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Abstract—In this paper we extend the class of MAP queueing
networks to include blocking models, which are useful to desibe
the performance of service instances which have a limited oe
currency level. We consider two different blocking mecharsms:
Repetitive Service-Random Destination (RS-RD) and Blockyg
After Service (BAS). We propose a methodology to evaluate MR
gueueing networks with blocking based on the recently propsed
Quadratic Reduction (QR), a state space transformation tha
decreases the number of states in the Markov chain underlyig
the queueing network model. From this reduced state space,
we obtain boundable approximations on average performance
indexes such as throughput, response time, utilizations. lie two
approximations that dramatically enhance the QR bounds are
based on maximum entropy and on a novel minimum mutual
information principle, respectively. Stress cases of in@asing
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such as multi-tier applications [13], [19]. Given the falcat
blocking creates performance dependencies that are hard to
understand without a sound methodology, there is a cleat nee
for robust and general solutions.

In this paper, we provide a robust approximation method-
ology for various performance measures for MAP queueing
networks with blocking, which relies on numerical optimiza
tion techniques and that enjoys errors bounds. In particula
we focus on the case of networks with a closed population of
jobs that are the most important for sizing computer systems
that have upper limits on the maximum number of concurrent
users, and generalize the class of MAP queueing networks

proposed in [5] to include blocking mechanisms. MAP queue-
ing networks admit service processes that are described by
Markovian Arrival Processes (MAPs), a class of Markov-
modulated point processes that can model general disoitsut

Blocking is the phenomenon where an IT service may ngg well as the main features of non-renewal workloads, such
be available for a period of time, therefore any requesthi® t as autocorrelation in service times or burstiness. Nagyral
service has to wait until the service becomes availablenagallAP queueing networks do not admit product form solutions
This service unavailability can stem from a physical limiand can be viewed as a generalization of non-product form
(e.g., memory or concurrency constraints) or it can relate t networks with renewal service processes. In [5] the quadrat
system management decision in order to overcome an overlgaduction (QR) bounding methodology for the solution of
period and to guarantee QoS requirements. ConsequertiAP queueing networks has been proposed. Applying the
blocking can affect system performance significantly. tesp QR bounds to MAP blocking networks is a challenging
its importance, blocking is a difficult phenomenon to modgjroblem because in presence of blocking the state spaae ofte
analytically, because it creates strong inter-dependsniti differs significantly with respect to the original MAP quéng
the system’s components. The blocking concept can be susetwork state space, thus the QR characterizations obtaine
marized as follows: when a queue reaches its maximum[5] is not directly applicable anymore. The contribuisoof
capacity, then the flow of customers entering the queuetifis paper can be summarized as follows:
stopped. Queueing networks with blocking have been used to
model telecommunication and computer systems with limited *
shared resources, such as interconnecting links or state-a
forward buffers, as well as production systems with finite
storage buffers. We point the interested reader to [3],,[16] *
[17], [18] for an extensive bibliography of different bldok
mechanisms that model distinct behaviors of real systems
including computer systems [9], communication systems and
networks [1], [7], and software architectures [2].

Despite the practical applications of blocking queueing
models, there is a lack of robust methodologies for their Throughout this paper we consider a closed queueing net-
solution, which stems from the fact that general blockingrork with routing matrix P such that jobs departing from
gueueing networks are not separable. The problem is wailseqeieue: are directed to queug with probability p;;. If the
if the service processes of the various stations are nogwan capacity of queug is F; andn; denotes the current population
a case of increasing importance to represent real systemsjueuej, then whenn; = F; queuej does not accept in its

complexity illustrate the excellent accuracy of the proposd
approximations on several models of practical interest.

I. INTRODUCTION

we provide a major extension to th@uadratic Reduc-
tion (QR) technique first introduced in [5] by including
blocking.

we introduce approximations based on maximum en-
tropy [11] and a novel minimum mutual information
principle that are shown to accurately predict model per-
formance with only small error that dramatically improve
the quality of the extension of the QR technique for MAP
blocking networks.



. . TABLE |
waiting buffer anynew job before a departure occurs. Here, We syymary oF MAIN NOTATION FOR MAP QUEUEING NETWORKS WITH

consider the Blocking After Service (BAS) and the Repetitiv BAS BLOCKING
Service-Random Destination (RS-RD) mechanisms [3].

. . . b cardinality of the list of blocked queues:

e Blocking After Service (BAS A queuei, if not empty, b; blocking state of nodeé
processes a job regardless of the job population at its B maximum number of queues that can block pn
destinationj. When nodei completes service and nogle I{f zggchgpsf%gﬁsue
is full, nodei suspends any activity (i.e., it is blocked) and K; phases in the MAP service process of quéue
the completed job waits until a departure occurs from node ki phase of the MAP service process of quéue
j. At that moment two simultaneous transitions take place: ;™ f gfbg‘i‘r?:desbslggz?ﬁgbé the tail of .
the completed/blocked job moves franto j (sincej can Head(m) first queue to unblock after a departure frgin
now accept a jobj “unblocks”) and the job that leaves that is not self-routed
j (which effectively “unblocks” server). In a general N number of j‘ijﬁuﬁsﬁetzit\:}vﬁv‘fork
network topology where more than one queue compete for ng number of jobs at queug

sending a job towards a full queye a policy regulating  7(ni, ki, n;, kj, m)  prob. ofn; jobs in queuei in phasek; and
the order in which queues unblock has to be defined. n; Jobs in queuej in phasek; andm blocked
Usually, the First Blocked First Unblocked (FBFU) policy %5 rate of job departures fromto j wheni's MAP
is considered fair: first unblock the queue that was blocked 'S in phasek; leaving it in phaset;

first. In the remaining of this paper when we consider

BAS we assume that it uses the FBFU policy. BAS models ) )
production systems and disk 1/O subsystems [20]. effective to address simultaneously (and very effectivelo

. . N difficult problems: the complex features of blocking netlsor
* Repeiiive Service-Random Destination (RS-RD) A and the complexities introduced by temporal dependence.

queues, i not empty, processes a job reg_ardless Of the The rest of this paper is organized as follows. In Section Il
job populat!on f’ﬂ its destinatiog. If nodej. IS fuII., the we define MAP queueing networks with BAS blocking and
completeq Job |s.rerouted to nodgwhere It receives a develop their analytical characterization by means of tiie Q
new service. During the new service, the job may Selegfate space reduction. Section Ill extends the analysisSto R

T\II cies:;}na:ﬂon thg_t IS tlnollqegegge&t ff_m Its prgvu_)us o"&p blocking. Section IV discusses the performance approx-
ote that according 1o j ocking a node 1S NEVEE, ations and bounds following from the characterization of

gctually bIockeql, bgt It “‘wastes” its service .by repeatlr!ghe QR marginal probabilities and illustrate them on a set of
it. RS-RD blcl)ck|.ng is used to model congestion control 'fhodels with BAS and RS-RD blocking. Section V presents
telecommunications systems [1]. a set of experiments that illustrate the proximity of the two
The above two blocking mechanisms introduce complexigpproximations to exact solutions. Finally, Section VIegv
in the underlying Markov chains of MAP queueing networkssonclusions and outlines future work.
On one hand, RS-RD restricts the original state space, while
preserving its regular structure, on the other hand BASintr |- MAP QUEUEING NETWORKS WITHBAS BLOCKING
duces new states describing the order in which queues grogre We introduce the class of MAP queueing networks support-
sively block once the capacity of the destination node b&sning temporal dependent service. We first present the case of t
full, this information is needed to implement the FBFU ruleBAS blocking mechanism. The RS-RD blocking mechanism
At a higher level, flows in a MAP network with blockingis simpler and it is discussed in Section IIl.
are harder to understand than in a MAP network without We consider a closed MAP queueing network withjobs
blocking because of the additional routing complicatioatthvisiting M/ single-server queues having first-come first-serve
is introduced. scheduling. For each queue its service time process is a
Here, we incorporate additional information in the QRoad-independent Markovian Arrival Process [6]. To reduce
marginal probabilities and obtain a new class of specidliz¢he complexity of the notation, we present for the BAS case
conditions that allows to represent the simultaneous wkblo only where a single queug has finite capacity’; < N and
ing and departure events that happen upon completion fré sending nodes behave according to BAS blocking, while
a node that is full. Such conditions can accomodate MarkoaH other queues # f have infinite capacity (i.e.; = N)
modulated service rates, thus integrating within blockimed- such that they can accommodate all jobs in the network. The
els complex features such as higher-order moments and teyaneralization to networks with several finite capacityugpse
poral dependence yet are not sufficient to result in tightlsu is not difficult and follows an identical argument as shown in
for blocking systems. The two approximation techniques thg]. RS-RD blocking is instead discussed in the general case
we introduce for blocking networks here, i.e., the maximums it does not complicate notation significantly.
entropy method (MEM) and the minimal mutual information .
(MIM), can be used to “correct” the QR bounds by drivind™ tate Space for BAS blocking
the estimation of the equilibrium probabilities of the mbde A summary of the main notation is given in Table I. This is
using nonlinear optimization. This correction shows to beyv consistent with the original notation defined for MAP queugi




networks [5] that it is here briefly reviewed.The serviceqass

at queuei is modeled by a MAP withK; > 1 phases.
It is worth noting that if a queue is blocked, it completely
stops its activity including MAP phase transitions. Notatth
this holds for BAS blocking, but not for RS-RD where a

Finite Capacity

M
Queue 1

queue is never effectively blocked. Furthermore, MAP smrvi ouiea ™
requires to maintain information at the process level on the (2) Model
current service phase at each queue. A feasible netwokk stat
in the queueing network underlying Markov process is a tuple e AT AR
s = (s1,82,...,8Mm) , where for queué # f the local state - u@%/ P [y,
s; = (ni, b, k;) is defined as followsn; is the current queue- | eanio >——@niot— :
length including the job in servicey; is the blocking state . LEEF " el T Queue 3 Active
of nodei (1=blocked, O=active); k € K, is the phase of ) m——
. . . Queue 3 Idle HiPis
gueuei. Conversely, for the finite capacity queyiethe state wpd fi
is sy = (ng,m,ky) wherem = (mq,mo,...,mp) is a list

that holds the sequence bf= ). . b; queues that can be . .
i~ f . (b) State space foN = 3 and F; = 2 assuming queué in phasel. State
unblocked by a departure from quefién states. The indexb | gtation is((n1,m, k1),n2,n3), m = @ is omitted.

thus denotes the current number of blocked queues and ranges

in0,...,B, whereB < M —1 is the number of queuas# f Fig. 1. Example network with 2 infinite capacity exponential queues
that can send jobs tf. Note thatb is not needed since it is and a MAP queue with finite capacity

often assumed in the literature that a finite capacity qusue i

never blocked by itself. The cage = () denotes that no queue

is blocked byf. We denote withH ead(m) the head of the list, transitions are omitted, thus this partition is similarfte state
i.e., the first queue to unblock upon a departure frothat is space where the service at the MAP is exponential with rate
not self-routed, and withldd(m., j) the list resulting from the 1. We point to [5] for figures illustrating the effects of phase
addition of elemenj to the tail ofm. Finally, let Ez 45 be the changes in the MAP queueing network state space. Figure 1(b)
state space of the queueing network assuming BAS blockiglgssifies the activity of queug into “active” (n3 > 0 and

at each node # f that can send jobs tg (p; s > 0). In this b3 = 0), “idle” (ns = 0 andbs = 0), or "blocked” (3 > 0
state space, the Markov process transitions have rates frafgl bs = 1). This classification is useful to understand the

states = (s1,sg,...,sp) 08 = (s'1,82,...,8')) that are different rates of departure from quediacross the state space.
uniquely defined by the rateﬁ-rjh of jobs flowing fromi to ;  The states where queukis active are the only states that
in phasek leavingi in phaseh. contribute to the standard departure transitions out frapue

The size of the infinitesimal generator corresponds to tRe The state((2, [3],1),0,1) in the blocked subspace denotes
cardinality of the related global balance equations. By-cofe case where quegas blocked n = [3]) since queus has
sidering only the population components, the state space Previously completed a job to be sent to quéwehile this was
of a blocking network is a subset of the state space of thdl- As soon as queué completes a job, two simultaneous
same network but with infinite capacity queues. This is lagictransitions take place moving the current staté(®1),1,0)
because all states with; > F; do not exist. On the other in the idle subspace of quedsf the job completed by queue
hand, the order in which queues block needs to be accountelg routed to queue. The current state becomgg, 1),0,1)
for explicitly in 712, which increases the state space cardinalitif? the active subspace of quedeif the completed job is
Thus, the state space of a BAS queueing network can wted to queué which thus restarts |mmed|ate|y service after
smaller or b|gger than in the non_b|ocking case dependi#@b'OCking. Such simultaneous transitions are a distiacti
on the number of gueues and jobs being considered. characteristic of the state space due to BAS bIOCking.

We now give examples of the state space underlying aTo further appreciate the complexity of bound analysis
MAP queueing network with BAS blocking. For the sakdor the BAS state space, Figure 2 illustrates a case where
of simplicity, we omit the state componebf since it can two queues can be blocked. Observe the changes in the
be simply derived, i.e.p; = 1 if and only if i € m. BAS state space level compared to Figure 1. Let us now
We consider an example model with = 3 queues where assumeF; = 1, infinite capacities for queues and 3, and
gueuel is a finite capacity station with MAP service, queue®’ = 3 jobs in the network. For simplicity of graphical
2 and 3 have exponential service and infinite capacitiesepresentation, the phade is omitted being always equal
Figure 1(a) illustrates the model with routing probalsiiti The to 1. Figure 2 shows the totally different structure of the state
exponential queues have rafesand 3, the MAP completes space. When the system is in the stgitel, 1) all queues are
jobs in phasd with rate p. active. If queue2 completes a job, the current state becomes

The underlying Markov process for the case with= 3, ((1,[2],1),1,1) where queue 2 is blockedr{ = [2]). If from
F;, = 2 and assuming queug in phasel, is shown in this state queu& completes a job, the transition leads to state
Figure 1(b). For ease of illustration, MAP phase chand¢l,[2,3],1),1,1), whereboth queues2 and 3 are blocked



queuei is

U= > % wlniking kj,m)

(nj,kj ki;m) ni>1

whereas the effective utilization that describes the &gtiof
a queueexcluding its blocking time is

(a) State space faN = 3 and F; = 1 assuming queué in phase ki=1

1. State notation ig(n1,m, k1),n2,n3), m = 0 and all phases  \yhere the effective utilization [3] of phage is
k1 = 1 are omitted.

Fig. 2. Example model 1 when several queues are blocked Ef% = (n_%:m) nb>§¢mﬂ(ni’ ki nj, ki, m)
Note thatE; = U; if and only if i = f or i cannot be blocked

(m = [2,3]). According to the FBFU unblocking rule, whenby f due to the network topology. The effective utilization
gueuel completes a job, queu® is unblocked first with a takes into account the productive utilization of a queuat i
transition to the stat¢(1, [3],1),1, 1) if the completed job is the period of time the queue is busy and it is not blocked, so it
routed to queug, or to state((1, [3], 1), 0, 2) if the completed can produce useful work. Other measures such as mean queue-
job is routed to queu8. This illustrates transitions that dolengths, throughput, or response times are similarly défine
not exist in non-blocking queueing networks and thus whidror example, the throughput may be obtained as an effective
require specialized characterization for bounding puepo3o utilization divided by the product of mean number of visits
obtain such a characterization, we develop in Theorem 5and mean service times [3].
new class of balance conditions that is able to describe also ) o
the state space illustrated in Figure 2. C. Basic Characterization Results

The first basic characterization result for QR marginal
B. Quadratic Reduction (QR) of BAS State Space probabilities in a BAS setting follows by the equilibrium of

Denote withr(s) the equilibrium probability of state ¢ the MAP service processes. During the period where queue

Epas in the blocking MAP queueing network. We formulatés actively serving a job, the MAP service process behaves at

the quadratic reduction for the BAS case as follows. Wgduilibrium in the same way of the same MAP considered in
consider the following marginal probability isolation, since we are assuming that the queue is never idle

nor blocked. This equivalence introduces a balance between
m(ni, ki, ng, kj, m) (1) QR marginal probabilities relative to different phases.
Theorem 1. The effective utilization of queugfor phasek
which is calledQR marginal probability and describes the joint satisfies at equilibrium
state of queues andj in phasest; andk; while the queues

in m are blocked byf. This formula is immediately obtained 12\4: Z Qf"th - f: Iz(: qf’-kEfl, 2)
by summingr(s) over the states with the considered values of =1, b=l 7 =1, b=l !

ng, ki, nj, k;, andm. The main advantage of the QR marginal A= A=

probability over the original state space representasothat fori=1,...,M andk =1,..., K;.

is scales only quadratically with the total population size  Proof: Consider a partitioning of the state space into two
which is by far the largest parameter of the queueing netwaskbsets:Gi; , where queue is in phasek and its comple-
model specification. Thus, this provides substantial ggvinmentary set of state§; , where queue is in phaseh # k.
with respect to a direct state space evaluation by globahizal By basic properties of Markov processes, the equilibrium
that involvesO(N™) unknown probabilities. probability flux exchanged by, ;, and G, at equilibrium
The goal of the next sections is to develop a characterizatiiust be balanced. However, this is only due to phase changes
of the balance conditions that relate different values ef@R that occur in the MAP, with or without an associated departur
marginal probabilities. Previous work has shown that retest from i. The left hand side represents phase changes moving
between marginal probabilities can be insufficient for aacex the current phase from to any i, whereas the right hand
solution of the queueing network model, but they can b#de is the probability flux due to phase changes that move
exploited to determine bounds on performance indexes usth§ active phase intb. Note that the conditioh # k if j # i
linear programming [5]. We show later in Section IV that thiggnores phase self-routing of jobs that do not change theeact
holds true also for MAP queueing networks both with BA®hase. u
and RS-RD blocking. Another characterization result follows by observing ttre
Common metrics such as utilization, throughput, respontgal population of jobs in each state of the underlying Mark
times, and queue-lengths can be immediately computed fréhain sums taV. This implies that the sum of the conditional
the QR marginal probabilities. For example, the utilizataf ~first moment of queue lengths is constant.



Theorem 2: The QR marginal probabilities for BAS block-forall 1 <: < M,1<j<M,1<k; < K;.

ing satisfy the following constraints The proof is qualitatively similar to the one used for non-
M K, F blocking MAP queueing networks, we point the interested
S5 niw(ng, kiyng, kj,m) = Nn(n;, k;,m) (3) readerto [8, Thm. 4] for a complete derivation.
i=1k;=1mn;=1

D. Marginal Balance Conditions

forall j =1,...,M,n; =0,...,F};, k; = 1,...,K;, and
for all lists of blocked queuem The theorems in the previous section provide a characteriza
Proof: Since the sum of the total population in a state {#0n of basic properties of utilization and queue-lengthshie
constant, we can write QR marginal representation. However, these propertiesrakp
v very loosely on the inter-dependencies between statiath, s
S S nm(s) =N 3 7w(s) (4) as the flows of jobs between queues and the rules of BAS
seSi=1 ses blocking. A strong characterization of BAS blocking and

for any partition of state§ C Ez 45, where we omitn; =0 Job flows is provided by the following marginal balance
since the corresponding term in the summation is zero. Defi@@nditions. Such conditions express (by the QR marginals)
S as the set of states where the blocked queue lishiand the probability flux balance resulting from cuts of the Marko
queue; has populatiom; in phasek;, thus the right hand chain that separate states with a marginal populatiofrom
side becomesVr(n;, k;, m). Denote bys, the components those where queughas populatiom; + 1.

of s different fromn;, k;, n;j, k;j, m. We can equivalently =~ Theorem 4 (Marginal balance): The arrival flow of queue

rewrite the above expression as when the local queue-length is of jobs,0 < n; < F; —1,is
in equilibrium with the departure flow when the queue-length
M K; F; isn; +1, i.e.,
ni, ki,m;, ki, Sk, Nn(n;, ki,m
i=1k;=1 nizzjl sz: ( e T R Tk ) ( 7 ) F; K; Kj K;

6 LY YSES s ¥l (ng, kyni,v,m)

However, the inner summation an, gives the QR marginal 451 "=t k=l h=lv=1mij¢m

J#i
w(ni, ki, nj, kj, m) which proves the theorem. [ | i#f
The above characterization generalizes in a weaker form als Fy Ky Kf K, ok
to second-order queue-length moments. 2 1;::1 ;::1 vgl - egd:(m#l qy; m(ng, k,n;,v,m)

Corollary 1: The second-order joint moments of queue- M Pl K K K
lengths in a MAP network with BAS blocking satisfy S Sl Zf ¢En(ng, v,n +1,k,0)
Ki K; F F j‘;:él‘ ny=0k=1h=1v=1
JF

S5 S35 5 S, ki kg m) = N A

i=1j=1k;=1k;j=1n;=1n;=1m o i kR
j (6) + z_: 2,: Z Z q;; 7(Fr,v,n; +1,k,m)

Proof: Using the same argument of Theorem 2 we have #i;

Ky
Z > quw (Fy,v,ni+1,k,m),

=1p=1m:Head(m)= 1111#}
w#i

M 2 K;
£ (2 ) 7o) =7 £ (o M T2
s€S \i=1 sES k=
thus the result follows immediately settirfj= Epas. Note ©)
that a similar formula holds also without blocking [5]. =
We remark that a higher-order extension of the above theoréon « = 1,...,M andi # f. Wheni = f the expression
holds as well, but it cannot be represented explicitly usiveg becomes
QR marginal probabilities since a ordeformula requires the M F, K, K, K
joint probability of £ queue-length terms, and QR can express Z Z Z Z Z q (nj,/{,nﬁv’qj)
such relations only fok < 2. j=1n;=1k=1h=1v=

The next theorem can be seen as an extension of Theorem 27~

as it defines a relation between the sum of mean queue-lengths MIEPS U E

e _ 4 gms =3 Sy oy quj m(ng,v,np +1,k,0), (10)
of all queues and the utilization of queiiehen a given queue j=1n;=0 k=1 h=1v=
j is in phasek;. i#f

Theorem 3: The sum of the mean queue-lengths of afor eachny =0, ..., Fy — 1. Furthermore, forn; = 0 (equiv.
gueues conditioned on queyebeing in phase; satisfies ny = 0 wheni = f) the above balances admit a stronger form
where they hold true for each phake- 1, ..., K; considered
5 gf: %4: % fiﬂ (s o 15, ey ) > in isolation.
pomy nFOw:lnw_lszlnwﬂ Thws Py 1 87, 1) = Proof: The proof is based on the definition of the equi-
F, F K librium probability flux exchanged between states withand
NY > > > w(ni,ki,n;, kj,m) (8) with n; +1 jobs in queuei. First, consideri # f. The left
m n;=0n;=1k;=1 hand side of equation (9) includes all departures from any



non-empty queug (i.e., n; > 0) toward queue. After these queuej to i, j # i.
departures, the population éfbecomes; + 1, except in the

case wherg = f andHead(m) = 4, i.e., queug is unblocked M L ,
by the departure fronf. In thi ois waiting for = | 2 Gi 2 ()
y the departure rony. In this case, queugeis waiting for IRy P e oy o'l S0l =ns
free space inf and, because of the simultaneous transitions, K K
the population ini remains equal toy;. As a consequence, Lk /
; i _ + 20 2 dp > m(s)
whenj = f, the conditionHead(m) # i must be also true, k=1h=1 """ 8/ >0n/=n; i¢m

this corresponds to the second term of the left side of (9).

The right hand side of the equation considers all departur_esCOnSider now _the SpeCi.al cage- f. The flux I (since'it
from queuei with population equal tar; + 1. After these de- includes all possible transitions from quefi¢o any queug)

partures;’s population becomes;. These departures include:ca" be simplified as follows:

. " . . . M Fj—1K; K;
o Case a: Transitions fromtowards any queug, j # . F= T3 > 5 qk,f;w(s,)
Note that these transitions are always possible because = ;_17.in =0 K=t st =n g T 1) =n; hml £
T

queue; does not have finite capacity, and for quefie
this transition can occur whem; < Fy; this is the first Similarly, the opposite fluxi that describes all transitions that

term of the right side. When queueis full, a transition bring a job from queug to queuef, j # f, is simplified as
from i is still possible if queue is not blocked, that is  follows:

is not in them list; this case corresponds to the second MoK K
term of the right side of (9). G= > a4 > 7(s’)
« Case b: Transitions from nodg to any other nodew, J=LIAf k=Th=1 "7 s":n;>0n; <Fy

w # f, w # i when f is full and nodei: is the first noe that the (9) and (10) would hold also if instantiated for
b!ocked one, that i ead(m) =i These tr§n5|t|ons n; = 0 or n; = 0 only, respectively. In fact, we can give a
trigger a simultaneous transition from queug thus e getailed condition by recalling thatif — 0, then phase
decrgase !ts population te;. This is the third term on yangitions ini are not possible, hence the balante= G
the right side of (9). splits into a set of disjoint probability flux balances, ome f

Let S(k,n;) = {s = (s1,82,...sMm)|si : n < n;, ki = k}. each phase of i. The proof in this case is almost identical
Since the theorem requires; < F; — 1, there always by considering the interface between the sgts,n; = 0) =
exists the related sef(k,n;) = {s = (s1,82,...sMm)[si : {8 = (s1,82,...8Mm)[si : nj = 0,k = k} and S(k,n; = 1).

n, > n; + 1,k. = k}. The equilibrium probability flux A similar argument holds fon; = 0. The proof continues by
exchanged byJ,*, S(k,n;) and UkK:iIS(/g, n;) must be in imposing the equilibrium balancE = G' and by rewriting the
balance because their union is the entire state space. We di& equations in terms of the QR marginal probability. For
for a representation of the exchanged probability flux usirfglditional details, we refer the interested reader to [8nTh
the QR marginal probabilities. The flug from U | S(k,n;) 3] [

to ukK;IS(k, n;) needs to decrease the queue-length of qaeue The above equations show several differences compared to
to n;. By considering that batch completions are not allowethe marginal balances developed for MAP queueing networks
these transitions correspond to the two cases describag abwith infinite capacity [5]. In addition to the obvious coridit

Therefore,F is the following flux of completions: on the stations contributing to the throughput flow beingvact
i.e.,j ¢ m, the last term in the right hand side of (9) describes

the departures from stationfollowing an unblocking event

M F‘ff1 Ki Ki
F= > X ) > aifm(s!) in station f that frees capacity which has priority to use
g=Llj#ing=0k=ls"mni=n;+1np=ns h=1 because ofHead(m) = 4. Thus, this term captures the
M K; T fundamental behavior of a departure frofnthat unblocks
+ - Z ‘ sz—:l L, 12/ .y hz—:l q;; m(s') gueuei. Interestingly, the departure flow froiris regulated in
IELIFELIAS K=t sty =Fy igm = this case by the rate of departure fofthus showing a case of
& Ky M non-product-form behavior where the throughput of a statio
2 2 2 2 q;ﬁﬁ(sl) (11) de eF;]ds on the rate of another station o
v=1p=1 s’:né:nﬁ»l,n}:Ff, w=1l,w#i,w#f p : . N
Head(m)=i We now introduce a new class of balance conditions that de-

scribe the behavior of throughput while quefiés full. These
which excludes the self-routed jobs (i.¢.= ) that naturally balances are related to cuts of the Markov chain underlyiag t
do not decrease; + 1 to n,;. The opposite fluxG needs to queueing network that separate the states shown in Figure 2
increase the queue-length of queuéo n; + 1. Transitions into partitions wheren has different lengtfb. Intuitively, as
towards states whetiehasn; + 1 are allowed provided that the queuef enters into an extended period of time during which it
following conditions hold: the sending quetids not empty remains full, the queues feedirfgprogressively block leading
and if j = f, Head(m) # i so that a simultaneous transitiorto changes in the composition of the ligt. The next theorem
does not happen. The flu¥ represents all transitions fromsummarizes the balance between the rate of change dfie



to queue blocking and the corresponding rate of unblockilhy RS-RD into MAP queueing networks is a reduction of

events due to departures frofn the cardinality of the state space due to the removal of all
Theorem 5: The QR marginal probabilities for states wherstates wheren; > F;. Differently from BAS, there is no
the finite capacity queug is full satisfy need for tracking the order of blocking by the list, since
M B K K K a job_that cannot be delivered i_s_simply re-executed With_out
Z DS > q;";}ﬂ(nj,k,Ff,U,m) blocklng. .the sender queue activity. Thgs, the QR marginal
j=ln;=1k=1h=1v=1 m:j¢m probabilities are immediately expressed in the RS-RD case a
i#f Ybi=0 m(ns, ki,n;, k;), where them list is no longer used being
i alwaysm = (). As stated earlier, we consider throughout this
LM LK Ky Ky section the general case where several queues may have finite
a j=1n;=0 kZ::1 h=1 vzzzl . capacity, i.e.,F; < N for any subset of indexeis We denote
J#f by Frs_rp the state space in the RS-RD chas8ince QR
X > q’;:;?w(nj, v,Fr,k,m), (12) marginals are a restriction of those used in the BAS caset mos

m:y by =b+1 performance indexes including queue len@thand utilization
i U, are defined similarly to the BAS case, where we simply
for all number of blocked queuds= 0,...,B — 2. When substitute the QR marginal probabilities for BAS with those
the number of blocked queuestis= B — 1 we can write the used in RS-RD and summationsenconsider onlym = (. A
stronger condition different definition is instead used for the effective atliion
of queuei in phasek which is given by

M F; K; K; Ky e h M M Ky
Z Z Z Z Z qj:fw(njvkaFfaUvmj) = . Z X ks F;
5;} nj=1k=1h=1v=1 ;;} wolk=1 Bt = Znizl(ﬂ'(niakianiaki)
Ky M K5 b ka) 14
X Z Z q;‘cjz;ﬂ—(FfakaFf’kaAdd(mjvj))v (13) 2'7:1’-77&1’1)1’1>Ozkj:1p”ﬂ.(n“ A J) ( )
=1 m; ’
B SN where the first term sums to the utilization of quéue phase

wherem; is any blocking list withh = B — 1 blocked queues k;, while the other summations represent the probability of
satisfyingj ¢ m;, and Add(m;,j) is a list obtained by observing the destination statignfull. The basic characteri-
adding queug at Jthe tail ofm;. 7 zation of the RS-RD state space holds similarly for the BAS

Proof: Consider a partitioning of the state spaBgs C2S€ exce_pt for the formulas v_vhere the effective utilizat®o
into the following two subsets#, where there are up to involved, i.e., _Th_eorem 1 that is here extended to the RS_—RD
b > 0 blocked queues andl,. ., where the finite capacity case. Due tol limited space we report only proof outllne.sesllnc
queue is full and there are+ 1 or more blocked queues Onthe.general ideas beh|nq the RS-RD proofs are qualitatively
f. The left hand side of (12) represents the probability fluXMilar to the ones used in [3] for the non-blocking case.
flowing through the state space cut associated to departure§heorem6: The utilization levels of queue in its K;
from station; to f that blockj thus adding an entry at the end®hases are in equilibrium, i.e., for each phase < k < K;,
of m. Conversely, the right hand side of (12) is the probability
flux of departures fromf such that at least a statigh# f Zj:l,j#iZhKélqzk,;th + ZhK:iLh#ka,’ith =
gets unblocked thus reducing by one entry the #ist Since _ Z?il,j;éiZhK;IqZ}kEih + Zfél,h#ql}f;k[]f (15)
no more than one queue gets blocked or unblocked at a time,
it follows that the balance fully characterizes the probgbi Proof: (Outline) The proof follows the same steps of
flux balance across the cut that separdfgdrom H,1 which the BAS case. However, (15) differs from the BAS case
proves the equation. because in RS-RD a queue is never effectively blocked. As

Equation (13) considers the case where only a single quell&onsequence, for self-routed jobs the classical utitinat
J (in addition tof) is left unblocked, for any feasible choice ofshould be taken into account. A complete derivation can be
J- In this case, we know that only a departure event fjocan  found in [8, Thm.2']. m
increase the blocked queue list; to Add(m;, j). Thus, we  The following theorem shows that a balance holds between
can apply the same argument used to prove (12) by focusipg marginal probabilities similarly to the one developethie
on the cut that separatesif; 45 the partition having blocking Bas case. This theorem differs from the one for non-blocking
list Add(m;, j) from the rest of the chain, which completesyap networks in [5] only in the fact that it involves a subset
the proof. B of the original state space.

lIl. MAP QUEUEING NETWORKS WITHRS-RDBLOCKING ~ 'heorem 7: The arrival rate at queué when its queue

. . . ngth isn; jobs, ; < F; — 1, is balanced by the rate of
We now characterize MAP queueing networks with RS-RE 9 nil 0<nish y
blocking. For RS-RD, the notation is simpler than the one of __ , _
he BAS case. with essentially no chanaes from the basic M The interested reader can refer to [3] for a recursive espago compute
the > 4 y ! g " g % state space cardinality for a queueing network whergqueles have the
networks without blocking. The main difference introduceeame capacity and RS-RD blocking.



departures when the queue lengtmist 1, i.e., developed in the BAS (or RS-RD) characterizations, ineigdi
the specialized marginal balances foy = 0. Notice that
M F; K; K; K; k,h . . . . ...
Zj:l,j;éianzlZk:th:lzuzlqj‘,i m(ni, u,ng, k) such equations are all linear constraints, mainly eqealiti
_\\M Fj—1Kj Ko ~Ki  kh A second group of linear constraint€n“ < d, imposes
=S i . - g m(ng+ 1,k ng,u ) . L —.
2rgidon=0 1 ks Lt Gog (M ! ()16) obvious conditions that describe in the optimization pamgr
. the feasible values of the terms’ (n;, ki, nj, kj,m) € =¢
forall 1 <4 < M. In the casen; = 0, the marginal balance in order to specify a valid QR marginal distribution. These

specializes to the more informative relation constraints impose, for instance, that the unknowns of the

M F, K, K, kh linear program are probabilities, hence numbers ranging in

2=t i 2oy =1 2 k21 2n 2y (i = 0,u, g, k) [0,1], or that a queue can only be in a single state at a time
= ij‘il i :j;ézfilzf:ilqﬁfﬁ(ni =1,k,n,,h) hence, .95 (n;, ki, n; +c, ki, m) = 0, Ve # 0. A summary

(17) of these basic conditions is given in Table II.
_ , , Let w$, be the guesst® which provides the optimal
which holds for each phase 1 < u < K;, with 1 <i < M. \414e for the objective functiorf,,;. The crucial property
) Proof: A complete derivation can be found in [8, Thmyt the optimization progran® is that its constraints are
3] B satisfied by the exact QR marginal distributien It then
Al_so Theorem 2, Corollary 1 and The_orem 3 of the BAS_casfS"OWS that the exact solutior,,;() is always afeasible
still hold for the RS-RD case by setting = (), the proof is  55|,tion for the optimization progra®, although it may not
qualitatively identical to the BAS case [8]. be necessarily the optimal orfg,; (7S ,). This property leads

opt

Finally, as for the original MAP queueing networks, thg, the following approximation and bounding techniques.
gueue-length of in all its phases satisfies the follows balance.

Theorem 8: The states of queugin phasek and in phase A. Performance Metric Bounds

h are related by the balance First, suppose thaf,,; defines a performance metric of

K; M Fj=I~Ky ~Fyo kb o g interest, such as the utilization of station
Zh:l,h;&kzj‘:l,j;éi n]:OZu:1 ni=1%,;j nim(ng, k,nj, u)

K; Fi  kh_ ‘ K
- Zh:l"h#k;”i:lii’i ram(n, ki k) Fori () =" > 7% (ni, kiyniy ki, m)
M K 1 ~K; ~F  hk
+ Zj:l,j;éiZh:l nj:OZu;IZnizlqi,j m(ni, h,nj,u) k
— M Kj K S Fy - hussFL : or its average queue-length
=D i i 2ahot 21 2on, =145, Domy—o ™ (Tis Ky, ) geq g
K; F; h,k
+ Zh:Lh;ﬁkZm:lqi,i nim(ni, hyni, h)
K; M Fi—-1~K; F; h,k
+Zh:1,h¢k2j:1,j;ﬁizn;:ozui1zni:1qz',j nim(ng, h,n;, u)
Proof: A complete derivation is given in [8, Thn%/].  Then, by construction, minimizing returns a lower bound
fobj(wgi,t) = min fop; (7F) < fopi(m), sincen® = m is

IV. BOUNDABLE APPROXIMATIONS a feasible solution of the optimization program. Similarly

. . ... solving O as a maximization problem returns an upper bound
The fundamental idea behind the proposed approxmatl((){lfﬁ G ) = max fo; (7€) > fop; (). Noting that utiliza-
i

i=1ln;>1

K;
Jorj(m) = Z Z i (ni, ki, i, ki, m)
k

H H : (ﬂ'opt
and bounds is to use the exact characterization developedlfy . S queue-lengths are linear functionsadf, it then
Sections Il and Ill to formulate an educated guess of ﬂ?SIIow !
values of the QR marginal probabilities. We here descri

our methodology for BAS networks, the application to R

s that© can be solved efficiently as a linear optimization
?ogram. Such a solution provides upper and lower bounds
on the performance metrics of a MAP queueing network
Notice that other metrics, such as the effective utilizatay
hff"le throughput, may be defined similarly to the utilization
and queue-length in terms of a linear objective function.
Conversely, response times need to be estimated using'4.ittl
law as ratios of average queue-length and average throtighpu
O - min fobj(ﬂ-G) s.t. Hence, they can be solved as nonlinear global optimization
ARG < b programs or, more easily, estimated indirectly from thertatsu
VI . .
o on queue-length and throughput. This approach to bounding
Cr <d the performance of a MAP queueing network has been also

where€ is the vector of the current guesses for all the Q'F@v_estigated for models without blocking in [5] and we refer
marginal probabilitiesr(n,, ki, n;, k;,m), fo; is a (possi- 10 1tasQR bounds.
bly nonlinear) objective function to be optimized, and the , _

We stress again that such values are guaranteed to be boyrdsadiruc-

constraints a'te of two types. A f'rSt_ group of _ConStra:'m%on if the optimizer returns global optimum forO, as it is always the case
An¢ < b, is the set of all equations and inequalitiesor linear programs used for bounds computation.

model, we assume the value§&;, ki, n;, k;, m) as unknowns
in an optimization progran®. This optimization program
takes the form



B. Approximate Model Solution small subset of such constraints. Therefore, our apprdiéma
is more heavily constrained to be representative of the inode
gnder study. Stemming from this last point, we remark that th

objective functions that allow one to obtain accurate approMain limitation of the proposed MEM compared to the one

imations, noticeably also on cases where the QR bounds 4td11] is that our method requires numerical optimization,

not tight. We here introduce two approximation techniques:Whereas [11] is based on simple closed-form formulas.
In addition to the MEM method, we introduce the MMI

maximum entropy method (MEM) for MAP queueing networks "' ) A
criterion as a new technique for approximating an unknown

and a new principle ofninimal mutual information (MMI). It . o .
is important to remark that, since the QR bounds can always B@bability distribution of a queueing network. For a QR

generated regardless of these approximations, the gapeetwharginal probability distribution, MMI considers the folting
upper and lower bounds provides an independent assessr?g¥fctive function
on the maximum inaccuracy in using MEM or MMI in place (

The second main application of the optimization prog@m
is in approximating the QR marginal probabilities. We defin

of an exact solution. Thus, such approximations are alwaysin

bounded, meaning that the maximum error of MEM or MMl is

the maximum distance from a point lying in between the uppEollowing standard information theory, the argument of the

and lower QR bounds. Furthermore, the objective functiomsinimization is the mutual information of(n;, n;), which

are non-linear, hence one should consider a local optimuwuantifies how much the knowledge on the state of queue

obtained by a nonlinear solver reduces our uncertainty about the state of stajioHowever,
MEM searches for a set of QR marginal probabilitieby noting that for a product-form model the knowledge of the

that maximizes the information content of the distributam state of a queue provides little information on the statehef t

defined by the entropy functioff. To simplify notation, for other stations (for a closed model it only provides an upper

Gly. m.
Z ﬂ'G(ni’ n]) 10g2 ﬂ-G( ™ (nzaan) )

ni,nj.kikj,m nivni)ﬂ' (njvnj)

the rest of this section let boundn; < N — n; that becomes progressively looser sis
c & and M increase), we conclude that the MMI solution may be
w7 (i, ng) = 7 (g, kiyng, kj, m). interpreted as a product-form-type approximation for a MAP

gueueing network. That is, when the mutual information is
minimal, the corresponding marginal probability disttibn

B G G finds the description in which queuésand j are maximally
max H = max | — _ %:k % (ni, nj) logy 7 (ns, 1) independent. Clearly, in networks with blocking the mutual

R information is not in general minimal, since blocking yigld

The values of performance indexes such as utilizations aadstrong dependence between the behavior of two (or even
queue-lengths are then obtained directly from the QR matgimmore than two) queues. However, the fundamental idea of
distribution that maximized7. The rationale behind a max-our proposed method is that the blocking is already strongly
imum entropy solution is that it is known to be exact in gharacterized by our QR marginal balances, hence MMI deals
number of queueing models, noticeably in exponential singlonly with allocating the portion of the probability mass ttha
class closed queueing networks [10]. Notice that a welemains unconstrained. We illustrate this concept below in
known maximum entropy method for queueing networks hagy” example. Notice also that the MMI approach is expected
already been developed in [11] based on the analysis of taebe accurate especially in heavy load, where closed nkswor
GI/GI/1 queue. However, the MEM technique we proposgrogressively approach the behavior of open models dueeto th
differs substantially from the one in [11]. First, the medhoformation of bottleneck stations whose service processgbe
is able for the first time to consider the state a@f the continuously busy, acts as an “arrival process” for the oést
gueues in the network simultaneously, instead of recussivehe network. Open networks are typically less inter-depend
evaluating queues one at a time as in [11]. Importantly, othian their closed counterparts.
technique is also able to consider the impact of autocdioela
in job flows introduced by MAPs, which is ignored in theC: 10y Example
analysis of theGI/GI/1 queue. Indeed, this is a critical To better understand the properties of MEM and MMI,
aspect of a MAP queueing network that cannot be ignoreghnsider the following illustrating example. The model is
being responsible of dynamic bottleneck switch effectgnevcomposed by three queues with exponential servicerate
at equilibrium, that significantly affect the model solutipt]. 12 = 1, 3 = 2. The routing matrix is

MEM optimizes in© the objective function

Finally, and perhaps most importantly, our MEM solution is 0 050 0.50
subject to satisfying the very large set of constraints el P=11 o 0 (18)
in Sections Il and lll, whereas the one in [11] considers a 1 0 0

3\We stress that since here the focus is on approximatiorertian bounds, which is a special case for the topology shown in Figure 1.

one does not need to ensure global optimality of the finallrésworder to By ffer capacities arg”, = 1, F, = F3 = N, with N = 3
have a usable solution. As usual, the gap between primal asidatrmulations bei he iob lation: h’ blocki I"I . is RS-RD
of the optimization program can be used as a measure of thtveehjuality eing the job population; the blocking mechanism Is b .

of fopj (<) with respect to its global optimum. Despite its apparent simplicity, for this model the QR baaind



provide the following estimates of upper boundg’{(**) and We have then obtained the MEM and MMI solutions for
lower bounds ;") on the exact utilizationsl{;) of queue the above model and found them as follows

k: | queue 1| queue 2| queue 3

| queue 1| queue 2| queue 3 Umem™ | 0.4887 | 0.5515 | 0.8464
Upe® | 0.5000 | 0.7500 | 0.9524 Ummio| 0.4818 | 0.4316 | 0.9046
Ue | 0.4828 | 0.4483 | 0.8966 U, | 0.4828 | 0.4483 | 0.8966

Uk 0.4762 ] 0.3333 | 0.7500 which are much closer to the exact distribution that the QR

In this example, the utilization of queweis loosely captured hound solution. Further, we have now
by the QR bounds that leave a gap of abd2¥#% between
the upper and lower limits. That is, the solver is allowed to 7C (i =1,k =1,ny =1k, =1)=0.2618,
allocate the probability mass in ways that vary significantl
with respect Ft)o the peyrformance of)(;ueiuein oti/lerg\]/vorﬁ, Tonem (11 =1, k1 = Ling = 1,k = 1) = 0.0907 (22)
gueue? is not sufficiently constrained by the characterizatiognd
in Section lll. A closer investigation reveals inconsistie:s
?hnetz(;;:rlu;l;?ngth respect to the exact probabilities,, ¢y 7C (ny =1kt = 1,ms = 1,k = 1) = 0.1180),
78 iy =1k =1,n3=1ky =1)=0.1455 (23)
w5 (n1 =1,k =1,ny = 1,ky = 1) = 0.5000, _ , , , .
a which provide a substantial consistency improvement com-
Topt(t1 = 1, k1 =1,n3 = 1,k3 = 1) = 01905 (19) pared to the QR bounds, especially for the novel MMI method.

while for the lower bound
V. NUMERICAL VALIDATION

G
=1,k =1,np=1,ky =1) = 0.
Topt (11 o m2 = 1oke = 1) =00, We illustrate the accuracy of the BAS and RS-RD bounds

”ociat(”l =Lk =1n3=1k=1)=00 (20) on a set of case studies having different level of compleiti
number of queues, and network topology. Throughout the
describe the same state, — 1,10 — 1,n5 = 1, k1 — 1, ks — experiments, we use a combination of exponential service
1,ks = 1) in the original queueing network. In fact, in theProcesses and nonrengwal autocorrelated MAPs. We use the
o’riginal model GLPK linear programming solver to compl_Jte bounds and the
MINOS solver for nonlinear programs required to evaluage th

wnm =1,k = 1,n0 = 1,ks = 1) MEM and MMI approximations. For simplicity of comparison,_

we always use a short-range dependent MAP process with
two-phases having representation [15]

which are both impossible since the two marginal probaddit

= 7T(TL1 = 1,/€1 = 1,713 = 1,/€3 = 1) = 0.1379, (21)

We have verified that such an unconstrained mass can be

allocated exactly by adding t® the following consistency D, = —1.016212022108574 0
constraint 0 —0.015702871508448
D. _ [1.016186165025678 0.000025857082896
m(ng, kj, i ki) = m(ng, kj,ne = N —nj —ng, k), 1= 10.001569887597955 0.014132983910493
(24)

for all choices of the stations # j # t and their states.

. ) . Ll o
This provides the optimal solutionr;;,, = . This imposes This yields a process with momenfs[X] = 1, E[X?] =

that, in a model withM = 3 queues, there are at most two, E[X?] = 400, and positive autocorrelation function =

degrees of freedom in assigning the populatiensand n; 1(2)k such thaip; = 0.300, ps = 0.270, p3 = 0.243, ... On

. . . 1
at the queues, since the population at the last queue will g’?aptop computer, the hardest case study execution times we
automatically set ton; = N —n; —n;. This constraint is |ass than 5 seconds for the QR bounds, about 300 seconds for
0bwc_>us b_ut its integration in the QR marglna_l charactéitf® o nonlinear programs used for MIM/MEM. Note that we
requires in general a cubic number equations for a moqglay 5 single CPU core, nonlinear solvers running on multi-

with M = 3 which is not consistent with the approach thgl,re machines are usually 8-10 times faster, thus the renfin
we have pursued; furthermore, for a model wilh > 4 o) tion can be significantly accelerated.

these constraints cannot be imposed using the QR marginal
probabilities, since one would need to express the state&f
M — 1 queues simultaneously. This example highlights some
consequences of the structural limitation of QR marginabpr  Let us first consider a model composed/Mdf = 5 queues

abilities; this limitation is that they cannot representreotly with N = 10 jobs, capacityF; = 5 for each queue

the allocations of jobs (or the active phases) on more thantiv= 1,..., M, and service processes all equal to the short-
gueues simultaneously. range dependent MAP given in (24). Hence, all stations can

Case Study 1



TABLE Il
CONSTRAINTS IMPOSING BASIC PROPERTIES Oﬁ(ni, ki, nj, kj7 m) INCLUDED IN THE OPTIMIZATION PROGRAMS

K;j

7(ns, ki,nj, kj, m) >0, vf‘ilvf:jzovﬁ;lv}ilvf;:kajzlvm
F; K
Zn;:Oijjzlzmﬂ(njvkjvnjvkjvm) = 1' v?il
K. K; F;
w(nj, k,nj, h,m) =0, v;ﬁlvkilvhil’h#vn;:ovm
K, F K F
w(nj,k,ng,h,m) =0, Vﬁlvkilvn;:ovhélvrjzo n/#njvm
J >
Kj K G
m(ng, k,ni, h, m) =0 v?ilvkilvn;:Ovz!vil,i#jvhzlvnq;:anj+1Vm
Fr—1 K K.  F.:
Zn;:OZh:f]ﬂ(nj7k7nf7h7m) = 01 V£17f¢JVk;1an:ovmm¢0
K . .
m(nj = 0,k,ns, h,m) =0, VMV VMV Y (Ymsjem
K K; F;
w(n;, k,ni, h,m) = 0, VLAV Y —p 1 VI Yl Yl —oYm
K; F; M K; F;
m(ng, k,ni, h,m) =0 ngzlvkilvnj:1Zi;?7léfvhzlvni:N7nijf+1Vm1H€ad(m):j
F K . .
w(nj, k,ni, hym) = w(n;, h,nj, k,m), VI Y, o Y Y Vi Yim
N-nj ~K; K; F;
n(nj, k,nj, k,m) = Zni:’éﬂzh:lw(nj,k,ni, h,m), vjﬂil’j#vkilvn;zovfilvm
w(nj, k,ng, k,m) =0, VMY YT g N =y > SO
y#j
K Fj K; F; .
m(nj, k,ni, h,m) =0, Vg\/[vj]vil,j#ivkilvn;:Ovh:1vni:0 PN —mnj—ng > ZN?I!:? By
YZIFT
1 1 .
matrix
0.8 50‘8
506 Boe 0 0.2500 0.2500 0.2500 0.2500
%M QOA 0.2500 0 0.2500 0.2500 0.2500
g P = {0.2500 0.2500 0 0.2500 0.2500
0.2 0.2
0.2500 0.2500 0.2500 0 0.2500
0 0
i P R T 0.2500 0.2500 0.2500 0.2500 0
(MW Eiex [ Imm B meml[ b Wb Eex [immi B meml i Furthermore, station Capacities are ndy = 5, I, =
(a) Utilization (b) Effective Utilization F3; = Fy = F5 = N so that only stationl has finite

Fig. 3. Case 1 - MAP network with RS-RD blocking

be blocked. The routing matrix is

P =

capacity. The population i& = 10 jobs. Service processes
are again identical short-range dependent MAPs. The eeisult
Figure 4 indicate that the bounds are very effective in aapgu
the performance of the finite capacity queue 1, while more
uncertainty is left on queu&s-5 where the gap between upper

0 0.5000 0 0 0.5000 and lower bounds is approximately up2%. In spite of such
0.5000 0 0.5000 0 0 uncertainty, MEM and MMI again find very accurate results,

0 0.5000 0 0.5000 0 again within a few percent of the exact results, with MMI

0 0 0.5000 0 0.5000 again being slightly better than MEM. This is a relevant tgsu
0.5000 0 0 0.5000 0 since despite its apparent simplicity, the number of pdssib

combinations oin vectors is64 for each state in which queue

This is a case where we compare approximations and bounds |, which is significant. Hence, this experiment sugges
under multiple RS-RD blocking. We see in Figure 3 thahai the MEM and MMI approximation are effective also on

the upper and lower bounds (“ub” and “Ib”,
are not able to generate a tight envelope around the eXBFé

respectivelylases where the portion of the state-space due to the BAS
cedence constraints is non-negligible.

utilization and exact effective utilizations (“ex”). Hower,

both MEM and MMI return almost perfect results withing case Sudy 3

less than2% utilization. Similarly to the toy example, MMI _ i

appears slightly more effective than MEM for capturing the W& now consider a classic central-server-type topology,
probability distribution. Notice also that the MEM solutigs Where queue 1 feeds parallel stations. We assiie= 5,
slightly affected by numerical perturbations due to theyful V = 10, and routing matrix

symmetric routing of this network. 0 0.1000 0.2000 0.3000 0.4000
1.0000 0 0 0 0
B. Case Study 2 P=[1.0000 0 0 0 0
This model differs from Case Study 1 in that we consider 1.0000 0 0 0 0
BAS blocking and the topology is now full mesh with routing 1.0000 0 0 0 0
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