf ) wherem = (m1,m2, . . . ,mb) is a list
that holds the sequence ofb =

∑

i6=f bi queues that can be
unblocked by a departure from queuef in states. The indexb
thus denotes the current number of blocked queues and ranges
in 0, . . . , B, whereB ≤ M−1 is the number of queuesi 6= f
that can send jobs tof . Note thatbf is not needed since it is
often assumed in the literature that a finite capacity queue is
never blocked by itself. The casem = ∅ denotes that no queue
is blocked byf . We denote withHead(m) the head of the list,
i.e., the first queue to unblock upon a departure fromf that is
not self-routed, and withAdd(m, j) the list resulting from the
addition of elementj to the tail ofm. Finally, letEBAS be the
state space of the queueing network assuming BAS blocking
at each nodei 6= f that can send jobs tof (pi,f > 0). In this
state space, the Markov process transitions have rates from
states = (s1, s2, . . . , sM ) to s

′ = (s′1, s
′
2, . . . , s

′
M ) that are

uniquely defined by the ratesqk,hi,j of jobs flowing fromi to j
in phasek leaving i in phaseh.

The size of the infinitesimal generator corresponds to the
cardinality of the related global balance equations. By con-
sidering only the population componentsni, the state space
of a blocking network is a subset of the state space of the
same network but with infinite capacity queues. This is logical
because all states withnf > Ff do not exist. On the other
hand, the order in which queues block needs to be accounted
for explicitly in m, which increases the state space cardinality.
Thus, the state space of a BAS queueing network can be
smaller or bigger than in the non-blocking case depending
on the number of queues and jobs being considered.

We now give examples of the state space underlying a
MAP queueing network with BAS blocking. For the sake
of simplicity, we omit the state componentbi since it can
be simply derived, i.e.,bi = 1 if and only if i ∈ m.
We consider an example model withM = 3 queues where
queue1 is a finite capacity station with MAP service, queues
2 and 3 have exponential service and infinite capacities.
Figure 1(a) illustrates the model with routing probabilities. The
exponential queues have ratesµ2 andµ3, the MAP completes
jobs in phase1 with rateµ1.

The underlying Markov process for the case withN = 3,
F1 = 2 and assuming queue1 in phase1, is shown in
Figure 1(b). For ease of illustration, MAP phase change
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(b) State space forN = 3 andF1 = 2 assuming queue1 in phase1. State
notation is((n1,m, k1), n2, n3), m = ∅ is omitted.

Fig. 1. Example network with 2 infinite capacity exponential queues
and a MAP queue with finite capacity

transitions are omitted, thus this partition is similar to the state
space where the service at the MAP is exponential with rate
µ1. We point to [5] for figures illustrating the effects of phase
changes in the MAP queueing network state space. Figure 1(b)
classifies the activity of queue3 into “active” (n3 > 0 and
b3 = 0), “idle” (n3 = 0 and b3 = 0), or “blocked” (n3 > 0
and b3 = 1). This classification is useful to understand the
different rates of departure from queue3 across the state space.
The states where queue3 is active are the only states that
contribute to the standard departure transitions out from queue
3. The state((2, [3], 1), 0, 1) in the blocked subspace denotes
the case where queue3 is blocked (m = [3]) since queue3 has
previously completed a job to be sent to queue1 while this was
full. As soon as queue1 completes a job, two simultaneous
transitions take place moving the current state to((2, 1), 1, 0)
in the idle subspace of queue3 if the job completed by queue
1 is routed to queue2. The current state becomes((2, 1), 0, 1)
in the active subspace of queue3 if the completed job is
routed to queue3 which thus restarts immediately service after
unblocking. Such simultaneous transitions are a distinctive
characteristic of the state space due to BAS blocking.

To further appreciate the complexity of bound analysis
for the BAS state space, Figure 2 illustrates a case where
two queues can be blocked. Observe the changes in the
BAS state space level compared to Figure 1. Let us now
assumeF1 = 1, infinite capacities for queues2 and 3, and
N = 3 jobs in the network. For simplicity of graphical
representation, the phasek1 is omitted being always equal
to 1. Figure 2 shows the totally different structure of the state
space. When the system is in the state(1, 1, 1) all queues are
active. If queue2 completes a job, the current state becomes
((1, [2], 1), 1, 1) where queue 2 is blocked (m = [2]). If from
this state queue3 completes a job, the transition leads to state
((1, [2, 3], 1), 1, 1), where both queues2 and 3 are blocked
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(a) State space forN = 3 andF1 = 1 assuming queue1 in phase
1. State notation is((n1,m, k1), n2, n3), m = ∅ and all phases
k1 = 1 are omitted.

Fig. 2. Example model 1 when several queues are blocked

(m = [2, 3]). According to the FBFU unblocking rule, when
queue1 completes a job, queue2 is unblocked first with a
transition to the state((1, [3], 1), 1, 1) if the completed job is
routed to queue2, or to state((1, [3], 1), 0, 2) if the completed
job is routed to queue3. This illustrates transitions that do
not exist in non-blocking queueing networks and thus which
require specialized characterization for bounding purposes. To
obtain such a characterization, we develop in Theorem 5 a
new class of balance conditions that is able to describe also
the state space illustrated in Figure 2.

B. Quadratic Reduction (QR) of BAS State Space

Denote withπ(s) the equilibrium probability of states ∈
EBAS in the blocking MAP queueing network. We formulate
the quadratic reduction for the BAS case as follows. We
consider the following marginal probability

π(ni, ki, nj , kj ,m) (1)

which is calledQR marginal probability and describes the joint
state of queuesi andj in phaseski andkj while the queues
in m are blocked byf . This formula is immediately obtained
by summingπ(s) over the states with the considered values of
ni, ki, nj, kj , andm. The main advantage of the QR marginal
probability over the original state space representation is that
is scales only quadratically with the total population size,
which is by far the largest parameter of the queueing network
model specification. Thus, this provides substantial savings
with respect to a direct state space evaluation by global balance
that involvesO(NM ) unknown probabilities.

The goal of the next sections is to develop a characterization
of the balance conditions that relate different values of the QR
marginal probabilities. Previous work has shown that relations
between marginal probabilities can be insufficient for an exact
solution of the queueing network model, but they can be
exploited to determine bounds on performance indexes using
linear programming [5]. We show later in Section IV that this
holds true also for MAP queueing networks both with BAS
and RS-RD blocking.

Common metrics such as utilization, throughput, response
times, and queue-lengths can be immediately computed from
the QR marginal probabilities. For example, the utilization of

queuei is

Ui =
∑

(nj ,kj ,ki,m)

∑

ni≥1

π(ni, ki, nj , kj ,m)

whereas the effective utilization that describes the activity of
a queueexcluding its blocking time is

Ei =
Ki
∑

ki=1

Eki

i

where the effective utilization [3] of phaseki is

Eki

i =
∑

(nj ,kj ,m)

∑

ni≥1 i/∈m

π(ni, ki, nj , kj ,m)

Note thatEi = Ui if and only if i = f or i cannot be blocked
by f due to the network topology. The effective utilization
takes into account the productive utilization of a queue, that is
the period of time the queue is busy and it is not blocked, so it
can produce useful work. Other measures such as mean queue-
lengths, throughput, or response times are similarly defined.
For example, the throughput may be obtained as an effective
utilization divided by the product of mean number of visits
and mean service times [3].

C. Basic Characterization Results

The first basic characterization result for QR marginal
probabilities in a BAS setting follows by the equilibrium of
the MAP service processes. During the period where queuei
is actively serving a job, the MAP service process behaves at
equilibrium in the same way of the same MAP considered in
isolation, since we are assuming that the queue is never idle
nor blocked. This equivalence introduces a balance between
QR marginal probabilities relative to different phases.

Theorem 1: The effective utilization of queuei for phasek
satisfies at equilibrium

M
∑

j=1

Ki
∑

h=1
h 6=k if j=i

qk,hi,j Ek
i =

M
∑

j=1

Ki
∑

h=1
h 6=k if j=i

qh,ki,j Eh
i , (2)

for i = 1, . . . ,M andk = 1, . . . ,Ki.
Proof: Consider a partitioning of the state space into two

subsets:Gi,k where queuei is in phasek and its comple-
mentary set of states̄Gi,k where queuei is in phaseh 6= k.
By basic properties of Markov processes, the equilibrium
probability flux exchanged byGi,k and Ḡi,k at equilibrium
must be balanced. However, this is only due to phase changes
that occur in the MAP, with or without an associated departure
from i. The left hand side represents phase changes moving
the current phase fromk to any h, whereas the right hand
side is the probability flux due to phase changes that move
the active phase intok. Note that the conditionh 6= k if j 6= i
ignores phase self-routing of jobs that do not change the active
phase.
Another characterization result follows by observing thatthe
total population of jobs in each state of the underlying Markov
chain sums toN . This implies that the sum of the conditional
first moment of queue lengths is constant.



Theorem 2: The QR marginal probabilities for BAS block-
ing satisfy the following constraints

M
∑

i=1

Ki
∑

ki=1

Fi
∑

ni=1
niπ(ni, ki, nj, kj ,m) = Nπ(nj , kj ,m) (3)

for all j = 1, . . . ,M , nj = 0, . . . , Fj , kj = 1, . . . ,Kj, and
for all lists of blocked queuesm.

Proof: Since the sum of the total population in a state is
constant, we can write

∑

s∈S

M
∑

i=1

niπ(s) = N
∑

s∈S

π(s) (4)

for any partition of statesS ⊆ EBAS , where we omitni = 0
since the corresponding term in the summation is zero. Define
S as the set of states where the blocked queue list ism and
queuej has populationnj in phasekj , thus the right hand
side becomesNπ(nj , kj ,m). Denote bysk the components
of s different from ni, ki, nj , kj , m. We can equivalently
rewrite the above expression as

M
∑

i=1

Ki
∑

ki=1

Fi
∑

ni=1
ni

∑

sk

π(ni, ki, nj, kj , sk,m) = Nπ(nj , kj ,m)

(5)
However, the inner summation onsk gives the QR marginal
π(ni, ki, nj , kj ,m) which proves the theorem.
The above characterization generalizes in a weaker form also
to second-order queue-length moments.

Corollary 1: The second-order joint moments of queue-
lengths in a MAP network with BAS blocking satisfy

M
∑

i=1

M
∑

j=1

Ki
∑

ki=1

Kj
∑

kj=1

Fi
∑

ni=1

Fj
∑

nj=1

∑

m

ninjπ(ni, ki, nj, kj ,m) = N2

(6)
Proof: Using the same argument of Theorem 2 we have

∑

s∈S

(

M
∑

i=1

ni

)2

π(s) = N2
∑

s∈S

π(s) (7)

thus the result follows immediately settingS = EBAS . Note
that a similar formula holds also without blocking [5].
We remark that a higher-order extension of the above theorem
holds as well, but it cannot be represented explicitly usingthe
QR marginal probabilities since a order-k formula requires the
joint probability ofk queue-length terms, and QR can express
such relations only fork ≤ 2.

The next theorem can be seen as an extension of Theorem 2
as it defines a relation between the sum of mean queue-lengths
of all queues and the utilization of queuei when a given queue
j is in phasekj .

Theorem 3: The sum of the mean queue-lengths of all
queues conditioned on queuej being in phasekj satisfies

∑

m

Fj
∑

nj=0

M
∑

w=1

Fw
∑

nw=1

Kw
∑

kw=1

nwπ(nw, kw, nj , kj ,m) ≥

N
∑

m

Fj
∑

nj=0

Fi
∑

ni=1

Ki
∑

ki=1

π(ni, ki, nj, kj ,m) (8)

for all 1 ≤ i ≤ M , 1 ≤ j ≤ M , 1 ≤ kj ≤ Kj.
The proof is qualitatively similar to the one used for non-
blocking MAP queueing networks, we point the interested
reader to [8, Thm. 4] for a complete derivation.

D. Marginal Balance Conditions

The theorems in the previous section provide a characteriza-
tion of basic properties of utilization and queue-lengths in the
QR marginal representation. However, these properties depend
very loosely on the inter-dependencies between stations, such
as the flows of jobs between queues and the rules of BAS
blocking. A strong characterization of BAS blocking and
job flows is provided by the following marginal balance
conditions. Such conditions express (by the QR marginals)
the probability flux balance resulting from cuts of the Markov
chain that separate states with a marginal populationni from
those where queuei has populationni + 1.

Theorem 4 (Marginal balance): The arrival flow of queuei
when the local queue-length is ofni jobs,0 < ni ≤ Fi− 1, is
in equilibrium with the departure flow when the queue-length
is ni + 1, i.e.,

M
∑

j=1
j 6=i
j 6=f

Fj
∑

nj=1

Kj
∑

k=1

Kj
∑

h=1

Ki
∑

v=1

∑

m:j /∈m

qk,hj,i π(nj , k, ni, v,m)

+
Ff
∑

nf=1

Kf
∑

k=1

Kf
∑

h=1

Ki
∑

v=1

∑

m:Head(m) 6=i

qk,hf,i π(nf , k, ni, v,m)

=
M
∑

j=1
j 6=i

Ff−1
∑

nf=0

Ki
∑

k=1

Ki
∑

h=1

Kf
∑

v=1
qk,hi,j π(nf , v, ni + 1, k,∅)

+
M
∑

j=1
j 6=i6=f

Ki
∑

k=1

Ki
∑

h=1

Kf
∑

v=1

∑

m:i/∈m

qk,hi,j π(Ff , v, ni + 1, k,m)

+
Ki
∑

k=1

Kf
∑

v=1

Kf
∑

p=1

∑

m:Head(m)=i

M
∑

w=1
w 6=f
w 6=i

qv,pf,wπ(Ff , v, ni+1, k,m),

(9)

for i = 1, . . . ,M and i 6= f . When i = f the expression
becomes

M
∑

j=1
j 6=f

Fj
∑

nj=1

Kj
∑

k=1

Kj
∑

h=1

Kf
∑

v=1
qk,hj,f π(nj , k, nf , v,∅)

=
M
∑

j=1
j 6=f

Fj−1
∑

nj=0

Kf
∑

k=1

Kf
∑

h=1

Kj
∑

v=1
qk,hf,j π(nj , v, nf + 1, k,∅), (10)

for eachnf = 0, . . . , Ff − 1. Furthermore, forni = 0 (equiv.
nf = 0 wheni = f ) the above balances admit a stronger form
where they hold true for each phasek = 1, . . . ,Ki considered
in isolation.

Proof: The proof is based on the definition of the equi-
librium probability flux exchanged between states withni and
with ni + 1 jobs in queuei. First, consideri 6= f . The left
hand side of equation (9) includes all departures from any



non-empty queuej (i.e., nj > 0) toward queuei. After these
departures, the population ofi becomesni + 1, except in the
case wherej = f andHead(m) = i, i.e., queuei is unblocked
by the departure fromf . In this case, queuei is waiting for
free space inf and, because of the simultaneous transitions,
the population ini remains equal toni. As a consequence,
when j = f , the conditionHead(m) 6= i must be also true,
this corresponds to the second term of the left side of (9).

The right hand side of the equation considers all departures
from queuei with population equal toni +1. After these de-
partures,i’s population becomesni. These departures include:

• Case a: Transitions fromi towards any queuej, j 6= i.
Note that these transitions are always possible because
queuej does not have finite capacity, and for queuef
this transition can occur whennf < Ff ; this is the first
term of the right side. When queuef is full, a transition
from i is still possible if queuei is not blocked, that isi
is not in them list; this case corresponds to the second
term of the right side of (9).

• Case b: Transitions from nodef to any other nodew,
w 6= f , w 6= i when f is full and nodei is the first
blocked one, that isHead(m) = i. These transitions
trigger a simultaneous transition from queuei, thus
decrease its population toni. This is the third term on
the right side of (9).

Let S(k, ni) ≡ {s = (s1, s2, . . . sM)|si : n′
i ≤ ni, k

′
i = k}.

Since the theorem requiresni ≤ Fi − 1, there always
exists the related set̄S(k, ni) ≡ {s = (s1, s2, . . . sM)|si :
n′
i ≥ ni + 1, k′i = k}. The equilibrium probability flux

exchanged by∪Ki

k=1S(k, ni) and ∪Ki

k=1S̄(k, ni) must be in
balance because their union is the entire state space. We seek
for a representation of the exchanged probability flux using
the QR marginal probabilities. The fluxF from ∪Ki

k=1S̄(k, ni)
to ∪Ki

k=1S(k, ni) needs to decrease the queue-length of queuei
to ni. By considering that batch completions are not allowed,
these transitions correspond to the two cases described above.
Therefore,F is the following flux of completions:

F ≡
M
∑

j=1,j 6=i

Ff−1
∑

nf=0

Ki
∑

k=1

∑

s′:n′

i
=ni+1,n′

f
=nf

Ki
∑

h=1

qk,hi,j π(s′)

+
M
∑

j=1,j 6=i,j 6=f

Ki
∑

k=1

∑

s′:n′

i
=ni+1,n′

f
=Ff ,i/∈m

Ki
∑

h=1

qk,hi,j π(s
′)

+
Kf
∑

ν=1

Kf
∑

p=1

∑

s
′:n′

i=ni+1,n′

f=Ff ,

Head(m)=i

M
∑

w=1,w 6=i,w 6=f

qν,pf,wπ(s
′) (11)

which excludes the self-routed jobs (i.e.,j = i) that naturally
do not decreaseni + 1 to ni. The opposite fluxG needs to
increase the queue-length of queuei to ni + 1. Transitions
towards states wherei hasni+1 are allowed provided that the
following conditions hold: the sending queuej is not empty
and if j = f , Head(m) 6= i so that a simultaneous transition
does not happen. The fluxG represents all transitions from

queuej to i, j 6= i.

G ≡
M
∑

j=1,j 6=i,j 6=f

Kj
∑

k=1

Kj
∑

h=1

qk,hj,i

∑

s′:n′

j
>0,n′

i
=ni

π(s′)

+
Kf
∑

k=1

Kf
∑

h=1

qk,hf,i

∑

s′:n′

f
>0,n′

i
=ni,i/∈m

π(s′)

Consider now the special casei = f . The fluxF (since it
includes all possible transitions from queuef to any queuej)
can be simplified as follows:

F ≡
M
∑

j=1,j 6=i

Ff−1
∑

nf=0

Kf
∑

k=1

∑

s′:n′

f
=nf+1,n′

j
=nj

Kf
∑

h=1

qk,hf,j π(s
′)

Similarly, the opposite fluxG that describes all transitions that
bring a job from queuej to queuef , j 6= f , is simplified as
follows:

G ≡
M
∑

j=1,j 6=f

Kj
∑

k=1

Kj
∑

h=1

qk,hj,f

∑

s′:n′

j
>0,n′

f
<Ff

π(s′)

Note that the (9) and (10) would hold also if instantiated for
ni = 0 or nf = 0 only, respectively. In fact, we can give a
more detailed condition by recalling that ifni = 0, then phase
transitions ini are not possible, hence the balanceF = G
splits into a set of disjoint probability flux balances, one for
each phaseu of i. The proof in this case is almost identical
by considering the interface between the setsS(k, ni = 0) ≡
{s = (s1, s2, . . . sM)|si : n′

i = 0, k′i = k} and S̄(k, ni = 1).
A similar argument holds fornf = 0. The proof continues by
imposing the equilibrium balanceF = G and by rewriting the
flux equations in terms of the QR marginal probability. For
additional details, we refer the interested reader to [8, Thm.
3].

The above equations show several differences compared to
the marginal balances developed for MAP queueing networks
with infinite capacity [5]. In addition to the obvious condition
on the stations contributing to the throughput flow being active,
i.e.,j /∈ m, the last term in the right hand side of (9) describes
the departures from stationi following an unblocking event
in station f that frees capacity whichi has priority to use
because ofHead(m) = i. Thus, this term captures the
fundamental behavior of a departure fromf that unblocks
queuei. Interestingly, the departure flow fromi is regulated in
this case by the rate of departure off , thus showing a case of
non-product-form behavior where the throughput of a station
depends on the rate of another station.

We now introduce a new class of balance conditions that de-
scribe the behavior of throughput while queuef is full. These
balances are related to cuts of the Markov chain underlying the
queueing network that separate the states shown in Figure 2
into partitions wherem has different lengthb. Intuitively, as
queuef enters into an extended period of time during which it
remains full, the queues feedingf progressively block leading
to changes in the composition of the listm. The next theorem
summarizes the balance between the rate of change ofm due



to queue blocking and the corresponding rate of unblocking
events due to departures fromf .

Theorem 5: The QR marginal probabilities for states where
the finite capacity queuef is full satisfy

M
∑

j=1
j 6=f

Fj
∑

nj=1

Kj
∑

k=1

Kj
∑

h=1

Kf
∑

v=1

∑

m:j /∈m
∑

i

bi = b

qk,hj,f π(nj , k, Ff , v,m)

=
M
∑

j=1
j 6=f

Fj
∑

nj=0

Kf
∑

k=1

Kf
∑

h=1

Kj
∑

v=1
×

×
∑

m:
∑

i

bi = b+ 1
qk,hf,j π(nj , v, Ff , k,m), (12)

for all number of blocked queuesb = 0, . . . , B − 2. When
the number of blocked queues isb = B − 1 we can write the
stronger condition

M
∑

j=1
j 6=f

Fj
∑

nj=1

Kj
∑

k=1

Kj
∑

h=1

Kf
∑

v=1
qk,hj,f π(nj , k, Ff , v,mj) =

M
∑

j=1
j 6=f

M
∑

w=1
w 6=i

Kf
∑

k=1

×

×
Kf
∑

v=1

∑

mj∑
i bi = b+1

qk,vf,wπ(Ff , k, Ff , k, Add(mj , j)), (13)

wheremj is any blocking list withb = B−1 blocked queues
satisfying j /∈ mj , and Add(mj , j) is a list obtained by
adding queuej at the tail ofmj .

Proof: Consider a partitioning of the state spaceEBAS

into the following two subsets:Hb where there are up to
b ≥ 0 blocked queues andHb+1, where the finite capacity
queue is full and there areb + 1 or more blocked queues on
f . The left hand side of (12) represents the probability flux
flowing through the state space cut associated to departures
from stationj to f that blockj thus adding an entry at the end
of m. Conversely, the right hand side of (12) is the probability
flux of departures fromf such that at least a stationj 6= f
gets unblocked thus reducing by one entry the listm. Since
no more than one queue gets blocked or unblocked at a time,
it follows that the balance fully characterizes the probability
flux balance across the cut that separatesHb fromHb+1 which
proves the equation.

Equation (13) considers the case where only a single queue
j (in addition tof ) is left unblocked, for any feasible choice of
j. In this case, we know that only a departure event fromj can
increase the blocked queue listmj to Add(mj , j). Thus, we
can apply the same argument used to prove (12) by focusing
on the cut that separates inEBAS the partition having blocking
list Add(mj , j) from the rest of the chain, which completes
the proof.

III. MAP QUEUEING NETWORKS WITH RS-RDBLOCKING

We now characterize MAP queueing networks with RS-RD
blocking. For RS-RD, the notation is simpler than the one of
the BAS case, with essentially no changes from the basic MAP
networks without blocking. The main difference introduced

by RS-RD into MAP queueing networks is a reduction of
the cardinality of the state space due to the removal of all
states whereni > Fi. Differently from BAS, there is no
need for tracking the order of blocking by the listm, since
a job that cannot be delivered is simply re-executed without
blocking the sender queue activity. Thus, the QR marginal
probabilities are immediately expressed in the RS-RD case as
π(ni, ki, nj, kj), where them list is no longer used being
alwaysm = ∅. As stated earlier, we consider throughout this
section the general case where several queues may have finite
capacity, i.e.,Fi < N for any subset of indexesi. We denote
by ERS−RD the state space in the RS-RD case1. Since QR
marginals are a restriction of those used in the BAS case, most
performance indexes including queue lengthQi and utilization
Ui are defined similarly to the BAS case, where we simply
substitute the QR marginal probabilities for BAS with those
used in RS-RD and summations onm consider onlym = ∅. A
different definition is instead used for the effective utilization
of queuei in phasek which is given by

Eki

i =
∑Fi

ni=1

(

π(ni, ki, ni, ki)

−
∑M

j=1,j 6=i,pij>0

∑Kj

kj=1pijπ(ni, k, Fj , kj)
)

(14)

where the first term sums to the utilization of queuei in phase
ki, while the other summations represent the probability of
observing the destination stationj full. The basic characteri-
zation of the RS-RD state space holds similarly for the BAS
case except for the formulas where the effective utilization is
involved, i.e., Theorem 1 that is here extended to the RS-RD
case. Due to limited space we report only proof outlines since
the general ideas behind the RS-RD proofs are qualitatively
similar to the ones used in [5] for the non-blocking case.

Theorem 6: The utilization levels of queuei in its Ki

phases are in equilibrium, i.e., for each phasek, 1 ≤ k ≤ Ki,

∑M
j=1,j 6=i

∑Ki

h=1q
k,h
i,j Ek

i +
∑Ki

h=1,h 6=kq
k,h
i,i Uk

i =
∑M

j=1,j 6=i

∑Ki

h=1q
h,k
i,j Eh

i +
∑Ki

h=1,h 6=kq
h,k
i,i Uh

i (15)

Proof: (Outline) The proof follows the same steps of
the BAS case. However, (15) differs from the BAS case
because in RS-RD a queue is never effectively blocked. As
a consequence, for self-routed jobs the classical utilization
should be taken into account. A complete derivation can be
found in [8, Thm.2′].

The following theorem shows that a balance holds between
the marginal probabilities similarly to the one developed in the
BAS case. This theorem differs from the one for non-blocking
MAP networks in [5] only in the fact that it involves a subset
of the original state space.

Theorem 7: The arrival rate at queuei when its queue
length isni jobs,0 < ni ≤ Fi − 1, is balanced by the rate of

1The interested reader can refer to [3] for a recursive expression to compute
the state space cardinality for a queueing network where allqueues have the
same capacity and RS-RD blocking.



departures when the queue length isni + 1, i.e.,

∑M
j=1,j 6=i

∑Fj

nj=1

∑Kj

k=1

∑Kj

h=1

∑Ki

u=1q
k,h
j,i π(ni, u, nj , k)

=
∑M

j=1,j 6=i

∑Fj−1
nj=0

∑Kj

u=1

∑Ki

k=1

∑Ki

h=1q
k,h
i,j π(ni+1, k, nj, u)

(16)

for all 1 ≤ i ≤ M . In the caseni = 0, the marginal balance
specializes to the more informative relation

∑M
j=1,j 6=i

∑Fj

nj=1

∑Kj

k=1

∑Kj

h=1q
k,h
j,i π(ni = 0, u, nj, k)

=
∑M

j=1,j 6=i

∑Fj−1
nj=0

∑Kj

h=1

∑Ki

k=1q
k,u
i,j π(ni = 1, k, nj, h)

(17)

which holds for each phaseu, 1 ≤ u ≤ Ki, with 1 ≤ i ≤ M .
Proof: A complete derivation can be found in [8, Thm.

3′].
Also Theorem 2, Corollary 1 and Theorem 3 of the BAS case
still hold for the RS-RD case by settingm = ∅, the proof is
qualitatively identical to the BAS case [8].

Finally, as for the original MAP queueing networks, the
queue-length ofi in all its phases satisfies the follows balance.

Theorem 8: The states of queuei in phasek and in phase
h are related by the balance

∑Ki

h=1,h 6=k

∑M
j=1,j 6=i

∑Fj−1
nj=0

∑Kj

u=1

∑Fi

ni=1q
k,h
i,j niπ(ni, k, nj, u)

+
∑Ki

h=1,h 6=k

∑Fi

ni=1q
k,h
i,i niπ(ni, k, ni, k)

+
∑M

j=1,j 6=i

∑Ki

h=1

∑Fj−1
nj=0

∑Kj

u=1

∑Fi

ni=1q
h,k
i,j π(ni, h, nj , u)

=
∑M

j=1,j 6=i

∑Kj

h=1

∑Kj

u=1

∑Fj

nj=1q
h,u
j,i

∑Fi−1
ni=0π(ni, k, nj, h)

+
∑Ki

h=1,h 6=k

∑Fi

ni=1q
h,k
i,i niπ(ni, h, ni, h)

+
∑Ki

h=1,h 6=k

∑M
j=1,j 6=i

∑Fj−1
nj=0

∑Kj

u=1

∑Fi

ni=1q
h,k
i,j niπ(ni, h, nj , u)

Proof: A complete derivation is given in [8, Thm.5′].

IV. B OUNDABLE APPROXIMATIONS

The fundamental idea behind the proposed approximations
and bounds is to use the exact characterization developed in
Sections II and III to formulate an educated guess of the
values of the QR marginal probabilities. We here describe
our methodology for BAS networks, the application to RS-
RD blocking follows easily by consideringm = ∅.

To determine an approximate marginal distribution for the
model, we assume the valuesπ(ni, ki, nj , kj ,m) as unknowns
in an optimization programO. This optimization program
takes the form

O : min fobj(π
G) s.t.

Aπ
G ≤ b

Cπ
G ≤ d

whereπG is the vector of the current guesses for all the QR
marginal probabilitiesπ(ni, ki, nj , kj ,m), fobj is a (possi-
bly nonlinear) objective function to be optimized, and the
constraints are of two types. A first group of constraints,
Aπ

G ≤ b, is the set of all equations and inequalities

developed in the BAS (or RS-RD) characterizations, including
the specialized marginal balances forni = 0. Notice that
such equations are all linear constraints, mainly equalities.
A second group of linear constraints,Cπ

G ≤ d, imposes
obvious conditions that describe in the optimization program
the feasible values of the termsπG(ni, ki, nj , kj ,m) ∈ π

G

in order to specify a valid QR marginal distribution. These
constraints impose, for instance, that the unknowns of the
linear program are probabilities, hence numbers ranging in
[0, 1], or that a queue can only be in a single state at a time
hence, e.g.,πG(ni, ki, ni+c, ki,m) = 0, ∀c 6= 0. A summary
of these basic conditions is given in Table II.

Let π
G
opt be the guessπG which provides the optimal

value for the objective functionfobj . The crucial property
of the optimization programO is that its constraints are
satisfied by the exact QR marginal distributionπ. It then
follows that the exact solutionfobj(π) is always afeasible
solution for the optimization programO, although it may not
be necessarily the optimal onefobj(πG

opt). This property leads
to the following approximation and bounding techniques.

A. Performance Metric Bounds

First, suppose thatfobj defines a performance metric of
interest, such as the utilization of stationi

fobj(π
G) =

Ki
∑

ki=1

∑

ni≥1

πG(ni, ki, ni, ki,m)

or its average queue-length

fobj(π
G) =

Ki
∑

ki=1

∑

ni≥1

niπ
G(ni, ki, ni, ki,m)

Then, by construction, minimizingO returns a lower bound
fobj(π

G
opt) = min fobj(π

G) ≤ fobj(π), sinceπ
G = π is

a feasible solution of the optimization program. Similarly,
solvingO as a maximization problem returns an upper bound
fobj(π

G
opt) = max fobj(π

G) ≥ fobj(π). Noting that utiliza-
tions and queue-lengths are linear functions ofπ

G, it then
follows thatO can be solved efficiently as a linear optimization
program. Such a solution provides upper and lower bounds
on the performance metrics of a MAP queueing network2.
Notice that other metrics, such as the effective utilization or
the throughput, may be defined similarly to the utilization
and queue-length in terms of a linear objective function.
Conversely, response times need to be estimated using Little’s
law as ratios of average queue-length and average throughput.
Hence, they can be solved as nonlinear global optimization
programs or, more easily, estimated indirectly from the bounds
on queue-length and throughput. This approach to bounding
the performance of a MAP queueing network has been also
investigated for models without blocking in [5] and we refer
to it asQR bounds.

2We stress again that such values are guaranteed to be bounds by construc-
tion if the optimizer returns aglobal optimum forO, as it is always the case
for linear programs used for bounds computation.



B. Approximate Model Solution

The second main application of the optimization programO
is in approximating the QR marginal probabilities. We define
objective functions that allow one to obtain accurate approx-
imations, noticeably also on cases where the QR bounds are
not tight. We here introduce two approximation techniques:a
maximum entropy method (MEM) for MAP queueing networks
and a new principle ofminimal mutual information (MMI). It
is important to remark that, since the QR bounds can always be
generated regardless of these approximations, the gap between
upper and lower bounds provides an independent assessment
on the maximum inaccuracy in using MEM or MMI in place
of an exact solution. Thus, such approximations are always
bounded, meaning that the maximum error of MEM or MMI is
the maximum distance from a point lying in between the upper
and lower QR bounds. Furthermore, the objective functions
are non-linear, hence one should consider a local optimum
obtained by a nonlinear solver3.

MEM searches for a set of QR marginal probabilities
that maximizes the information content of the distributionas
defined by the entropy functionH . To simplify notation, for
the rest of this section let

πG(ni, nj) ≡ πG(ni, ki, nj , kj ,m).

MEM optimizes inO the objective function

maxH = max

(

−
∑

ni,nj ,ki,kj ,m

πG(ni, nj) log2 π
G(ni, nj)

)

The values of performance indexes such as utilizations and
queue-lengths are then obtained directly from the QR marginal
distribution that maximizesH . The rationale behind a max-
imum entropy solution is that it is known to be exact in a
number of queueing models, noticeably in exponential single-
class closed queueing networks [10]. Notice that a well-
known maximum entropy method for queueing networks has
already been developed in [11] based on the analysis of the
GI/GI/1 queue. However, the MEM technique we propose
differs substantially from the one in [11]. First, the method
is able for the first time to consider the state ofall the
queues in the network simultaneously, instead of recursively
evaluating queues one at a time as in [11]. Importantly, our
technique is also able to consider the impact of autocorrelation
in job flows introduced by MAPs, which is ignored in the
analysis of theGI/GI/1 queue. Indeed, this is a critical
aspect of a MAP queueing network that cannot be ignored,
being responsible of dynamic bottleneck switch effects, even
at equilibrium, that significantly affect the model solution [4].
Finally, and perhaps most importantly, our MEM solution is
subject to satisfying the very large set of constraints developed
in Sections II and III, whereas the one in [11] considers a

3We stress that since here the focus is on approximation, rather than bounds,
one does not need to ensure global optimality of the final result in order to
have a usable solution. As usual, the gap between primal and dual formulations
of the optimization program can be used as a measure of the relative quality
of fobj(πG) with respect to its global optimum.

small subset of such constraints. Therefore, our approximation
is more heavily constrained to be representative of the model
under study. Stemming from this last point, we remark that the
main limitation of the proposed MEM compared to the one
in [11] is that our method requires numerical optimization,
whereas [11] is based on simple closed-form formulas.

In addition to the MEM method, we introduce the MMI
criterion as a new technique for approximating an unknown
probability distribution of a queueing network. For a QR
marginal probability distribution, MMI considers the following
objective function

min

(

∑

ni,nj ,ki,kj ,m

πG(ni, nj) log2
πG(ni, nj)

πG(ni, ni)π
G(nj , nj)

)

Following standard information theory, the argument of the
minimization is the mutual information ofπG(ni, nj), which
quantifies how much the knowledge on the state of queuei
reduces our uncertainty about the state of stationj. However,
by noting that for a product-form model the knowledge of the
state of a queue provides little information on the state of the
other stations (for a closed model it only provides an upper
boundnj ≤ N − ni that becomes progressively looser asN
andM increase), we conclude that the MMI solution may be
interpreted as a product-form-type approximation for a MAP
queueing network. That is, when the mutual information is
minimal, the corresponding marginal probability distribution
finds the description in which queuesi and j are maximally
independent. Clearly, in networks with blocking the mutual
information is not in general minimal, since blocking yields
a strong dependence between the behavior of two (or even
more than two) queues. However, the fundamental idea of
our proposed method is that the blocking is already strongly
characterized by our QR marginal balances, hence MMI deals
only with allocating the portion of the probability mass that
remains unconstrained. We illustrate this concept below ina
“toy” example. Notice also that the MMI approach is expected
to be accurate especially in heavy load, where closed networks
progressively approach the behavior of open models due to the
formation of bottleneck stations whose service process, being
continuously busy, acts as an “arrival process” for the restof
the network. Open networks are typically less inter-dependent
than their closed counterparts.

C. Toy Example

To better understand the properties of MEM and MMI,
consider the following illustrating example. The model is
composed by three queues with exponential service rateµ1 =
µ2 = 1, µ3 = 2. The routing matrix is

P =





0 0.50 0.50
1 0 0
1 0 0



 (18)

which is a special case for the topology shown in Figure 1.
Buffer capacities areF1 = 1, F2 = F3 = N , with N = 3
being the job population; the blocking mechanism is RS-RD.
Despite its apparent simplicity, for this model the QR bounds



provide the following estimates of upper bounds (Umax
k ) and

lower bounds (Umin
k ) on the exact utilizations (Uk) of queue

k:

queue 1 queue 2 queue 3
Umax
k 0.5000 0.7500 0.9524
Uk 0.4828 0.4483 0.8966

Umin
k 0.4762 0.3333 0.7500

In this example, the utilization of queue2 is loosely captured
by the QR bounds that leave a gap of about42% between
the upper and lower limits. That is, the solver is allowed to
allocate the probability mass in ways that vary significantly
with respect to the performance of queue2, in other words,
queue2 is not sufficiently constrained by the characterization
in Section III. A closer investigation reveals inconsistencies
on the solution with respect to the exact probabilities, e.g., for
the upper bound

πG
opt(n1 = 1, k1 = 1, n2 = 1, k2 = 1) = 0.5000,

πG
opt(n1 = 1, k1 = 1, n3 = 1, k3 = 1) = 0.1905 (19)

while for the lower bound

πG
opt(n1 = 1, k1 = 1, n2 = 1, k2 = 1) = 0.0,

πG
opt(n1 = 1, k1 = 1, n3 = 1, k3 = 1) = 0.0 (20)

which are both impossible since the two marginal probabilities
describe the same state(n1 = 1, n2 = 1, n3 = 1, k1 = 1, k2 =
1, k3 = 1) in the original queueing network. In fact, in the
original model

π(n1 = 1, k1 = 1, n2 = 1, k2 = 1)

= π(n1 = 1, k1 = 1, n3 = 1, k3 = 1) = 0.1379, (21)

We have verified that such an unconstrained mass can be
allocated exactly by adding toO the following consistency
constraint

π(nj , kj , ni, ki) = π(nj , kj , nt = N − nj − ni, kt),

for all choices of the stationsi 6= j 6= t and their states.
This provides the optimal solutionπG

opt = π. This imposes
that, in a model withM = 3 queues, there are at most two
degrees of freedom in assigning the populationsni and nj

at the queues, since the population at the last queue will be
automatically set tont = N − ni − nj . This constraint is
obvious but its integration in the QR marginal characterization
requires in general a cubic number equations for a model
with M = 3 which is not consistent with the approach that
we have pursued; furthermore, for a model withM ≥ 4
these constraints cannot be imposed using the QR marginal
probabilities, since one would need to express the state of
M − 1 queues simultaneously. This example highlights some
consequences of the structural limitation of QR marginal prob-
abilities; this limitation is that they cannot represent correctly
the allocations of jobs (or the active phases) on more than two
queues simultaneously.

We have then obtained the MEM and MMI solutions for
the above model and found them as follows

queue 1 queue 2 queue 3
Umem
k 0.4887 0.5515 0.8464

Ummi
k 0.4818 0.4316 0.9046
Uk 0.4828 0.4483 0.8966

which are much closer to the exact distribution that the QR
bound solution. Further, we have now

πG
mem(n1 = 1, k1 = 1, n2 = 1, k2 = 1) = 0.2618,

πG
mem(n1 = 1, k1 = 1, n3 = 1, k3 = 1) = 0.0907 (22)

and

πG
mmi(n1 = 1, k1 = 1, n2 = 1, k2 = 1) = 0.1180,

πG
mmi(n1 = 1, k1 = 1, n3 = 1, k3 = 1) = 0.1455 (23)

which provide a substantial consistency improvement com-
pared to the QR bounds, especially for the novel MMI method.

V. NUMERICAL VALIDATION

We illustrate the accuracy of the BAS and RS-RD bounds
on a set of case studies having different level of complexities,
number of queues, and network topology. Throughout the
experiments, we use a combination of exponential service
processes and nonrenewal autocorrelated MAPs. We use the
GLPK linear programming solver to compute bounds and the
MINOS solver for nonlinear programs required to evaluate the
MEM and MMI approximations. For simplicity of comparison,
we always use a short-range dependent MAP process with
two-phases having representation [15]

D0 =

[

−1.016212022108574 0
0 −0.015702871508448

]

D1 =

[

1.016186165025678 0.000025857082896
0.001569887597955 0.014132983910493

]

(24)

This yields a process with momentsE[X ] = 1, E[X2] =
4, E[X3] = 400, and positive autocorrelation functionρk =
1
3 (

9
10 )

k such thatρ1 = 0.300, ρ2 = 0.270, ρ3 = 0.243, . . .. On
a laptop computer, the hardest case study execution times were
less than 5 seconds for the QR bounds, about 300 seconds for
the nonlinear programs used for MIM/MEM. Note that we
used a single CPU core, nonlinear solvers running on multi-
core machines are usually 8-10 times faster, thus the nonlinear
solution can be significantly accelerated.

A. Case Study 1

Let us first consider a model composed ofM = 5 queues
with N = 10 jobs, capacityFi = 5 for each queue
i = 1, . . . ,M , and service processes all equal to the short-
range dependent MAP given in (24). Hence, all stations can



TABLE II
CONSTRAINTS IMPOSING BASIC PROPERTIES OFπ(ni, ki, nj , kj ,m) INCLUDED IN THE OPTIMIZATION PROGRAMS

π(ni, ki, nj , kj ,m) ≥ 0, ∀Mi=1∀
Fi
ni=0∀

Ki
ki=1∀

M
j=1∀

Fi
nj=0∀

Kj

kj=1∀m
∑Fj

nj=0

∑Kj

kj=1

∑
m

π(nj , kj , nj , kj ,m) = 1, ∀Mj=1

π(nj , k, nj , h,m) = 0, ∀Mj=1∀
Kj

k=1∀
Kj

h=1,h6=k∀
Fj

nj=0∀m

π(nj , k, n
′
j , h,m) = 0, ∀Mj=1∀

Kj

k=1∀
Fj

nj=0∀
Kj

h=1∀
Fj

n′

j
=0,n′

j
6=nj

∀m

π(nj , k, ni, h,m) = 0 ∀Mj=1∀
Kj

k=1∀
Fj

nj=0∀
M
i=1,i6=j∀

Ki
h=1∀

Fi
ni=N−nj+1∀m

∑Ff−1

nf=0

∑Kf

h=1π(nj , k, nf , h,m) = 0, ∀Mj=1,f 6=j∀
Kj

k=1∀
Fj

nj=0∀m:m/∈∅

π(nj = 0, k, ni, h,m) = 0, ∀Mj=1∀
Kj

k=1∀
M
i=1∀

Ki
h=1∀

Fi
ni=0∀m:j∈m

π(nj , k, ni, h,m) = 0, ∀Mj=1∀
Kj

k=1∀
N
nj=Fj+1∀

M
i=1∀

Ki
h=1∀

Fi
ni=0∀m

π(nj , k, ni, h,m) = 0 ∀Mj=1∀
Kj

k=1∀
Fj

nj=1

∑M
i=1

i6=j 6=f
∀
Ki
h=1∀

Fi
ni=N−nj−Ff+1∀m:Head(m)=j

π(nj , k, ni, h,m) = π(ni, h, nj , k,m), ∀Mj=1∀
Fj

nj=0∀
Kj

k=1∀
M
i=1∀

Fi
ni=0∀

Ki
h=1∀m

π(nj , k, nj , k,m) =
∑N−nj

ni=0

∑Ki
h=1π(nj , k, ni, h,m), ∀Mj=1,j 6=i∀

Kj

k=1∀
Fj

nj=0∀
M
i=1∀m

π(nj , k, nj , k,m) = 0, ∀Mj=1∀
Kj

k=1∀
Fj

nj=0 : N − nj >
∑M

y=1
y 6=j

Fy

π(nj , k, ni, h,m) = 0, ∀Mi ∀Mj=1,j 6=i∀
Kj

k=1∀
Fj

nj=0∀
Ki
h=1∀

Fi
ni=0 : N − nj − ni >

∑M
y=1

y 6=j 6=i

Fy

(a) Utilization (b) Effective Utilization

Fig. 3. Case 1 - MAP network with RS-RD blocking

be blocked. The routing matrix is

P =













0 0.5000 0 0 0.5000
0.5000 0 0.5000 0 0

0 0.5000 0 0.5000 0
0 0 0.5000 0 0.5000

0.5000 0 0 0.5000 0













This is a case where we compare approximations and bounds
under multiple RS-RD blocking. We see in Figure 3 that
the upper and lower bounds (“ub” and “lb”, respectively)
are not able to generate a tight envelope around the exact
utilization and exact effective utilizations (“ex”). However,
both MEM and MMI return almost perfect results within
less than2% utilization. Similarly to the toy example, MMI
appears slightly more effective than MEM for capturing the
probability distribution. Notice also that the MEM solution is
slightly affected by numerical perturbations due to the fully
symmetric routing of this network.

B. Case Study 2

This model differs from Case Study 1 in that we consider
BAS blocking and the topology is now full mesh with routing

matrix

P =













0 0.2500 0.2500 0.2500 0.2500
0.2500 0 0.2500 0.2500 0.2500
0.2500 0.2500 0 0.2500 0.2500
0.2500 0.2500 0.2500 0 0.2500
0.2500 0.2500 0.2500 0.2500 0













Furthermore, station capacities are nowF1 = 5, F2 =
F3 = F4 = F5 = N so that only station1 has finite
capacity. The population isN = 10 jobs. Service processes
are again identical short-range dependent MAPs. The results in
Figure 4 indicate that the bounds are very effective in capturing
the performance of the finite capacity queue 1, while more
uncertainty is left on queues2−5 where the gap between upper
and lower bounds is approximately up to20%. In spite of such
uncertainty, MEM and MMI again find very accurate results,
again within a few percent of the exact results, with MMI
again being slightly better than MEM. This is a relevant result,
since despite its apparent simplicity, the number of possible
combinations ofm vectors is64 for each state in which queue
1 is full, which is significant. Hence, this experiment suggests
that the MEM and MMI approximation are effective also on
cases where the portion of the state-space due to the BAS
precedence constraints is non-negligible.

C. Case Study 3

We now consider a classic central-server-type topology,
where queue 1 feeds parallel stations. We assumeM = 5,
N = 10, and routing matrix

P =













0 0.1000 0.2000 0.3000 0.4000
1.0000 0 0 0 0
1.0000 0 0 0 0
1.0000 0 0 0 0
1.0000 0 0 0 0















(a) Utilization (b) Effective Utilization

Fig. 4. Case 2 - A model with BAS blocking and mesh topology

(a) Utilization (b) Effective Utilization

Fig. 5. Case 3 - A MAP network with central-server-type topology

Station 1 has MAP service (24), all other stations are exponen-
tial. All mean service times are equal to 1, expect for queue
5 where it is3.333. Station 5 is also the only finite capacity
queue with capacityF5 = 3. Figure 5 reports experimental
results. We see again that the proposed approximations are
very effective, however this illustrates a case where also the
bounds are very tight, and one may for instance take their
middle point as a first approximation of the exact value of the
utilizations. Quite interestingly, this shows a case wherestation
1 has a dramatic difference between utilization and effective
utilization, due to the blocking on queue 5. This is perfectly
captured by the proposed techniques.

VI. CONCLUSION

In this paper, we have proposed a major extension of
MAP queueing network models to support BAS and RS-
RD blocking mechanisms. Based on the recently proposed
Quadratic Reduction (QR) technique [5], we have described
the state space with a set of marginal probabilities having car-
dinality that is much smaller than for the original state space.
Then, we have derived new exact characterization results that
describe the relations between such marginal probabilities in
the context of BAS and RS-RD blocking. Using a numerical
optimization approach, we have derived boundable approxima-
tions on performance metrics based on the maximum entropy
and minimum mutual information principles. Experimental
results indicate that such approximations are highly accurate.
Possible extensions of this work include considering additional
blocking mechanisms and the generalization of the proposed
techniques to queueing networks that limit the maximum
number of jobs within a subnetwork, which are important to
model admission control mechanisms.
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