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Abstract—Replication is a widely used technique to pro-
vide high-availability to online services. While being an
effective way to mask failures, replication comes at a price:
at least twice as much hardware and energy are required
to mask a single failure. In a context where the electricity
drawn by data centers worldwide is increasing each year,
there is a need to maximize the amount of useful work done
per Joule, a metric denoted as energy efficiency.

In this paper, we review commonly-used database repli-
cation protocols and experimentally measure their energy
efficiency. We observe that the most efficient replication
protocol achieves less than 60% of the energy efficiency
of a stand-alone server on the TPC-C benchmark. We
identify algorithmic techniques that can be used by any
protocol to improve its efficiency. Some approaches improve
performance, others lower power consumption. Of partic-
ular interest is a technique derived from primary-backup
replication that implements a transaction log on low-power
backups. We demonstrate how this approach can lead to
an energy efficiency that is 79% of the one of a stand-
alone server. This constitutes an important step towards
reconciling replication with energy efficiency.

I. INTRODUCTION

Replication is a widely used technique to boost avail-
ability and sometimes performance of applications. De-
spite the interest received from the research community
and the extensive literature that has resulted from this
effort, an angle that remains relatively unexplored is that
of energy efficiency of replication, or the amount of
useful work done per Joule. In the context of a replicated
database, energy efficiency is measured by the number
of committed transactions per Joule, or equivalently, the
throughput of committed transactions per Watt.

The design of replicated databases (and systems in gen-
eral) should adhere to the principle of proportionality [1]:
the power consumption of a replicated database should
be proportional to its performance. Energy efficiency cap-
tures the principle of proportionality but is more general:
two systems may be power-proportional although one is
more energy-efficient than the other.

At first, replication and energy efficiency seem con-
tradictory: replication typically requires hardware redun-
dancy, and the more components there are in a system, the
more energy it will consume. However, high availability
requirements of many current online applications paired
with mounting concerns about the amount of electricity
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drawn by data centers worldwide call for techniques that
accommodate both redundancy and energy efficiency.

This paper makes three contributions: First, we review
commonly used replication protocols and experimentally
measure their energy efficiency. Second, we assess the
impact of several software techniques designed for im-
proving energy efficiency. Third, we compare the im-
provements on energy efficiency from software techniques
to hardware techniques (e.g., using low-power servers as
opposed to high performance servers).

We consider three classes of replication protocols used
to replicate a database service: state machine replication
(SMR), primary-backup replication (PBR), and deferred-
update replication (DUR). State machine replication is
a well-established technique that executes every opera-
tion at each replica in the same order. SMR requires
equal participation of every replica in the execution, and
sequential execution of each operation. Primary-backup
replication differs from state machine replication in im-
portant aspects in our context: operations are executed
by a single server, the primary; the other servers, the
backups, simply apply state changes forwarded by the
primary. Deferred update replication allows execution of
operations in parallel, thereby enabling better utilization
of the computing resources. Due to lack of coordination
during execution, some operations may have to be rolled
back.

We consider two techniques to enhance efficiency of
replication protocols: one improves performance of DUR,
the other decreases the energy consumption of PBR. We
have chosen to focus on deferred update replication and
primary-backup replication as these techniques proved
to be the most efficient ones, with PBR sporting lower
energy cost than DUR. Although these techniques are
presented in the context of two particular approaches, they
are general enough to be applied to other protocols.

Energy awareness has been previously addressed in
distributed systems by using low-power servers (see Sec-
tion VII). However, to be best of our knowledge no prior
work has considered improving energy efficiency using
algorithmic modifications to replication protocols. In this
paper, we carry out an extensive evaluation of the energy
efficiency of various replication protocols intended for
database applications and propose techniques to enhance



their efficiency.

Experimental evaluations of the protocols on the TPC-C
benchmark confirm the common belief that maximum
efficiency is obtained at peak load. This is because current
servers are not power-proportional: idle servers draw a
significant proportion of the power they draw at peak
load [1]. Our findings also suggest that while efficiency
can be gained via software techniques (algorithmic mod-
ifications to protocols), the best efficiency is obtained
with a hybrid approach that we denote as PBRZyb, a pro-
tocol derived from primary-backup replication. PBR} ,
combines algorithmic modifications of primary-backup
with a high-end server as the primary, and low-power
devices as the backups. Thanks to its hybrid design, this
protocol reaches a maximum efficiency that is 79% of the
maximum efficiency of a stand-alone server on the TPC-C
benchmark.

The gains in energy efficiency provided by the pro-
posed techniques will naturally depend on the considered
workload. However, we believe that hybrid approaches
constitute a promising solution to reconciling energy
efficiency with replication.

The remainder of the paper is structured as follows.
Section II defines our system model and reviews some def-
initions. Section III presents common replication protocols
and highlights their main differences. We experimentally
measure the energy efficiency of the considered protocols
in Section IV, and propose energy-aware algorithmic
modifications in Section V. We present our hybrid ap-
proach and measure its efficiency in Section VI. We
discuss related work in Section VII and conclude with
Section VIII.

II. SYSTEM MODEL AND DEFINITIONS

We consider a system composed of a set of client
processes and a set of database server processes. We as-
sume the crash failure model (e.g., no Byzantine failures).
A process, either client or server, that never crashes is
correct, otherwise it is faulty. In the replication protocols
we present in the paper, up to f process are faulty.

Processes communicate using either one-to-one or one-
to-many communication. One-to-one communication uses
primitives send(m) and receive(m), where m is a mes-
sage. Links can lose messages but are fair-lossy: if both
the sender and the receiver are correct, then a message
sent infinitely often will be received infinitely often. One-
to-many communication relies on atomic broadcast, with
primitives a-bcast(m) and a-deliver(m). Atomic broadcast
ensures three properties: (1) if message m is a-delivered
by a process, then every correct process eventually a-
delivers m; (2) no two messages are a-delivered in dif-
ferent order by their receivers; and (3) a message that is
a-bcast by a correct process will eventually be a-delivered
by that process.

The system is partially synchronous: the execution
goes through asynchronous and synchronous periods. In
asynchronous periods, there are no bounds on the time
it takes for messages to be transmitted and actions to be
executed. In synchronous periods, such bounds exist but
are unknown. We assume that the synchronous periods are
long enough for the replicated system to make progress.

III. REPLICATION PROTOCOLS

In this section we present three database replication
protocols, each one representative of a different class
of protocols: state machine replication, primary-backup
replication, and deferred-update replication. These proto-
cols ensure strict serializability [2]: the execution of client
transactions against the replicated service is equivalent
to a sequential execution on a single server, where each
transaction seems to have been executed instantaneously
at some point between its invocation and response.

In the discussion that follows, we assume that clients
interact with the replicated system by means of stored
procedures. Stored procedures are installed in the servers
before they are instantiated by the clients. Clients create
a transaction by selecting an existing stored procedure
and providing the parameters needed by the procedure.
Stored procedures enable efficient transactions, executed
with one round of communication between clients and
servers. These transactions are typical in online transac-
tion processing workloads since they avoid the cost of
client stalls.

A. State Machine Replication

State machine replication is a technique typically used
to replicate a (non-transactional) service [3]. It provides
clients with the abstraction of a highly available service
by replicating the servers and regulating how client com-
mands are propagated to and executed by the replicas: (i)
every correct replica must receive every command; (ii)
replicas must agree on the order of received and executed
commands; and (iii) the execution of commands must
be deterministic (i.e., a command’s changes to the state
and results depend only on the replica’s state and on the
command itself).

State machine replication has been generally considered
too expensive in database settings [4] since it requires each
replica to execute transactions sequentially in order to
guarantee deterministic execution. Concurrent execution
is important to hide the latency of disk operations (e.g.,
fetching a data item from disk). Forcing transactions to
execute sequentially, therefore, could result in unaccept-
able stalls due to I/O. If the database fits in the main
memory of servers and disk accesses can be avoided dur-
ing transaction execution, however, then a single-threaded
model becomes a viable option, as demonstrated by early
and recent work on in-memory databases (e.g., [5], [6]).



In our state machine replication protocol, clients submit
transactions by atomically broadcasting to all replicas a
stored procedure’s unique identifier and the parameters
that correspond to the stored procedure. Upon delivering
such a request, each replica executes a local transaction
and responds to the client. The client completes the
request as soon as it receives the first response.

B. Primary-Backup Replication

In typical primary-backup replication [7], only the
primary server receives transaction requests and executes
transactions. After executing one or more transactions,
the primary propagates to the backups the changes in
state created by the transactions. Backups receive the
state changes from the primary and apply them without
re-executing the transactions. After the backups have
acknowledged the processing of the state changes, the pri-
mary responds to the client. Primary-backup has two ad-
vantages with respect to state machine replication: trans-
action execution at the primary can be multi-threaded,
which may be important in multicore servers, and backups
do not have to execute the transaction, which is advanta-
geous from an energy standpoint in case of transactions
that execute many read operations and update operations
over a small dataset.

In the absence of failures and failure suspicions (i.e.,
“normal cases”), our primary-backup protocol handles a
transaction 7" using a procedure similar to typical primary-
backup protocols, as described above: (i) the client sends
T to the primary database, (ii) upon reception of 7, the
primary executes 7', commits 7T’s changes to its local
database, and forwards 7’s update statements (expressed
as a stored procedure) to the backups, (iii) the backups,
upon receipt of the updates, execute and locally commit
them before sending an acknowledgment back to the pri-
mary, (iv) the primary waits to receive an acknowledgment
from all backups and notifies the client of the transaction’s
success. The notification contains the transaction’s result,
if any.

To ensure that backups process transactions in the
order defined by the primary, transactions are tagged with
sequence numbers. Transaction execution is concurrent
at the primary and sequential at the backups. To avoid
deadlocks at the primary in the presence of concurrent
transaction execution, we may have to abort certain trans-
actions. When this happens, the primary forwards an abort
notification (a no-op) to the backups. This notification is
sent back to the client after all backups have acknowl-
edged it, similarly to how a normal transaction is handled.
In doing so, we ensure agreement on the outcome of the
transaction, even in the case of a failure at the primary.

When an operational node, the primary or a backup,
suspects the failure of a node, it stops accepting new
transactions and requests a membership change excluding

the suspected node [8]. Membership changes are handled
by an atomic broadcast service to ensure that replicas
agree on the sequence of group configurations, and the
primary tags each transactions with the identifier of the
current membership. In doing so, we avoid situations
where backups would handle transactions from old pri-
maries.

Since our protocol is speculative, i.e., the primary com-
mits transactions locally before receiving the acknowl-
edgments from backups, the newly elected primary must
ensure that all replicas in the new membership resume
normal operations in the same state. Where possible,
the new primary sends missing update statements and
abort notifications to those backups that need to catch
up (the new primary is either the primary or a backup of
the previous group configuration). If this is not possible
(each replica only caches a limited number of executed
transactions), the new primary sends a snapshot of its
entire database. If a failure occurs during recovery, the
procedure is restarted.

C. Deferred-Update Replication

Deferred-update replication is a “multi-primary”
database replication protocol, where every replica can
both execute transactions and apply the state changes
resulting from the execution of a transaction in a remote
node [4]. To execute a transaction, a client chooses one
replica and submits the transaction to this server—as
discussed previously, in our protocol, the client submits
a stored procedure’s unique identifier and corresponding
stored procedure’s parameters.

During the execution of the transaction, there is no
coordination among different replicas. After the last trans-
action statement is executed, the transaction’s updates
are atomically broadcast to all replicas. Atomic broadcast
ensures that all replicas deliver the updates in the same
order and can certify the transaction in the same way.
Hence, transaction certification is a sequential procedure
that is carried out in the order defined by atomic broadcast.

Certification guarantees that the database remains con-
sistent despite the concurrent execution of transactions at
different replicas. A transaction 1" passes certification and
commits at a replica only if 7" can be serialized with other
committed transactions, that is, only if the items read by
T have not been modified in the meantime; otherwise
T is aborted. Determining whether the items read by T’
have been overwritten in the meantime is achieved by
considering the sequence of transactions that committed
between the time 7' started its execution and until it is
delivered by the atomic broadcast service. DUR protocols
usually certify update transactions only [9], in contrast, we
certify both update and read-only transactions to ensure
strict serializability.

Similarly to primary-backup replication, transactions
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are executed by a single node in deferred-update repli-
cation. In workloads where transaction updates are the
result of large queries and complex processing, executing
a transaction at a single node is more advantageous than
executing it at all replicas, as in state machine replication.
Deferred-update replication improves on primary-backup
replication by allowing all servers to execute transactions.

In Fig. 1, we summarize the normal case operation of
the presented replication protocols. With SMR (Fig. 1(a)),
(1) clients atomically broadcast their transaction to the
databases, (2) the replicas sequentially execute and com-
mit the transactions in the order they are delivered by
the atomic broadcast service, and (3) the client waits to
receive the first answer sent by the replicas.

With PBR (Fig. 1(b)), (1) clients send their transaction
to the primary; (2) the primary executes the transaction,
commits the changes to its local database, and forwards
the resulting update statements to all backups; (3) upon
receipt, the backups apply the updates to their state and
acknowledge this fact to the primary; (4) once the primary
receives acknowledgments from all backups, it can send
the corresponding answer to the client. In contrast to
SMR, transaction execution is multi-threaded at the pri-
mary. In Fig. 1(b), the execution of 75 can be concurrent
with the execution of 77, it is the database at the primary
that will ensure proper serialization of the transactions.

Finally, with DUR (Fig. 1(c)), (1) a client sends its
transaction to any replica; (2) the selected replica executes
the transaction and atomically broadcasts the transaction
along with state updates; (3) upon delivering a transac-
tion, replicas execute a certification test to ensure that
committing the transaction induces a strictly serializable

An illustration of the replication protocols in the normal case, where 77 and 7% are two stored procedures.

execution (this certification is carried out using the pa-
rameters of the stored procedure to determine the set
of items read); (4) if the transaction passes certification,
its updates are committed to the local database, and the
transaction’s answer is sent back to the client. Otherwise,
updates are discarded and an abort notification is sent
to the client. Similarly to PBR, replicas can be multi-
threaded. In addition, DUR allows transactions to be
executed concurrently at different replicas.

IV. MEASURING ENERGY EFFICIENCY

In this section, we discuss how the replication protocols
are implemented, present the experimental setup, and
measure the energy efficiency of the protocols.

A. Implementations

We implemented all replication protocols in Java and
use a Paxos implementation called JPaxos' as the atomic
broadcast service. JPaxos supports command batching and
the execution of multiple instance of consensus in parallel.
In the experiments below, we rely on a designated quorum
to reduce the number of servers required by the atomic
broadcast service from 2f+1 to f+1 in the normal case.
The f remaining nodes are only used when failures occur.
We set JPaxos’s batching timeout to 1 millisecond and the
maximum batch size to 64KB. With these settings, JPaxos
is never the bottleneck in our experiments.

With PBR and DUR, the updates of a transaction are
expressed as a stored procedure (just like the transaction
itself). More specifically, each transaction is composed of

Uhttps://github.com/JPaxos.



two phases, a query phase and an update phase. The query
phase only reads the database, and given a database state,
executing the query phase of a transaction 7' uniquely
determines the update phase of 7', a no-op for read-
only transactions. In DUR, the certification test relies on
parameters of the stored procedures.

B. Setup

The setup consists of 3 machines running CentOS 6.4
connected with a 48-port gigabit HP ProCurve 2910al
switch. Each server is a dual quad-core 2.5GHz Intel
Xeon L5420 with 8GB of memory. Two machines run
the in-memory Apache Derby 10.10.1.1 database and
a designated quorum of JPaxos; clients execute on the
third machine. This setup tolerates one crash failure, that
is, f is equal to 1. We measure the drained power of
each individual machine with the Liebert MPX power
distribution unit. When idle, the two replicas consume
164.8 Watts: 86.4 Watts for the first server (containing
two idle hard disks), and 78.4 Watts for the second server
(containing one idle hard disk). The switch consumes 64
Watts when idle and 105 Watts when operating at full
load. This represents between 1.3 and 2.2 Watts per port.
Compared to the power required by the servers, this is
negligible and we thus omit the consumption of the switch
in the results we report.

We measure the energy efficiency of the considered
replication protocols under the TPC-C benchmark [10].
TPC-C is an industry standard benchmark for online
transaction processing. It represents a wholesale sup-
plier workload and consists of a configurable number of
warehouses, nine tables, and five transaction types. With
TPC-C, 92% of transactions are updates, the remaining
8% are read-only. Unless stated otherwise, we set the
number of warehouses to nine, the maximum that could fit
in the memory of our servers. The amount of parallelism
allowed by TPC-C is proportional to the number of
deployed warehouses.

C. Comparing the Replication Protocols

In Fig. 2, we compare the performance and costs of the
replication protocols to those of a stand-alone database.
In the four top graphs, we report various metrics as a
function of the number of committed transactions per
second. The load is increased by varying the number
of clients from 1 to 10. In all experiments, each client
submits 12,000 transactions, resulting in between 1 and
5 minutes of execution. The metrics considered are: the
average latency to complete a transaction, the total CPU
utilization of the two servers, the total power used by the
two servers, and the resulting energy efficiency. We also
present the percentage of aborted transactions with DUR
(see Fig. 2(a)); with PBR, this percentage is always less
than 1%. In all experiments, the 90-percentile latency is

never more than twice the average latency—we omit it for
the clarity of the presentation. Also, we omit the power
drawn by the stand-alone server in Fig. 2(c) to improve the
readability of the graph (its power varied between 106 and
121 Watts). The bottom two graphs present a breakdown
of the CPU utilization and power at peak load.

SMR offers the lowest performance of all the protocols
(Fig. 2(a)). Recall that with SMR, transactions must be
executed sequentially in the order they are delivered by
the atomic broadcast service. Not surprisingly, at its peak
load of 331 TPS, the execution is CPU-bound: the thread
executing transactions fully utilizes one core (in Fig. 2(d),
a CPU utilization of 100% is equivalent to one fully used
CPU core).

Thanks to their ability to handle multi-threading, PBR
and DUR offer higher throughputs. With up to 3 clients,
PBR achieves a lower throughput than a stand-alone
server because the latency imposed to execute a trans-
action is higher. With more clients, the stand-alone server
and PBR achieve similar throughputs. Interestingly, the
maximum throughput of a stand-alone server is reached
with 3 clients, with more clients, lock contention limits
performance. Due to its ability to execute the query
phase of a transaction at any replica, DUR provides
more performance than a stand-alone server and reaches
a throughput of 451 TPS.

At peak load, PBR aborts less than 1% of transactions
while DUR aborts 1 out of every 3 transactions. This hurts
energy efficiency as work is wasted. We can observe this
phenomenon in Fig. 2(d) and Fig. 2(c), where we see
that DUR consumes more CPU cycles (and consequently
draws more power) than PBR across almost all loads. PBR
draws the least power of the protocols because backups
only execute the update phase of transactions and PBR
aborts few transactions.

The difference in drained power between PBR and
DUR is modest and is never more than about 4%. As a
consequence, the energy efficiency of these protocols does
not vary by more than the same percentage (Fig. 2(b)).
We note, however, that DUR reaches a higher energy
efficiency than PBR because DUR can sustain a higher
throughput.

The energy efficiency of all protocols increases with
the load. This is a consequence of the fact that servers are
not power-proportional: when idle, servers already draw
a large percentage of their maximum power (typically
50%). SMR, PBR, and DUR reach a maximum efficiency
that is respectively 47%, 54%, and 59% of the maximum
efficiency of a stand-alone server. This represents a large
overhead. In Section V, we show techniques that make
replication more efficient.

In Fig. 2(e), we present a breakdown of the CPU
utilization at peak load using a JVM profiler. We isolate
the CPU cycles required to execute transactions, those
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Figure 2. The performance and costs of the replication protocols under the TPC-C benchmark. Graph (a) contains the percentage of
aborted transactions for DUR (only percentages larger than zero are reported).

to communicate (including serializing and de-serializing
messages), and the ones to carry other tasks such as
those done by the Java garbage collector. Unsurprisingly,
with the TPC-C benchmark it is the transaction execution
that consumes the most CPU cycles with all protocols.
In Fig. 2(f), we perform the same task for power. We
report the power used by the servers when idle, the power
drawn by the transaction execution, as well as the power
needed by other tasks. To obtain the power required for

transaction execution, we record a trace of the transaction
execution times. We then replay the trace, replacing trans-
action execution by sleeping for the durations recorded in
the trace. The power required to execute transactions is
then the difference between the power when transactions
are executed and when we replay the trace. To obtain the
power used by other tasks, we subtract the idle power to
the power required when replaying the trace. As Fig. 2(e)
shows, most of the power is consumed by the servers
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when idle. The remaining power is mostly used to execute
transactions.

Fig. 3 presents the energy costs of the protocols (e.g.,
in units of money), relative to the cost of the stand-
alone server at 250 TPS, or about 55% to 75% of the
maximum load supported. After the stand-alone server,
PBR is the cheapest of all: it consumes respectively 3.3%
and 2.7% less energy than SMR and DUR. Although these
differences are modest, they may represent a large cost
difference when thousands of instances of these protocols
are deployed in large data centers.

V. ENHANCING ENERGY EFFICIENCY

We present two techniques that enhance the energy
efficiency of replication: one improves the performance
of DUR, the other decreases the energy consumption of
PBR. These algorithmic improvements provide a higher
average efficiency than the previously considered proto-
cols and match the peak efficiency of DUR. Although we
present these approaches in the context of DUR and PBR
respectively, these techniques are general enough to be
applied to other protocols.

A. Increasing Performance

With DUR, the updates of transactions that pass certi-
fication are applied to the database in the order defined
by atomic broadcast. As a consequence, this process is
sequential and prone to be the bottleneck. In general,
applying updates must be done in the same order at
all replicas, otherwise the state of replicas may diverge.
Consider two transactions 7;, i € {1, 2}, that read an item
x; and set an item y to x;. Transaction 7} is delivered first
and passes certification since it is the first transaction to
be certified. Transaction 75 is delivered next and passes
certification as well since 75 does not read y. Replica r;
applies the update of 77 followed by the one of 75 while
replica 72 applies the updates in the opposite order. In this
example, r; finishes the execution with a value of y equal
to xo whereas on 5 y has a value of x;.

Not all transactions update the same data items how-
ever. If the final state of the database does not depend

on the order in which the updates of two transactions
are applied, then the updates of these transactions can
be applied in parallel. More precisely, we say that two
transactions 7} and 75 commute if, and only if, applying
the updates of T3 followed by the updates of 75 leads to
the same state as applying them in the opposite order.

We call the DUR protocol that applies the updates of
commutative transactions in parallel DURpy;, for DUR
with parallel updates. In DURpy;, the certification of
transactions is done sequentially in the order defined
by atomic broadcast, as before, and we rely on the
parameters of stored procedures to determine which trans-
actions contain commutative updates. Once a transaction
T passes certification, we determine if 7' commutes with
the transactions currently updating the database. If it is
the case, we apply 1"s updates concurrently with the other
transactions. Otherwise, we delay the application of 7T”s
updates until it is safe to do it.

Applying commutative updates in parallel does not
violate strict serializability since certification requires
transactions to read up-to-date data items. Hence, any
execution e of DURpy is equivalent to a sequential
execution e’ of the same set of committed transactions,
ordered in the same way as they are certified in e. In
particular, consider an execution where two commutative
transactions 7T;, ¢ € {1,2}, read and write item x;. The
updates of T are applied before those of 75 at replica 71;
updates of 77 and 75 are applied in the opposite order at
ro. A transaction T3 executing at r; reads z; from T,
but reads x before T updates x5. Another transaction
Ty executing at ro reads xo from 75 but reads x; before
T7 updates ;1 (the updates of 77 and T, are applied in
opposite orders at r; and r2). In this execution, the cycle
of transaction dependencies 177 — 15 — 1o — Ty — T3
is avoided because both T35 and T} abort. At the time of
their certifications, T3 read an outdated version of x> and
T, read an old version of x;.

Applying transaction updates in parallel can also be
used in PBR and SMR. With PBR, this lets backups
apply commutative transactions in parallel. In the case of
SMR, the presented technique cannot directly be applied.
Recall that with this replication protocol, all replicas
execute transactions in their entirety. In this context, two
transactions can be executed in parallel if, and only if,
their order of execution does not affect the resulting state
nor does it change the transactions’ outputs.

B. Reducing Power

Improving performance is one way to increase en-
ergy efficiency, lowering energy consumption is another.
PBR improves on SMR by letting the primary execute
transactions and only applying transaction updates on the
backups. As a result, PBR consumes less energy than
SMR. With PBR, only the state of the primary is necessary



to execute transactions in the absence of failures. Based on
this observation, we develop a technique that removes the
necessity to maintain state at the backups in the normal
case.

In PBR*, backups append update statements coming
from the primary to a log instead of applying them to
the database to save energy—the remainder of the normal
case protocol is identical to PBR. When the primary fails,
the backup elected as new primary must apply the updates
in its log to rebuild the state (updates that commute can
be applied concurrently). To reduce recovery time and
to bound the size of the log, backups truncate their log
periodically. To do so, two options exist: either backups
apply the update statements present in their log, as done
during recovery, or they can receive a database snapshot
directly from the primary. The second option may be
preferable in situations where most updates overwrite
existing data items and the database size only grows
moderately. In the event of a backup failure, a fresh new
server is added to the group before receiving a snapshot
of the database from the primary.

A similar technique can be employed with SMR to
lower energy requirements. Care must be taken to ensure
that failures of the replica holding the state, the active
replica, is detected and replaced by one of the passive
replicas. Clients that did not receive an answer to their
submitted transaction notify the new active replica to
obtain the result of the transaction execution.

Finally, we note that letting a single replica maintain
state with DUR could be achieved in a similar way as with
SMR. The passive replicas would append transactions that
passed certification to a log. Doing so would remove the
ability of DUR to execute transactions at multiple replicas
in parallel however.

C. Evaluation

We measure the energy efficiency of DUR py; and PBR*
under the TPC-C benchmark. The setup is identical to the
one of Section IV.

In Fig. 4, various metrics are presented as a function
of the load, as previously. Thanks to its ability to apply
commutative updates in parallel to the database, DUR pys
improves on the throughput of DUR and reaches 471
TPS (Fig. 4(a)). Power consumption and CPU utilization
with DURpy is slightly higher than DUR (Fig. 4(c)
and Fig. 4(d)) because DUR p; aborts more transactions
than DUR (Fig. 2(a) and 4(a)). Despite this, DURpy
provides higher energy efficiency than DUR with up to
7 clients. Beyond this point, the two protocols have the
same efficiency.

Because appending transaction updates to a log requires
less work than applying them to the database, PBR* exe-
cutes transactions faster than PBR and slightly improves
the maximum attained throughput. In addition, PBR*

decreases power consumption for a maximum difference
of 5.5% with PBR (Fig. 4(c)). As a consequence, PBR*
provides better energy efficiency than PBR across all
loads.

Although neither DUR p; nor PBR* improve the peak
energy efficiency of the considered replication protocols,
they improve the average efficiency. PBR* and DURpy;
provide an average of 1.81 and 1.6 TPS per Watt respec-
tively, compared to 1.56 TPS per Watt for DUR, the third
best protocol considering the average efficiency.

With PBR*, we also measure the time it takes for the
primary to send a snapshot of the database to the backup
so that the backup can truncate its log. With 9 warehouses,
it takes the primary 18.9 seconds to save the database to
disk (the snapshot is 1123.5 MBs) and 10.4 seconds to
transfer the snapshot to the backup. The entire process
requires 5,460 Joules. If the average throughput is 250
TPS and log truncation happens once per day, sending a
database snapshot of 1.1 GB to one backup reduces the
energy efficiency of PBR* by 0.03%.

VI. A HYBRID APPROACH

In this section, we explore the possibility of using
low-power devices to reduce energy requirements without
excessively compromising performance. Our approach,
denoted as PBRj ,, is hybrid: it combines software
techniques with a heterogeneous hardware deployment to
maximize energy efficiency. PBR}, , builds upon PBR*
and deploys backups on low-power devices, thereby im-
plementing a low-power log. To offer satisfactory per-
formance, the primary runs on a powerful multi-core
machine.

Low-power devices typically consume a few Watts
at peak load. This allows us to stripe the log on the
backups for maximum performance with little energy
overhead. More specifically, the primary sends the up-
dates at sequence number ¢ to backup ¢ mod n, where
backups are numbered from O to n — 1. Arguably, this
decreases the fault-tolerance of the replicated system since
any backup failure triggers the recovery protocol due to
the unavailability of the log. Nevertheless, the software
running at the backups is significantly simpler than the
one executing at the primary (which includes transaction
execution). Backups are thus less prone to software bugs
that would lead to a crash.

In PBR}, , normal case operation is identical to PBR".
Recovery requires special care, as we describe next. After
the failed primary has been replaced,” the new primary
obtains the latest checkpoint of the database as well as
the log from the backups (both the log and the database
snapshot are striped to reduce state transfer time). The new
primary applies all updates statements in the log before

2With PBR;} .. a failed primary is always replaced by a powerful
. y! S
multi-core machine to maintain high performance.
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percentage of aborted transactions for PBR* and DURpy (only percentages larger than zero are reported).

resuming normal operations. Upon a backup failure, the
faulty backup is replaced before the primary records a
new database snapshot on the striped log. After backups
learn that the snapshot has been successfully recorded,
they flush their log.

A. Evaluation

We measure the energy efficiency of PBR; , on the
TPC-C benchmark, configured with 9 warehouses as
previously. The striped log is deployed on three Raspberry
PIs (adding a fourth Raspberry provides a negligible
speedup). Each Raspberry PI is a 700MHz ARM with
512 MB of memory and a 100Mbit/s network interface.

The log could also be implemented by other low-power
devices such as a dual-ported drive. We chose Raspberry
PIs due to their low power consumption, affordability, and
their flexibility (they can run a full-fledged Linux). The
primary is a quad-core Intel i7 2.2 GHz with 16 GB of
memory. Running a stand-alone server on a Raspberry PI
with a scaled-down version of TPC-C resulted in a peak
throughput of only 4.1 TPS for a power consumption of
2 Watts. The results below show that PBR;klyb allows to
more than double this energy efficiency while sustaining

a much higher throughput. In all experiments, clients run
on a separate machine.

In Fig. 5, we compare a stand-alone server running on
the quad-core machine to PBR} , using the same metrics
as before. We omit the percentage of aborted transactions
as it was always lower than 1%. In each graph, we plot
one metric as a function of the load. We consider between
1 and 8 clients.

PBR}, , does not attain the maximal throughput of
a stand-alone server (Fig. 5(a)). At 320 TPS, no more
load is supported. Surprisingly, backups show a CPU
utilization of only 66% at this throughput. After inves-
tigating the cause of this behavior, we observed that it
was due to a combination of a higher transaction latency
and lock contention. Due to its higher latency, PBR; ,
reaches a lower throughput than a stand-alone server
with an identical number of clients. With eight clients
no more throughput is supported due to lock contention.
We experimentally verified this hypothesis by purposely
violating strict serializability and allowing the primary to
respond to the clients directly after executing transactions
to reduce the transaction latency (transaction updates are
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Figure 5.

still forwarded to backups). In this setup, we observed
that PBR}, , reached the same throughput as a stand-alone
server.

Thanks to the low-power requirements of backups, until
320 TPS, the hybrid protocol adds little power overhead
compared to a single server (Fig. 5(c)). Raspberry PIs
never consume more than 6 Watts and the replication
protocol adds little energy overhead at the primary. This
can be seen in Fig. 5(d), where the primary only uses
marginally more CPU cycles than the stand-alone server.
As a consequence, PBR; , offers an energy efficiency
close to that of a stand-alone server (see Fig. 5(b)). At
their maximum throughput, PBR} , reaches 79% of the
efficiency of a single server. This is considerably more
than attained by any considered protocol thus far.

Similarly to PBR*, PBR}, , needs to periodically trun-
cate the log at the backups. In our setup, the primary takes
18.4 seconds to record a database snapshot of 1.1 GB on
disk (9 warehouses), and 154.7 seconds to send a third
of the snapshot to each backup, for a total energy of 9.3
KJoules. This constitutes a reduction of about 0.16% in
energy efficiency if the average throughput is 250 TPS and
the database snapshot is transferred to the backups once
per day. We also measured the overhead of transferring
the database snapshot from the backups to the primary in
case of a primary failure. It takes the new primary 107.1
seconds to receive the snapshot. The energy consumed by

Energy Efficiency (TPS / W)

Total CPU (%)

Std-alone —a- PBR},;, —-

6
r"/““
4.5 - +*
3 F - -
1.5 *
O 1 1 1 1
0 100 200 300 400 500
Committed transactions per second
(®)
Std-alone —ao- PBR},,-prim. —— PBR},,-bckup.
500
400 | L
300 e
200 | e
00 |
0 1 1 1 1
0 100 200 300 400 500

Committed transactions per second
(@
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the primary and the backups during this operations is 6.87
KJoules.

VII. RELATED WORK

A large body of work ranging from hardware [11]
to databases [12] has rethought the design of computer
systems to improve energy efficiency.

Energy-Efficient Storage: An analysis of the energy
consumed by database servers is provided in [13]. This
study investigates how energy efficiency is affected by
the hardware, the database, and the algorithms used for
sorting, scanning rows, and joining tables. Their analysis
reveals that, in general, the best performing configuration
is the most energy-efficient one.

Various extensions of the RAID storage system have
been proposed as an answer to the ever-growing energy
needs of data centers. Peraid [14] considers a system with
a primary and multiple secondary replicas, where each
machine hosts a RAID system. Peraid turns off secondary
replicas and employs software RAID at the primary to
buffer the parity bits. This system tolerates disk failures
but not the failure of the primary. FC'S? [15] addresses
this shortcoming by employing (k+r, r) erasure codes, by
placing the r parity nodes into low-power modes, and by
buffering parity bits in memory at the other £ machines.
ECS? attempts to maximize standby times and minimize
power transitions by taking I/O workloads into account.



Ursa [16] is a storage system that avoids hotspots by
migrating data in a topology-aware fashion to minimize
reconfiguration time and the associated network usage.
The same reconfiguration technique allows to migrate data
off underutilized servers to power them down. Kairos [12]
leverages performance models to optimally place database
servers such that each machine is fully utilized and
simultaneously provides enough power to each database
it is hosting, a technique often referred to as server
consolidation.

FAWN [17] is an energy-efficient key-value store made
up of low-power nodes. Similar to our work, the back-end
nodes maintain data logs. FAWN leverages partitioning for
high performance and uses chain replication [18] for fault
tolerance. Their front-end node is not replicated, however.
FAWN achieves significantly better energy efficiency for
its queries, but our work uses full replication and sup-
ports transactional workloads, using COTS database that
has significantly higher CPU requirements than what are
needed for a key-value store (see Figures 2(e-f)). Our
research focuses on the impact of replication on energy
efficiency.

Energy-Aware Clouds: Energy efficiency is ad-
dressed at the data center level in [19]. The authors
argue for a clever placement of data to render the power
cycle unit larger. For instance, to allow an entire rack
of servers to be turned off, the approach advocates the
replication of data across racks. In this situation, reads
are served by the replicas in the powered-on rack; to
increase standby times of the powered-down rack, writes
are temporarily replicated to other servers. Maximizing
efficiency is then achieved by collocating computation and
data. Tacoma [20] not only relies on server consolidation
to improve efficiency but it also takes into account heat
dissipated by servers. The authors argue that maximizing
server utilization is not always a good idea as it may
induce high cooling costs. Tacoma attempts to spread the
load across servers to mitigate this effect.

Some systems have proposed to exploit the possi-
bility of shifting work in time or space according to
the availability of green energies to reduce the carbon
footprint [21], [22]. For instance, batch jobs with loose
deadlines can be delayed until sufficient green power is
produced. Similarly, virtual machines can be shipped to
data centers that have access to more green energy.

In the context of software-based replication, little work
has been done that specially tackles energy efficiency.
Server consolidation is only a partial answer to energy
efficiency: if the replication uses resources inefficiently
energy will be wasted.

Replication Protocols: Many protocols have been
proposed that implement one of the presented replication
families. Some implementations of SMR are optimized
for specific hardware such as modern switched intercon-

nects [23], [24]. Eve [25] provides a scheme to employ
the full potential of multi-core servers: a mixer batches
operations that are unlikely to conflict. Replicas execute
operations in a batch in parallel and exchange hashes of
the modified state to check that they are identical. DUR py;
also enables operations (more specifically transactions) to
be executed at replicas in parallel but reduces the amount
of work per transaction. With DUR py;, each transaction is
executed at a single site and only its update statements are
forwarded to the other replicas. In contrast, Eve executes
all operations in their entirety at all replicas.

Tashkent+ refines DUR by load-balancing operations
on replicas to improve resource utilization, and routes
conflicting operations to the same replica to lower the
rollback rate [26]. The approach in [27] throttles con-
flicting operations to lower the abort rate of DUR when
the load increases. In [9], the abort rate is lowered
by re-ordering transactions at certification time. MorphR
adapts the replication protocol to the workload using a
machine learning approach that takes as input several key
parameters of the workload to decide which protocol to
deploy [28]. At any point in time either PBR, DUR, or
2PC [29] can be selected.> MorphR does not attempt to
reduce the energy required to handle each operation. We
believe that some of these techniques could be integrated
in our protocols to further improve their efficiency.

VIII. CONCLUSION

In this paper, we attempted to reconcile replication
with energy efficiency, a growing concern with the in-
creasing electrical consumption of data centers worldwide.
We reviewed commonly-used replication protocols and
measured their energy efficiency. We observed that the
most efficient protocol, DUR, reaches an efficiency that
is slightly less than 60% of the maximum efficiency of
a stand-alone server. To address this waste of energy we
proposed algorithmic modifications to the protocols that
either improve performance or lower energy consumption.

Of particular interest is PBRj ,, a protocol derived
from PBR that implements a log on the backups. PBR}, ,
relies on a multi-core primary and low-power backups
to provide maximum efficiency. We showed that such a
protocol can achieve 79% of the maximum efficiency of
a non-replicated server on the TPC-C benchmark.
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