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Abstract-Recently the mean-field method has been adopted 

for analysing systems consisting of a large number of interacting 
objects in computer science, biology, chemistry, etc. It allows for 
a quick and accurate analysis of such systems, while avoiding the 
state-space explosion problem. So far, the method has primarily 
been used for performance evaluation. In this paper, we use the 
mean-field method for model-checking. We define and motivate 
a logic MF-CSL for describing properties of systems composed 
of many identical interacting objects. The proposed logic allows 
describing both properties of the overall system and of a random 
individual object. Algorithms to check the satisfaction relation for 
all MF -CSL operators are proposed. Furthermore, we explain 
how the set of all time instances that fulfill a given MF-CSL 
formula for a certain distribution of objects can be computed. 

I. INTRODUCTION 

In this paper, we introduce a logic and algorithms for 
model-checking mean-field models. This allows very efficient 
model-checking of very large systems, if they consist of many 
similar interacting objects. 

The mean-field method ([1], [2], [3]) works by not consid­
ering the state of each individual object separately, but only 
their average, i.e., what fraction of the objects are in each 
possible state at any time. It allows to compute the exact 
limiting behavior of an infinite population of identical objects, 
and this exact limiting behavior is a good approximation when 
the number of objects is not infinite but sufficiently large. It 
can also be used to calculate the steady-state solution for some 
models. Examples of systems for which the mean-field method 
has been successfully applied include gossiping protocols [4], 
disease spread between islands [5], peer-to-peer botnets spread 
[6], the growth dynamics of individual vertices in scale-free 
random networks [7], etc. 

Thus far, the mean-field method was used for perfor­
mance evaluation of systems, but in this paper we want to 
explore the use of mean-field methods for model-checking such 
systems. Model-checking means checking whether a system 
state satisfies certain properties. It was initially introduced for 
finite deterministic models, for validation of computer and 
communication systems, and later extended towards stochastic 
models and models with continuous time. 

Model-checking of large systems is made difficult by the 
state-space explosion problem. Since the mean-field method 
avoids this problem, it would be helpful if it could also be 
used for model-checking. One challenge for model-checking of 
mean-field models is the fact that they have a continuous state­
space. Another challenge lies in the fact that the underlying 
Markov chain of a random individual is time-inhomogeneous. 

Addressing the above challenges, there is earlier work on 
model-checking models with continuous state variables, for 
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Fig. l. Overview of model-checking MF-CSL. 

example in [8], [9], [10], [11]. To the best knowledge of the 
authors model-checking of time-inhomogeneous CTMCs was 
not fully addressed, however, a number of algorithms limited to 
special cases were recently proposed. In [12] model-checking 
algorithms for the Hennessy-Milner Logic (HML) on time­
inhomogeneous CTMC were proposed under the assumption of 
piecewise constant rates. In [13] model-checking LTL proper­
ties is addressed. Verification of time-bounded CSL properties 
of an individual object within a mean-field model was recently 
discussed in [14]. 

The main contribution of this paper is the introduction 
of the Mean Field Continuous Stochastic Logic (MF-CSL), 
and algorithms for checking MF-CSL properties. An MF­
CSL formula describes a property of the overall model, in 
terms of what fraction of the individual objects satisfy a 
CSL formula on the local model. Thus, checking an MF-CSL 
formula requires first checking CSL formulas on the time­
inhomogeneous CTMC describing the local model. This is 
illustrated in Figure 1. 

The paper is further organized as follows: in Section II the 
a brief overview of the mean-field model definition and mean­
field analysis is provided. The MF-CSL logic is introduced in 
Section III. Sections IV and V provide algorithms for model­
checking local CSL formulas and global MF-CSL formulas 
respectively. Examples are given in Section VI. Conclusions 
are provided in Section VII. 



II. MEAN-FIELD APPROXIMATION 

The main idea of mean-field analysis is to describe the 
overall behavior of a system that is composed of many similar 
objects, via the average behavior of the individual objects. In 
Section II-A we define the local model, which describes the 
behavior of each individual object, and the way to build the 
mean-field overall model that describes the complete system. 
In Section II-B we recall how to compute transient and steady­
state occupancy measures using mean-field analysis. 

A. Model definition 

The individual or local model is defined as follows: 

Definition 1 (Local model) A local model MI, describing 
the behavior of one object is constructed as a tuple (Sl , Q, L) 
that consists of a finite set of K local states Sl 
{81' 82, ... ,8 K }; the infinitesimal generator matrix Q which 
may depend on the overall system state: Sl x Sl X So -+ IR 
(where So is the state space of the global model, to be 
introduced below); and the labeling function L : Sl -+ 2LAP 
that assigns local atomic propositions from a fixed finite set 
LAP (Local Atomic Properties) to each state. D 

Note that self-loops are eliminated. Note also that the generator 
matrix Q is a two-dimensional matrix Sl x Sl and So is 
included in the definition in order to show the dependence 
on the overall system state. 

The states of the local model denote the "modes" an 
individual component goes through during its lifetime; the 
transitions denote the changing between these states. 

Once the local model is built, we use the mean-field method 
to model and analyze the overall behavior of N such objects. 
Instead of modeling each object individually, which would lead 
to the state-space explosion problem, we lump the state space 
and create the overall mean-field model MO from the local 
model MI, as follows: 

Definition 2 (Overall mean-field model) An overall mean­
field model MO describes the behavior of N -+ (Xl identical 
objects, each modeled by MI, and is defined as a tuple 
(SO, Q), that consists of an infinite set of states 

So ={m = (ml' m2," "  mK )I(\ij E {I, . . .  , K}, 
K 

(mj E [0,1]) 1\ (2: mj = I))}, 
j=1 

where m is called occupancy vector; mj denotes the fraction 
of the N individual objects that are in state 8j of the local 
model MI. The transition rate matrix Q(m) consists of entries 
Qs,s' (m) that now describe the transition of fractions of 
objects from state 8 to state 8'. D 

When the number of interacting objects is finite but large, 
the mean-field model is an approximation of the real system 
behaviour. Note that for any finite N the occupancy vector 
m is a discrete distribution over K states, taking values 
in {O, -b, it, . . .  , I}, while for infinite N, the mj are real 
numbers in [0,1]. The matrix Q(m) of the overaIl model is 
the same as Q(m) of the local model MI. 
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Fig. 2. Example of the CTMC describing computer virus spread. 

To illustrate the relation between the local and overall 
mean-field model we address the following example, which 
will be used as running example throughout the paper. 

Example 1 Figure 2 shows a simplified version of the models 
used in [6], which describes the spread of a computer virus. 
States represent the modes of an individual computer, which 
can be not-infected, infected and active or infected and inac­
tive. An infected computer is active when it is spreading the 
virus and inactive when it is not. This results in the finite local 
state space SI = {81' 82, 83} with I SII = K = 3 states. They 
are labelled as infected, not infected, active and inactive, as 
indicated in Figure 2. 

The transition rates ki, k2' k3, k4' k5 represent the 
following: the infection rate ki, the recovery rate for an 
inactive infected computer k2, the recovery rate for an active 
infected computer k5, and the rates with which computers 
become active k3 and return to the inactive state k4• Rates 
k2' k3, k4, and k5 are specified by the individual computer and 
computer virus properties and do not depend on the overall 
system state. The infection rate ki does depend on the rate 
of attack (k 1), the fraction of computers that is infected and 
active and, possibly, the fraction of not-infected computers. 
The dependence on the overall system state should reflect the 
real-life scenario and might be different for different situations. 
We give two examples of how the infection rate can depend 
on the overall system state in typical cases. The infection rate 
might be seen as the number of attacks performed by all active 
infected computers, which is distributed over all not-infected 
computes, that is, ki(t) = kl . :�m. Note that we assume 
here that the computer viruses are "smart enough" to only 
attack computers which are not yet infected, see [15], [6]. 1n 
contrast, epidemiological models usually assume the infection 
rate to be proportional to the fraction of the actively infected 
computers and not to depend on the number of not-infected 
computers, leading to ki(t) = kl . m3(t). 

Given a system of N such computers, we can model the 
average behavior of the whole system through the global 
mean-field model, which has the same underlying structure 



as the individual model (see Figure 2), however, with state 
space So = {m1, m2, m3}, where m1 denotes the fraction of 
not-infected computers, and m2 and m3 denote the fraction 
of active and inactive infected computers, respectively. For 
example, a system without infected computers is in state 
m = (1,0,0); a system with 50% not infected computers and 
40% and 10% of inactive and active computers, respectively, 
is in state m = (0.5,0.4,0.1). Note that So is a simplex in a 
three-dimensional space. 

B. Mean-field analysis 

Given the local model Ml that represents the individual 
object and the overall model MO for N identical objects, 
the behavior of the overall system is approximated using the 
mean-field method. In the following we briefly recall the main 
ideas of the mean-field approach; for more information see [6], 
[2], [1]. The mean-field approximation is based on Theorem 1 
from [16], which states the following: 

Theorem 1 (Mean-field convergence theorem) The 
normalized occupancy vector m(t) at time t tends to 
be deterministic in distribution and satisfies the following 
differential equations when N tends to infinity: 

dm(t) 
� = m(t) . Q(m(t)), given m(O). (1) 

D 

The transient analysis of the overall system behavior can be 
obtained using the above system of differential equations (1), 
i.e., the fraction of the objects in each state of Ml at every 
time t is calculated, starting from some given initial occupancy 
vector m(O). Given the mean-field convergence results, it is 
easy to see that the "limit" local model Ml of a random object 
within the overall system is a time-inhomogeneous continuous 
time Markov chain, whose rates depend on the overall system 
state m(t) via ODEs (1). 

The stationary behavior of the overall system can in some 
cases be approximated using stationary points of the determin­
istic fluid limit, i.e., the unique stationary point of the ODE (1) 
(for more information see [17]). The stationary distribution iii, 
if it exists, is the solution of: 

iii· Q(iii) = 0, with iii = lim m(t). (2) 
t-+oo 

In this paper we consider continuous-time mean-field mod­
els; however, discrete-time models are also often used for 
specific applications. The discrete-time mean-field model is 
similar to the continuous model, however, the local model is a 
discrete-time Markov chain (DTMC). Note that all the results 
in the present paper can easily be adapted to discrete-time 
mean-field models. For more information we refer to [4]. 

While transient and steady-state analysis are very useful 
to analyze the system's behavior over time, they are not 
sufficient to analyze more involved properties, like reachability. 
In the following sections we explore how to obtain more 
information using mean-field models coupled with model­
checking techniques. The aim of the paper is developing the 
basis for model-checking mean-field models, therefore we do 
not discuss the accuracy or applicability of the mean-field 

method and construction of the proper model as such; we 
assume instead that the proper model was constructed before 
applying model-checking and that the validity of the mean­
field approximation has been ascertained. 

III. MEAN-FIELD CONTINUOUS STOCHASTIC LOGIC 

Mean-field models include two layers of interest, namely, 
(i) the overall model itself, which describes the behavior of the 
system in terms of the fraction of local objects in a given state; 
and (ii) the local model, which describes the behavior of a local 
object. Recall that the local object in the mean-field model is 
modeled as a time-inhomogeneous CTMC, hence, Continuous 
Stochastic Logic (CSL) can be used to specify properties 
of interest of the local model MI. Recall the definition of 
CSL [18]: 

Definition 3 Syntax of CSL. Let p E [0, 1] be a real number, 
IXlE {:::;, <, >,::::} a comparison operator, I <;;; 1R>0 a non­
empty time interval and LAP a set of atomic propositions 
with lap E LAP. CSL state formulas <1> are defined by: 

<1> ::= tt I lap I --.<1> I <1>1/\ <1>2 I Sl><lp(<1» I Pl><lp(¢), 
where ¢ is a path formula defined as: 

¢ ::= Xl <1> I <1>1 UI <1>2. 
D 

To define the semantics of path formulas we first recall the 
notion of a path as in [18]. An infinite pathl a is a sequence 

So � Sl -4 S2 � . . .  with, for i E IN; Si E Sl and ti E 1R>0 
such that Q(Si,Si+') (m(2::j=o tj)) > ° for all i. A finite path 

. tQ t, t"_l . a IS a sequence So -7 Sl -7 " , Sh-1 --+ Sh such that Sh IS 

absorbing, and Q(Si,Si+,)(m(2::j=o ij)) > ° for all i < h. For 
an infinite path a, a [i] = Si denotes for i E IN the (i+1)st state 
of path a. The time spent in state Si is denoted by o( a; i) = t;. 
Moreover, with i the smallest index with t :::; 2::;=0 tj' let 
a@t = a [i] be the state occupied at time t. For finite paths 
a with length h + 1, a [i] and o( a; i) are defined in the way 
described above for i < h only and o( a; h) = 00 and o@t = Sh 

for t > 2::h�� tj. PathMI (Si, m) is the set of all finite and 
infinite paths of the CTMC that start in state Si given the 
state m of the overall model Ml and PathM'(m) includes 
all (finite and infinite) paths of the CTMC, which depends on 
the overall system state (global time) if the CTMC is time­
inhomogeneous. A probability measure Pr(m) on paths can 
be defined as in [18]. 

When the local CTMC is time-homogeneous the semantics 
of CSL formulas is well known. However, in any non-trivial 
mean-field model, the transition rates of the local CTMC 
Ml are not constant. According to Definition 1 the rates of 
the local model Ml may depend on the state of the global 
model MO, which changes with time. There are two ways to 
formalize this: the local rates depend on (i) the current state 
m, which changes with time, or (ii) on the global time. While 
the first is more intuitive, it does not allow transition rates to 
depend explicitly on global time. For ease of notation, in the 

1 Note that m(2:J=o tj) is the global state of the overall model MO at 
the time of the i'th transition. 



following we restrict ourselves to models that only depend 
on the overall state. Note that our approach can easily be 
extended to models that explicitly depend on global time and 
the proposed algorithms can handle both cases. 

Since the local model changes with the overall system state, 
the satisfaction relation for a local state or path depends on the 
global state m, as follows: 

Definition 4 Semantics of CSL. Satisfaction of state and path 
CSL formulas for time-inhomogeneous CTMCs is given as 
follows: 

S F in  tt 
S F in  Zap 
S F in  -o<I> 
S F in  <I>1 /\ <I>2 
S F in SNP(<I» 
S F in PNp(¢) 
IJ F in  xI<I> 

Vs E Sl , 
iff Zap E L(s), 
iff S Fz!=in <I>, 
iff S F in  <I>1 and S Fm <I> 2 , 
iff 7rMI (s, Sat (<I> , in)) M p, 
iff ProbM' (s, ¢, m) M p, 
iff 1J[1] is defined, and 
1J[1] Fin(8(0",O)) <I> /\ o(lJ, 0) E f, 
iff :Jt' E f: (lJ@t' F in(t') <I>2) 
/\(Vt" E [0, t')(IJ@t" F m(t") <I>1)), 

where m is the occupancy vector (state of the overall model) at 
time 0, and m(t) is the occupancy vector at time t; f <;;; lR>o is 
a non-empty time interval and Sat(<I>,m) = {s' E Sl : s'-F in  
<I>}. 7rM' (s,Sat(<I>,in)) = LS;ESat(iP,m)7rM1(s,Sj,in), de­
scribes the steady state probability to be in a state from 
Sat( <I>, in), where in is a stationary distribution. 
ProbM' (s, ¢, m) is the probability measure of all paths 
IJ E PathM' (s, m) that satisfy ¢ when the system is 
starting in state s, that is, ProbM1(s,¢,m) = Pr{1J E 
PathM' (s,m)11J F in ¢}. D 

Although m is referred to as the m vector at time 0, this is 
only for ease of discussion, without loss of generality. In fact, 
the m argument to F is just the global state at the time at 
which one checks the satisfaction relation. This is illustrated 
in the above definitions for X and U, in which satisfaction at 
a future time t' is denoted by writing F m(t'). Throughout the 
definition, m(t) is the occupancy vector at future time t, which 
can be obtained by solving the ODEs (1) for time t with m 
as initial condition. 

Recall that since not in all models the mean-field approx­
imation is valid for the steady-state; clearly, the steady-state 
operator should only be used for models in which it is. 

The properties of interest of the mean-field model differ 
from the properties which can be described by CSL; therefore, 
in order to reason at the level of the overall model in terms 
of fractions of objects we introduce an extra layer "on top of 
CSL" that defines the logic CSL for mean-field models, which 
we call MF-CSL. The latter is able to describe the behaviour 
of the overall system in terms of the behaviour of random local 
objects. 

Definition 5 Syntax of MF-CSL. Let p E [0,1] be a real 
number; and ME {:S;, <, >,�} a comparison operator. MF-

CSL formulas W are defined as follows: 

W ::= tt I -oW I WI /\ W2 I [NP(<I» I [SNP(<I» I [IF'NP(¢)' 

where <I> is a CSL state formula and ¢ is a CSL path formula. 
D 

We have introduced three expectation operators: [Np (<I> ), 
[SNP(<I» and [IF'Np(¢), with the foIlowing interpretation: 

• [Np ( <I» denotes whether the fraction of objects that 
are in a (local) state satisfying a general CSL state 
formula <I> fulfills M p; 

• [SNP (<I» denotes whether the fraction of objects that 
satisfy <I> in steady state, starting from the current 
distribution of objects, fulfills M p; 

• [IF' Np ( ¢) denotes whether the probability of taking a 
¢-path from a given distribution of objects over local 
states fulfills M p. 

The interpretation of the probability operator [IF'Np(¢) can be 
rephrased as the probability of a random object to satisfy path­
formula ¢. The formal definition of the MF-CSL semantics is 
as follows: 

Definition 6 Semantics of MF-CSL. The satisfaction relation 
F for MF-CSL formulas and states m = (ml, m2,· · · , mK) E 
So of the overall mean-field model is defined by: 

m F tt 
m F-ow 

V m E So, 
iff m Fz!= W, 

m F Wl/\ W2 iffm F Wl/\ m F W2, 

iff 
j
t

l 
mj . fnd(Sd==iP)) M p, 

iff 
j
t

l
mj '7rMl(sj,Sat(<I>,m))) Mp, 

iff 
j
t

l 
mj . ProbMI (Sj, ¢, m)) M p, 

where Sat(<I>,m), 7rM(s,Sat(<I>,m)), ProbM'(s,¢,m) are 
defined as in Definition 4; and fnd(s;F=iP) is an indicator 
junction, which shows whether a local state Sj E Sl satisfies 
formula <I> for a given overall state m: 

f d {I, if Sj F in  <I>, n (S;F=iP) = ° if Lt. in '" , i Sj v- '±'. 

D 

To check an MF-CSL formula on the global level, the local 
CSL formula has to be checked first, and the results are then 
used on the global level. As discussed above, the local model 
Ml is a time-inhomogeneous CTMC, i.e., transition rates vary 
with the state of the overall model MO, which makes model­
checking on the local level non-trivial. We discuss model­
checking CSL formulas on the local model Ml in Section IV. 
The algorithms to compute the satisfaction of the MF-CSL 
formulas on the global model are presented in Section V. 



Example 2 To illustrate the expressive power of MF-CSL for 
mean-field models, consider the following MF-CSL formulas 
for the virus spreading model, as introduced in Example 1: 

1) To define atomic propositions on the level of the 
mean-field model the operator [MP(lap) can be used. 
If the system is considered infected if more than 80% 
of the computers are infected, this can be expressed 
as [>o.s(infected). 

2) The property "the probability of a random computer 
to be infected in steady-state is higher than 10%" is 
expressed as follows: [S>O.l (infected). This property 
might be rephrased as "the fraction of computers, 
which are infecled in steady slale is al least 10%". 

3) The property" the probability of an infected computer 
to recover (that is, change state from infecled 10 nol­
infected) wilhin five time unils is less than 40%" is 
expressed as [IP <0.4 (infected U[0;5] nOI-infecled ). 

IV. CHECKING CSL FORMULAE ON THE LOCAL LEVEL 

In this section we first recall algorithms for model-checking 
CSL on time-homogeneous Markov chains in Section IV-A. 
The CSL operators which require a different approach for 
the time-inhomogeneous local model are discussed in Sec­
tions IV-B, IV-C, and IV-D. The satisfaction set development 
for a given CSL formula on a local model Ml is addressed in 
Section IV-E. 

A. CSL for lime-homogeneous CTMCs 

All CSL operators can be divided into two groups: 

• time-independent operators: lap2, -., I\. 
• time-dependent operators: PMP and SMP' where PMP 

includes path operators X and U. 

The CSL operators can be nested according to Definition 3. 
Model-checking of the CSL formula is done by building the 
parse tree and performing the satisfaction set development of 
the individual operators recursively, as described in [18]. 

All time-independent CSL operators can be checked using 
the standard methods (see [18]) due to the independence of 
the results on time. Therefore, model-checking these operators 
is not included in the further discussion. 

Properties that include the Next operator are rarely used in 
a real-life scenarios, therefore, we omit the discussion of such 
formulas and refer to [19] for algorithms for checking the CSL 
Next operator on the local time-inhomogeneous CTMC. 

A discussion on the steady-state operator on the local 
mean-field model Ml is provided in Section IV-D. 

Since the main chaIlenge lies in model-checking the time­
dependent operators, let us recaJl the interval until formula 
<PI U[t"t2]<P2 for an arbitrary time-homogeneous CTMC M, 

as in [18]. For model-checking such a CSL formula, we need to 
consider all possible paths, starting in a <PI state at the current 
time and reaching a <P2 state during the time interval [tl ' t2l 

2Note that the atomic property could be defined as a time-dependent 
operator, however according to Definition 2, it belongs to the time-independent 
group. 

by only visiting <PI states on the way. We can split such paths 
in two parts: the first part models the path from the starting 
state 8 to a <PI state 81 and the second part models the path 
from 81 to a <P2 state 82 only via <PI states. We therefore need 
two transformed CTMCs3: M[-'<P1l and M[-'<PI v<p2l, where 
M[-'<P1l is used in the first part of the path, for t E [0, tIl and 
M[-'<P1 V <p2l is used in the second, for t E [tl,t2l . In the 
first part of the path, we only proceed aJong <PI states, thus 
aJl states that do not satisfy <PI do not need to be considered 
and can be made absorbing. As we want to reach a <P2 state 
via <PI states in the second part, we can make all states that 
do not fulfill <PI absorbing, because we are done as soon as 
we reach such a state. 

In order to calculate the probability for such a path, we 
accumulate the multiplied transition probabilities for all triples 
(8, 81, 82), where 81 F <PI and is reached before time t1 and 
82 F <P2 and is reached within time t2 - t1' Note that this can 

only be done for time-homogeneous CTMCs. 

ProbM(8, <PI U[t"t2]<P2) = 
'" '" 11'M[�iP1] (t ) . 11'M[�iP1 ViP2] (t - t ) (3) � � 8,81 1 81,82 2 1· 

Hence, CSL until formulas can be solved as a combination 
of two reachability problems, as shown in Equation (3), namely 

M[�iP1]() d M[�iP1ViP2]( )  d 11'8,81 t1 an 11'81,82 t2 - t1 that can be compute 
by performing transient anaJysis on the transformed CTMCs. 
Note that Equation (3) is valid for tl > 0 and t2 > 0, if t1 = 0 
the first reachability problem 11';'!l�iP1] (t1) is omitted. 

B. Single until for lime-inhomogeneous CTMCs 

Due to the time-inhomogeneity of the local mean-field 
model, standard methods for model-checking timed operators 
can not be used. Recently, model-checking algorithms for a 
time bounded fragment of CSL were proposed in [14]. We 
adapt the model-checking algorithms presented in [14] for use 
on the local CTMC Ml of a mean-field model. 

In the following we discuss model-checking of non-nested 
CSL interval until formulas on a time-inhomogeneous CTMC. 
This can occur in MF-CSL either being used in the expec­
tation operator [MP(PMQ(<P1 U[t,h]<P2)) or in the expectation 
probability operator [IPMp( <PI U[hh]<P2) or expectation steady 
state operator [SMP(PMQ(<P1 U[t1,t2]<P2))' Note that due to the 
restriction to single until formulas, the validity of <PI and <P2 
does not depend on time. 

The core idea of CSL model-checking of until formulas as 
explained in the previous section remains unchanged for time­
inhomogeneous CTMCs. However, due to time-inhomogeneity 
it is not enough to only consider the time duration, but the 
exact time at which the system is observed must be taken into 
account. Hence, we add time t' to the notation of a time­
inhomogeneous reachability probability 11';,!� (t', T) to denote 
that we start in state 8 at time t' and reach state 81 within 
T - t' time units. 

3We reuse the notation for a modified CTMC from [18], where the formula 
in the brackets refers to the set of states which are made absorbed 



An arbitrary until formula <h U[tl h] <1>2 is then again 
solved by computing two reachability problems on the trans­
formed local models Ml[.<1>I ] and Ml[.<1>l V <1>2] , respec­
tively: 

ProbM' (8, <1>I U[t"t2] <1>2, m) = 

� � M' [�'h](o t ) . Ml [�<!>IV<!>2](t t - t ) � � 7rS,Sl ,1 1Ts1,s2 1, 2 1· 

(4) 

Note that the first reachability probability always has zero 
as a starting time since we assume that m is the starting 
distribution4. 

In the following we describe how to compute the reacha­
bility probability 7r�: (t', T) for an arbitrary modified CTMC 
and a given occupancy vector m that is observed at time t = O. 
Note that this can be used for both modified CTMCs Ml [.<1>1] 
or Ml[.<1>1 V <1>2] ' as needed in (4). We use Kolmogorov 
equations to perform the transient analysis on the modified 
CTMC, as described in [14]. 

Let II' (t', t' + T) be the probability matrix of the modified 
local CTMC, where II�,81 (t', t' + T) is the probability of being 
in state 81 at time t' + T, given that we were in state 8 at 
time t'. In order to find the transient probability the forward 
Kolmogorov equation is solved with the identity matrix as 
initial condition II(t', t' + 0): 

dII' (t' t' + T) 
d(T) 

= II'(t', t' + T) . Q'(m(t' + T)), (5) 

where Q' (m( t' + T)) is the rate matrix of the modified CTMC. 

Due to the modifications made in the local model, the tran­
sient probability matrix II' (t', t' + T) contains the reachability 
probabilities 7r�: (t', T) for all possible states 8 and 81 .  

?nce the reachability probabilities 7r�:[�<!>I] (0, t 1)  and 

7r�)2�<!>1 V<!>2] (tl' t2
1 
- tl) have been calculated using (5), the 

probability ProbM (8, <1>1 U[h h] <1>2, m) can be computed ac­
cording to Equation (4), which allows to check the satisfaction 
relation of a given occupancy vector m according to Defini­
tion 6. 

Keeping the occupancy vector m and time t' as initial 
conditions of the mean-field model, the validity of a CSL 
formula may change when it is evaluated at a later moment 
in time t E [t', 8] , where 8 is a predefined upper bound of the 
evaluation time. In the following we discuss how a reachability 
problem 7r�� (t, T) depends on its evaluation time t while T 
is kept constant. 

First, the probability matrix II' (t', t' + T) is derived ac­
cording to Equation (5), where t' is predefined. Next, the 
ODE describing the dependence of the transient probability 
on time t is derived by combining the forward and backward 

4For models which depend on global time this needs to be 

7r��[ �<I>,1 (to, tl)' where to indicates that the system is observed at global 
time to. 

Kolmogorov equations using the chain rule: 

dII'(t�! + T) 
= -Q'(m(t)) . II'(t, t + T) 

+ II'(t, t + T) . Q'(m(t + T)). 
(6) 

Finally, the time-dependent probability matrix II'(t, t + T) 
can be obtained by solving Equation (6) with initial condition 
II' (t', t' + T). This can be done either analytically or numer­
ically, e.g., with the tool Wolfram Mathematica [20] as used 
in the current paper. 

As mentioned above, the validity of a local CSL until 
formula may change when the system is evaluated at a later 
moment in time t due to the changing overall state. The time-

I 
dependent probability ProbM (8, <1>lu[hh] <1>2, m, t) to take a 
<1>1 U[t, ,t2] <1>2 path in the local model Ml, when starting in 
state 8 at time t, can be computed similar to Equation (4), by 
taking into account the time t that has elapsed since the initial 
condition m was observed: 

ProbM' (8, <1>I U[t"t2] <1>2, m, t) = 

� � 7rM' [�<!>I](t t + t ). � � 8,81 ' 1 (7) 

Note that using Kolmogorov equations for solving reacha­
bility problems on the local models Ml is efficient due to the 
fact that the state space is usually quite small (see [14]). 

C. Nested Until for time-inhomogeneous CTMCs 

The method described in the previous section can be used 
when both <1>1 and <1>2 do not depend on time, i.e., when we 
do not have nested until formulas. 

In the following let us consider the following nested until 
formula: PtxlP(<1>I U[to,T]ptxlq(<1>2U[t"t2]<1>3)). In order to solve 
a nested until formula the corresponding parse tree has to be 
built, as in the time-homogeneous case, and the satisfaction 
sets of all sub-formulas need to be computed. The satisfaction 
set of the sub-formula r = Ptxlq( <1>2U[h,t2] <1>3), however, 
changes with time. To compute this set for a given t E [to, T] , 

I 
first ProbM (8,<1>2U[t1h]<1>3,m,t) needs to be computed for 
all 8 E Sl according to Equation (7). Then the time-dependent 
satisfaction set of r is given by: 

Sat(r,m,t) = {8 E Sl I ProbM' (8,r,m,t) Mp}. (8) 

Having computed this set then in principle allows to model­
check the nested until formula as a combination of two 
reach ability problems, as in Equation (4). When replacing <1>2 
by r in this equation it becomes clear that model-checking 
a nested until formula requires computations on the modified 
CTMC Ml[.<1>1 V rj. This is however not trivial, since the 
satisfaction set of r is time-dependent which results in a 
modified CTMC that also changes with time. 

1) Time-varying set reachability: In the following, we 
describe how in general a time-bounded reachability problem 
7rM[�I\ vr2] (t', T) with time-dependent formulas r 1 and r 2 
can be solved, similar to [14]. Note that t' indicates the starting 



time and T the duration of the time interval we are interested 
in. 

At first we find the so-called discontinuity points, i.e., the 
time points To = t' ::; Tl ::; T2 ::; . . .  ::; Tk ::; Tk+l = T + t', 
where at least one of the satisfaction sets changes. Then we 
do the integration separately on each time interval [Ti' THI 
for i = 0, ... , k. 

To ensure that only fl states are visited before a f2 state 
is reached, we need to modify the CTMC Mt for each time 
interval as follows. First we introduce a new goal state s*, 
which remains the same for all time intervals. Then, all f 1 and 
f2 states are made absorbing and all transitions leading to f2 
states are r<raddressed to the new state s*. Give�this modified 
CTMC M, the transient probability matrix II' (Ti , TH1) is 
found for each time interval using the forward Kolmogorov 
equation, according to Equation (5). 

Upon "jumps" between time intervals [Ti-1, Ti] and 
[Ti' TH1] it is possible that a state that satisfied fl in the 
previous time interval does not satisfy f 1 in the next. In 
this case the probability mass in this state is lost, since this 
path does not satisfy the reachability problem anymore. In the 
case that a state remains f 1 or a f 1 state is turned into a 
f2 state the probability mass has to be carried over to the 
next time interval. This is described by the matrix ((Ti) of 
size (IStl + 1) x (lstl + 1) constructed in the following way: 
for each state s E st which satisfies of 1 !\ of 2 before and 
after Ti it follows ((Ti)s,s = 1. For each state s E st 
which satisfies of 1 !\ of 2 before Ti and f 2 after Ti we have 
((Ti)s,s* = 1. For the new goal state s* the entry always 
equals one «((Ti)s*,s* = 1), and all other elements of ((Ti) 
are O. 

The probability to reach a f 2 state before time T has passed 
when starting in a of2 state at time t' is given then by the 
matrix T( t', t' + T) : 

T ( t' , t' + T) = II' ( t' , T1) • (( T1) . II' (Tl , T2)· 
((Tl) ' " ((n) . II'(Tk, t' + T). 

(9) 

The probability to reach the goal state s* is unconditioned 
on the starting state by adding 1 for all f2 states: 

7r[�I\ vr2] (t' t' + T) =T (t' t' + T)+ s,s* '  s,s* , 
(10) 

:n.{s E Sat(f2,m,t')}. 

The way of calculating reach ability probabilities as de­
scribed above is based on the method proposed in [14]. The 
only difference is in the way of considering the probability 
mass which reaches the goal state. In the mentioned paper 
the state space is doubled and all goal states are considered 
separately, which increases the computational complexity and 
does not add any extra information. In our approach only one 
extra state is added in order to simplify the calculations. 

Another way of reducing the computational complexity 
would be to lump all f 2 states and all of 1 states in the model 
itself. However, in the case when the satisfaction sets of f 1 
and f2 change with time the state space of the modified local 
model will change at each discontinuity point, which would 
require more complicated calculation of (9) and (10). 

2) Reachability probability as a function of time: To evalu­
ate a nested until formula for varying points in time t E [t'; 8], 
in the following we adapt the two components of Equation (10) 
to allow for varying evaluation points. 

Since only the first and the last component of T(t', t' + T) 
depend on t', we rewrite Equation (9) for ease of notation: 

T(t', t' + T) = II'(t', Td· A(Tl' Tk) . II'(n, t' + T), (11) 

where A(Tl' Tk) = ((T1)· II'(T1, T2) .. · .. II'(n-l, Tk)-«(Tk). 
To explicitly take into account the change of T( t, t + T) 

with time, the following differential equation is constructed 
using forward and backward Kolmogorov equations: 

dT(t t + T) - -

�t = -Q(t) · T(t, t + T) + T(t, t + T)· Q(t + T), 
(12) 

where Q(t) is the rate matrix of Mt. Then in order to calculate 
T( t, t + T), the above is solved for t E [t', B] . Note that when 
during the integration either t or t + T reaches a discontinuity 
point Ti, the computation has to be stopped, T(t, t + T) has to 
be recomputed; the computation is resumed and ODE (12) is 
used until the next discontinuity point. The complete algorithm 
for this is given in the appendix. Note that the number of the 
discontinuity points is limited by the depth of nesting of the 
until-operator, which is low in practice, therefore the numerical 
complexity of the algorithm, described above is not an issue. 

The time-dependent reachability probability can be com­
puted as follows: 

7r1�' vr2] (t, t + T) =Ts,s' (t, t + T)+ 
:n.{s E Sat(f2,m,t)}. 

(13) 

Recall that the second component of this equation is also time­
dependent and has to be reconsidered at each discontinuity 
point. 

D. Steady-state operator 

In the following we discuss how to model-check the steady 
state operator Stxlp( <1:» for a given overall distribution m. Recall 
that this is only meaningful for mean-field models which are 
known to be also valid for the long run behaviour. 

Since the long run behavior of the individual object reflects 
the behavior of the whole model, the stationary distribution 
iii of the overall model can be used as the steady-state 
distribution of the local model 7rM' (s, s j, iii). Therefore, given 
the satisfaction set Sat( <1:>, iii) of the formula <1:>, which can be 
found as will be explained in the next section, the steady state 
operator can be checked according to Definition 4: 

7rM(s, Sat(<1:>, iii)) = L 7rMI (s, Sj, iii) = L iiij. 
sjESat(iJ>,m) sjESat(iJ>,m) 

(14) 

The steady-state probability does not depend on time, 
therefore, the satisfaction relation on the steady-state operator 
does not depend on time and the probability of the formula to 
hold remains constant at all times: 

7rM(s, Sat (<1:> , iii), t) = L iiij. (15) 
sjESat(iJ>,m) 



E. Satisfaction set development for the local model Ml 

The satisfaction set of a CSL fonnula on a time­
inhomogeneous CTMC is constructed using a parse tree [18], 
as in the time-homogeneous case. First the satisfaction sets of 
the sub-fonnulas have to be developed. For time-independent 
operators nothing changes compared to [18], therefore we do 
not discuss this here. For time-dependent operators both the 
satisfaction set for a given time tf and the time-dependent 
satisfaction set for a given time interval [tf, B] can be computed, 
as follows. 

For a given time tf and the overall system state m we obtain 
satisfaction set of the probability operator: 

Sat(PMP(¢),m) = {s I ProbM1(s,¢,m) [><]p}, (16) 

where ProbMI (s, ¢, m) is given by Equation (4). According 
to Equation (14) the satisfaction set of the steady-state operator 
is as follows: 

Sat(SMP(<I»,m) = {s I (17) 
SjESat(iJ>,m) 

The time-dependent satisfaction set is developed similarly, 
but Equations (7) and (15) are used for the probability and 
steady-state operator respectively: 

Sat(PMp(¢),m,t) = {s I ProbM(s,¢,m,t) [><]p}, (18) 

Sat(SMP(<I»,m,t) = {s l L Tnj[><]p}. (19) 
sjESat(iJ>,m,t) 

V. MF-CSL MODEL-CHECKING ON THE GLOBAL LEVEL 

Model-checking MF-CSL formula consists of two parts: 
checking the satisfaction relation for individual states and 
developing the satisfaction set of a given MF-CSL formula 
\It. Both parts include CSL model-checking on the local 
level, which is a non-trivial task if the local model is time­
inhomogeneous, as has been discussed in Section IV. In this 
section we proceed with the satisfaction relation and show how 
to build the satisfaction set of MF-CSL operators on the overall 
model MO. 

A. Checking the satisfaction relation for individual states 

Given the results on the local level, checking individual 
states of the global model can be done by straight-forward 
application of Definition 6. We briefly discuss checking the 
satisfaction relation between a given occupancy vector m and 
expectation operators in the following. 

For the expectation operator [Mp( <1» the satisfaction set of 
the local CSL formula is used in order to define the indicator 
function, which allows to check the following inequality: 

(t mj . Ind(Sj'p'ffiiJ» ) [><] p. 
)=1 

For the expected probability operator [IF'MP (¢) we check 

(t mj . ProbM1 (Sj, ¢, m)) [><] p, 
)=1 

I 
where the probability ProbM (s, <1>, m) is computed as de-
scribed in Section IV. 

Since the long run behavior of an individual object reflects 
the behavior of the whole model, checking the satisfaction of 
a steady-state MF-CSL fonnula [SMP( <1>, m) simplifies to the 
following expression: 

K 

L JrM (Sj, Sat(<I>,m, t)) · mj = JrM (s, Sat(<I>,m, t)). 
j=l 

Hence, the expected steady-state operator on the global level 
mirrors the steady state operator on the local level, when 
the steady-state exists (see [17]). Therefore the stationary 
distribution Tn of the global model is used as steady-state 
distribution of the local model and the expected steady-state 
operator is checked using Equation (14): 

B. Satisfaction set development 

Traditionally, the satisfaction set of a given fonnula is the 
set of states of the model which satisfies a given fonnula. In 
the context of MF-CSL model-checking, this would result in 
a set of all occupancy vectors m satisfying a given MF-CSL 
formula. While such a set can be built for time-independent 
MF-CSL operators, it is not a trivial task for time-dependent 
operators, since the model-checking on the local model Ml 
would have to be done without knowing the initial conditions, 
i.e., the occupancy vector. Theoretically speaking, in some 
cases the general solution of the ODEs (1) can be used, 
however, in practice these solutions are not easy (or even 
impossible) to find. Furthennore, the procedure of model­
checking time-dependent CSL operators often includes numer­
ical evaluation, therefore, using the general solution seems not 
feasible. 

However, once the initial occupancy vector is fixed, the 
time instances where a MF-CSL fonnula holds when evaluated 
at later times t E [0, B] can be found. From this point of view, 
the conditional satisfaction set of the MF-CSL fonnula for a 
given occupancy vector m and time interval [0, B] is defined 
as: 

cSat(\It,m,B) = {t E [O,B] I m(t) F \It}. (20) 

In the following, we discuss how to develop the conditional 
satisfaction set of MF-CSL expectation operator. Table I 
summarizes the equations which define the satisfaction set 
of the expectation operators. The algorithms for calculating 
satisfaction sets are given in the following. 

A set of inequalities defines the constraints on the sat­
isfaction set of the expectation operator cSat([Mp<I>, m, B). 
To construct these inequalities one has to find the satisfac­
tion set Sat( <1>, m, t) of the local CSL state formula <I> (see 
Section IV-E). 

Since Sat( <1>, m, t) changes with time, the calculation is 
done piecewise, taking into account the discontinuity points 
° < T1 < T2 < ... < Th < B, where at least one state of the 
local model leaves or enters the satisfaction set. 



MF-CSL operator Set of inequalities to build cSat(lJ!, m, 0) Requires computation on M 

IJ! = [MP(<I» 
l}= mj(t)· Ind�Ti;;:�I(m,t)J Mp, 

) = 1 J Sat(<I>,m,t) �it) 
= m(t)Q(m(t)), 

'hi E [0,8] 

IJ! = [SMP(<I» { l, L: mj(t).mjJ MP, 
sjESat(ifJ,m,t) Sat(<I>,m,t) 

�t) 
= m(t)Q(m(t)), 

IJ! = [IPMP(</» { ljtl mj(t)· ProbMI (sj,</>,m, t)J M p, Ml Prob (sj,</>,m, t) 
dm(t) 

= m(t)Q(m(t)), 
TABLE 1. CONDITIONAL SATISFACTION SET DEVELOPMENT FOR THE MF-CSL FORMULAS 

The indicator function Ind�:i;;:�](m, t), which shows 
whether a local state Sj satisfies fonnula <1>, is then defined 
on each time interval h; TH1J. The inequality is constructed 
at each time intervaJ [Ti; TH1J  according to Definition 6. 

The satisfaction set is developed as follows: for each time 
intervaJ the constraints on the occupancy vector m(t) are found 
by solving the respective inequaJities, where t E [Ti; TH1J .  
Recall that ODEs (1) defines all possible occupancy vectors 
in the time intervaJ [Ti; TH1J .  These are checked against the 
above constraints and the time intervaJs at which the occupancy 
vector satisfies the inequaJities are added to the satisfaction set. 
Note that in most cases only a numericaJ solution of ODEs (1) 
is available. 

As mentioned in Section V-A, the steady-state operator 
on the globaJ level mirrors the steady-state operator on the 
10caJ level.s Therefore, for developing the satisfaction set 
of the global MF-CSL fonnula [SMP(<1>,m) the probability 
JrM (s, Sat( <1>, in), t), as found applying Equation (15), is used 
to build the respective inequalities. Note that this probability 
does not change with time. The overall distribution, given by 
the ODEs (1), is then checked against the above inequalities, 
and aJl the time instances where the inequalities are satisfied 
are added to the satisfaction set. 

To construct the inequalities for cSat ([[f'MP </>, m, B) one 
has to find the probability measure ProbM' (Sj, </>, m, t) of all 
paths that satisfy </>, when starting in state Sj (as given in Equa­
tion (7)). Note that in nearly aJl the cases ProbM (Sj, </>, m, t) 
can only be solved numerically. The inequalities describing 
cSat([IPMP</>' m, B) are constructed using Definitions 5 and 6. 

The remaining MF-CSL operators can be checked as 
follows: 

• w = tt then cSat(w,m,B) = [O,BJ; 
• w = W1l\W2 then cSat(w,m,B) = cSat(wl,m,B)n 

cSat(w2, m, B); 
• W -,Wl then cSat(w , m, B) [0, BJ \ 

cSat(wl,m,B). 

5Recall that for time-inhomogeneous local CTMC the steady-state operator 
can only be used in a limited number of cases, because the stationary 
distribution of mean-field models can be approximated using stationary points 
of the ODEs (1) only if the model is well-behaved (for more information see 
e.g. [17]). 

By nesting fonnulas more complex measures of interest 
can be specified. Model-checking of nested MF-CSL formulas 
does not differ from CSL model-checking, and the parse tree 
of the MF-CSL formula W is built as for CSL formulas and 
the model-checking procedure is invoked recursively. 

VI. EXAMPLES 

In this section some examples of checking MF-CSL for­
mulas against a given occupancy vector m and finding the 
satisfaction set of MF-CSL fonnula are described. We use the 
model given in Example 1. Before starting the calculations we 
need to define the parameters of the model: the infection rate 
ki, the recovery rate for inactive infected computers k2, the re­
covery rate for active infected computer k5, and the rates with 
which computers become active k3 and return to the inactive 
state k4 (see Figure 2). As was discussed in Section II-A, the 
rates of the 10caJ model may depend on the overaJl state of 
the system. In the following example the infection rate depends 
on the number of active infected computers, which spread the 
virus to the not-infected computers. The rate of infection for 
one computer is as follows: 

k*(t) = k . m3(t) 
1 1 ml(t) ' 

where m( t) = (ml (t), m2 (t), m3 (t)) represents the fraction of 
computers in each state, and kl is the attack rate of a single 
active infected computer. 

Then Theorem 1 is used to derive the system of ODEs (1), 
that describes the mean-field model: 

-klm3(t) + k2m2(t) + k5m3(t), 
(kl + k4)m3(t) - (k2 + k3)m2(t), 
k3m2(t) - (k4 + k5)m3(t). 

(21) 

The coefficients that are used in the following example are 
given in Setting 1 in Table II. 

Let us consider the following fonnula 

W = [IP <O.3 (not infected U[O ,l] infected ) 
and a predefined occupancy vector m = (0.8, 0.15, 0.05). 

In order to check the satisfaction relation m F w the 
following three steps are taken: 

• using the ODEs (21) caJculate the time-dependent 
rates of the local model Ml; 



• perfonn the CSL 
local model Ml 
F rabMl (s, not infected 
all states S E Sl; 

model-checking on the 
in order to compute 

U[0,1 ] infected,m) for 

• use Definition 6 to check the satisfaction relation m F 
w. 

The only time-dependent rate of the local model is k�(t) 
kl . :�(�) , where ml(t) and m3(t) are the solution of the 
ODEs (�f) with m as initial condition. Therefore the transition 
rate matrix Q(m(t)) equals (- k1 . m3 (t) 

Q(m(t)) = k2ml (t) 
k5 

To find F rabMl (s, not infected U[0,1 ] infected, m) 
th h b 'l 't bl Ml [�not infectedVinfected] (0 1) e reac a 1 1  y pro em 7r8 , 8 1  , 

Ml [infected] ( ) I d 
. 

al ' 7r 8 , 8 ,  0, 1 has to be so ve accordIng to the gonthm 
described in Section IV-B. The local model Ml is modified 
and all infected states are made absorbing. The Kolmogorov 
equation is used to calculate the transient probability matrix 
of the modified model, which consists of the reachability 
probabilities: 

(0.91  
II'(0, 1) = � 0.09 0) 

6 � .  
The probability of the until fonnula 

¢ = not infected U[O,I ] infected 

to hold for each starting state is as follows: 

F bMl ( A-. -) = 
Ml [infected](O 1) + Ml [infected](O 1) TO 81, ¥{, m 7rS 1 , S 2  ' l 7rS 1 , S 3  , 

0.09; F rabM (s2,¢,m)) = 0; F rabM (s3,¢,m)) = O. 

According to Definition 6, the weighted sum of the entries 
of the occupancy vector m and the respective probabilities in 
the local model define the expected probability [[F'(¢):  

K , 
L: mj . F rabM (Sj, ¢, m) = 0.8· 0.09 + 0.15· 0 + 0.05· 0 = j=1 

0.072 < 0.3. As one can see the occupancy 
vector m = (0.8,0.15,0.05) satisfies the formula 
[[p <0.3 (not infected U[0,1 ] infected ). 

As was discussed in Section V, the satisfaction 
on the global MF-CSL formula may change 
with time. Let us consider the same formula 
W = [[p <0.3 (not infected U[0,1 ] infected ) and occupancy 
vector m = (0.8,0.15,0.05). In the following we calculate 
the satisfaction set cSat(w, m, 20) on the predefined time 
interval [0,20]. 

The calculation of the time-dependent probabilities 
F rabMl (s, not infected U[0,1 ] infected, m, t) is done as de­
scribed in Section IV-B. The model Ml is modified so the 
infected states are made absorbing. The transient probability 
II(O, 1) is calculated as described above. Forward and back­
ward Kolmogorov equations are used in order to construct 
the ODEs, describing the time-dependent transient probability 
of the modified model (see Equation (6)). These ODEs are 
solved using II(0,1) as initial condition. The solution of 

Parameter Setting I Setting 2 
Attack k ,  0.9 5 
Inactive computer recovery k2 0 . 1 0.02 
Inactive computers getting active k3 0.01 0.01 
Active computer returns to inactive k4 0.3 0.5 
Active computer recovery ks 0.3 0.5 

TABLE II. PARAMETER SETTINGS. 

probability 
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Fig. 3. The green solid line shows the probability at state 
81 ProbM' ( 8 1 , not infected U IO , I ] infected, ffi, t) . The red dashed 
line shows the time-dependent expected probability for the formula 
IEIF' < 0 . 3 \not infected U IO , I ] infected) . The time-dependent probability 
ProbM ( 8 1 , tt UI0 ,0 . 5] infected, ffi, t) at state 81 is presented by the blue 
dotted line. 

the ODEs defines the required reachability probabilities. The 
probabilities F rabM' (s, not infected U[0,1 ] infected, m, t) are 
calculated using Equation (7). The time-dependent probability 
F rabM' (Sl, not infected U[O,l] infected, m, t) is depicted in 
Figure 3. Starting at states S2 and S3 this probability equals 
zero at all times, since these states do not satisfy nat infected. 

To calculate the satisfaction set cSat(w, m, 20) we con­
struct the equation describing the dependence of the expected 
probability [[P (not infected U[0,1 ] infected ) on time: 

K 
M' _ _ M' -L: mj· F rab (sj,¢,m,t) - ml(t)· F rab (sl,¢,m,t) + 

j=1 
m2 (t) . 0 + m3 (t) . O. The above probability is also 
depicted in Figure 3. As one can see, the formula 
[[P <0.3 (not infected U[0,1 ] infected ) holds for any time t 
between 0 and 14.5412, therefore, Sat(w,m) = [0, 14.54 12). 

In the following we discuss a more involved example, 
which describes the "good" behavior of the system from the 
point of view of the mal ware developers. The parameters of the 
model used in this example are given in Setting 2 in Table II. 
We check the following satisfaction relation: 

(0.85; 0. 1; 0.05) F [>0.s (P>0 9 (infected U[0,1 5] 

(P>0 8 tt U[0,0.5] infected ) ) )  1\ [<0 1 active. 

The parse 
be constructed 

tree 
and 

of 
the 

this formula 
sub-fonnulas 

to 



[MP (P>0 9 (infected U[0 ,15] (P>0.8tt U[0 ,0 5] infected))) 
and W2 = [<o.l(infected) have to be checked. 

To model-check WI we first check the CSL formula 
<1> = P>0.9 (infected U[0 ,15] (p>0.stt U[0 ,0.5] infected)) on 
the local level. And again, the formula is split and the 
time-dependent satisfaction set of the sub-formula <1>1 = 

(P>o.stt U[0 ,0.5] infected) is calculated. 

Similarly to the previous example, the probability 
ProbM' (8, tt U[0 , 0.5] infected, m, t) is calculated for all states 
8 E So. In Figure 3 this probability at state 81 is depicted; the 
probabilities at states 82 and 83 equal to one, since these states 
are already infected. We see that the time-dependent satisfac­
tion set is Sat( <1>1, m, t) = {82' 83} for all t E [0, 10.443] and 
Sat(<1>l,m,t) = {81,82,83} for all t E ( 10.443,15] . 

The next task is calculating the probability 
ProbM' (8, infected U[0 ,15] <1>1 , m ) . The reachability 
probability for the time-varying satisfaction set of <1>1 is 
calculated following the algorithm described in Section IV-C. 
We first calculate all discontinuity points To = 0, Tl = 10.443 
and T2 = 15. An extra state 8* is added and an indicator 
matrix ( (T1) is constructed: ((T1) 8 * , 8 *  = 1, ((T1) 8 1 , 8 2 = 0 
for all 81, 82 #- 8*. The transient probabilities on time 
intervals [0, 10.443) and ( 10.443, 15] are calculated using 
forward Kolmogorov equation: 

(0.53 0 
II' (0, 10.443) = � � 

o 0.47) o 0 
1 0 ' 
o 1 

rr'( 10113,15  - 10113) � (� � � �) 
Equation (9) is used to calculate Y (O, 15) :  

Y (O, 15) � (I o 0 
o 0 
o 0 
o 0 

o

n 
Equation (10) is used in order to calculate the reachability 
probability for each state 8 E So: 
7r�� [:infectedV<l>l](O, 15) = 0.47; 7r�

2 
� [:infectedV<l> l](O, 15) = 1; 

l ' l ' 
M [�infectedV<l>,] (0 15) - The b b 'l ' t  7r 83 , 8 *  , - l .  pro a 1 1  y 

ProbM' (8, infected U[0 ,15] <1>1, m) is calculated according 
to Equation (4), and equals to 0, 1, and 1 for states 81,82, 
and 83 respectively. Therefore the only states satisfying the 
formula P>0.9 (infected U[0 ,15] <1>I) are 82 and 83. 

The inequality for checking whether the given occu­
pancy vector m satisfies the MF-CSL expectation formula 
[>0 s (P>o 9 (infected U[0 ,15] (P>0.8 tt U[0 , 0 5] infected))) is 
then as follows: 0.85· 0 + 0.1 · 1 + 0.05· 1 > 0.8, which does 
not hold, therefore, m F WI. 

As one can easily see, m F [<o.l(active) holds for 
m = (0.85; 0. 1; 0.05), however, according to Definition 6, 
m F WI A W2, since m F WI. 

VII. CONCLUSIONS 

In this paper, we have introduced a logic and algorithms 
for doing model-checking of mean-field models. 

The mean-field method allow efficient modeling of systems 
consisting of a large number of identical interacting compo­
nents, by describing not each individual component, but their 
average. Since the details of the individual components are 
no longer visible in a mean-field description, existing logics 
are not suitable to express their properties. Therefore, we have 
introduced a new logic, called MF-CSL. This logic expresses 
properties of the global model, in terms of what fraction of 
objects satisfies local properties, where the latter are CSL-like 
properties of the individual objects. 

Checking the local properties is challenging because the 
models of the individual objects are time-inhomogeneous 
Markov-Chains, as their parameters depend on the global state. 
We have adapted results from [14] to obtain algorithms for this, 
and building on this we have obtained algorithms for checking 
the global properties for a given global state, and for obtaining 
the time interval(s) in which a global property is satisfied. 

A main limitation of the current algorithms is that they are 
not suitable for checking time-unbounded properties. Future 
work could aim to resolve this. However, the convergence of 
the mean-field model is not necessarily uniform in time, which 
means that for many models the mean-field approximation is 
not good in the limit of large time, in which case algorithms 
dealing with unbounded time are of course meaningless. A 
similar remark holds for steady-state properties; we have 
included algorithms for them in the current paper, but again 
these are only meaningful for models of which it is known 
(through means that are beyond the scope of this paper) that 
the mean-field approximation is valid for large time. 
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ApPENDIX 

In the following the algorithm for calculation time­
dependent reachability probabilities for a varying satisfaction 
sets of the sub-formulas is presented. First, the following three 
steps have to be taken to prepare the piece-wise integration: 

1) All the discontinuity points t' = To < Tl < , .. < 
Tk < Tk+l = 0 + T are found. In addition the points 
T[ = Ti + T are considered for all i = 0, 1, . . .  , k 
and p re(Tf) is defined as the largest Tj preceding T[ 
and post(Tf) is defined as the smallest Tj after TI. 

2) The probability matrices II/(Ti,THl) and 
II' (p re(Tf) , Tf) are calculated for all i < k 
using the forward Kolmogorov equation. 

3) For each discontinuity point Ti, the matrix ((Ti) 
is computed as defined in Section IV-C, for all 
i = 1,2, . .  , k . 

When integrating Equation (12) for all t E [t', OJ, due to 
the discontinuity points, we may not have a single solution 
Y( t, t + T) that can be used for all values of t. For the 
intervals between discontinuity points, Y(t, t + T) is given 
by the solution of ODE (12). At each discontinuity point 
Y(Ti' Ti + T) is recalculated and the integration is resumed 
until the next discontinuity point is reached. 

At the first discontinuity point, i.e., To = t', Y(t',t' + 
T) is given by Equation (9), and for all To :::; t :::; t* = 
min{Tl,post(T6) - T} Y(t, t + T) is given by the solution of 
ODE (12). Then Y(t*, t* + T) is recalculated, depending on 
whether t or t + T hit a discontinuity point Ti. 

• If t* = Ti, then Y(Ti; Tn has to be recomputed as 
follows: 

Y(Ti,Tf) = II/(Ti,THl) ' A(THl,p re(Tf)) 
' II/(p re(Tf), Tn· 

The integration of the ODE (12) is resumed 
and Y(t, t + T) is calculated for Ti < t :::; 

min{THl,post(Tf) - T[ + Td until the next discon­
tinuity point is reached. 

• If t* + T = Ti, then to account for the changes 
at the discontinuity point Y(Ti - T; Ti) has to be 
multiplied on the right by ((Ti). The integration of 
the ODE (12) is resumed and Y(t, t + T) is calculated 
for Ti - T :::; t :::; min{post(Ti - T), THI - T} until 
the next discontinuity point is reached. 

This procedure is repeated until the time bound of the 
evaluation t = 0 is reached. 


