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Abstract—Fault tree analysis is a widespread industry stan-
dard for assessing system reliability. Standard (static) fault trees
model the failure behaviour of systems in dependence of their
component failures. To overcome their limited expressive power,
common dependability patterns, such as spare management, func-
tional dependencies, and sequencing are considered. A plethora
of such dynamic fault trees (DFTs) have been defined in the
literature. They differ in e.g., the types of gates (elements), their
meaning, expressive power, the way in which failures propagate,
how elements are claimed and activated, and how spare races are
resolved. This paper systematically uncovers these differences and
categorises existing DFT variants. As these differences may have
huge impact on the reliability assessment, awareness of these
impacts is important when using DFT modelling and analysis.

I. INTRODUCTION

Current innovation in IT systems, like robots, the Internet-
of-Things, autonomous cars, and 3D printing rapidly increase
our dependence on computer-based systems. Reliability engi-
neering is an important field that provides methods, tools and
techniques to evaluate and mitigate the risks related to complex
systems. Fault tree analysis (FTA) is one of the most important
techniques in that field, and is commonly deployed in industry
ranging from railway and aerospace system engineering to
nuclear power plants. A fault tree (FT) describes how failures
propagate through the system, and how component failures
lead to system failures. An FT is a tree (or rather, a directed
acyclic graph) whose leaves model component failures, and
whose gates model failure propagation. Standard (or: static)
FTs (SFTs) contain a few basic gates, like AND and OR,
making them easy to use and analyse, but also limited in
expressivity. To cater for more complex dependability patterns,
like spare management and causal dependencies, a number of
extensions to FTs have been proposed.

Dynamic Fault Trees (DFTs) [1], [2] are the most common
extension and are widely used. Since the original proposal
by Dugan et al. [1], a plethora of variants of DFTs have
been proposed in the literature. An overview of extensions has
recently been given in [3]. Table I summarises an overview
of the various features of existing DFT dialects1. They differ
in e.g., the types of supported gates (elements) and the way
in which failures propagate. In addition to having different
expressive power, the various DFT dialects provide different
interpretations to syntactically identical DFT models. As the
differences between these interpretations are rather subtle,
they are mostly not recognised. This is highly undesirable,
since it can easily lead to different analysis results and wrong
conclusions about the system’s reliability—if an FTA tool
interprets a model differently from its user, then one may

1The first row indicates the different formalisms used for providing a DFT
semantics, e.g., FTA = Fault Tree Automaton and DBN = Dynamic Bayesian
Network. A detailed account is given in Sect. IV.

conclude that the system meets its dependability requirements,
whereas in reality it does not.

TABLE I. COMPARING DIFFERENT SEMANTICS FOR DFTS.

FTA CTBN DBN SWN GSPN IMC AE
[4] [5] [6], [7] [8] [9] [10], [11] [12], [13]

Spare modules BEs BEs BEs BEs BEs subtrees BEs
Dep. events BE BE BE BE BE BE+gates BE
PAND ≤ ≤ ≤ < < < ≤
POR no no no no no < ≤
SEQ yes no cold yes no cold no

spares spares
PDEP no no yes no no no no
Replication event no no subtrees no no no
Evidence no no yes no no no yesa

Legend:

Spare modules = the type of spare modules supported of a SPARE gate.
Dep. events = the type of the events that an FDEP gate can trigger.
PAND = whether the interpretation of priority-AND is inclusive (≤) or exclusive (<).
POR = whether priority-ORs are supported.
SEQ = whether sequence enforcers are supported or can be modelled via a cold spare.
PDEP = whether PDEPs are supported.
Replication = what subtrees are allowed to be replicated.

a Modelled directly within the framework.

Awareness of these semantic issues is thus important to
achieve faithful and reliable DFT modelling and analysis.
This paper systematically uncovers the semantic differences
and subtleties of DFT variants. We extensively discuss and
illustrate the possible pitfalls, and categorise existing DFT
variants in the literature so as to enable their systematic
comparison. Our study focusses on the following issues:

1) Can we apply minimal cut sets to DFTs? Minimal cut
sets (MCSs) are sets of basic events whose failure cause
the failure of the DFT. They are at the core of many
analysis techniques for SFTs. We will show that they are
insufficient to the analysis of DFTs.

2) Is there a notion of causal or temporal ordering in failure
propagation? In addition to failure combination as present
in SFTs (e.g., an AND-gate fails if all its children do fail),
DFTs allow for failure forwarding in which failures may
trigger other failures. This complicates the understanding
of DFTs, and requires causality. The same applies for
modelling the behaviour of spare elements.

3) Expressive power. In particular, we investigate whether
sequence enforcers—that enforce the order of failed
elements—add expressivity. Many DFT variants incorpo-
rate priority gates whose failure depends on the ordering
of their children to fail. We study the subtle interplay
between simultaneous failures and priority-gates. Finally,
we study whether constantly failed elements can be
expressed by existing gates.

4) How should spare races be resolved? DFTs incorporate
spare gates that model the usage of spare components
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representing redundant parts. As spare components may
be shared by various spare gates, so-called spare races
may occur in which simultaneously failed gates “claim”
the same redundant part. We study this phenomenon in
more depth, and provide solutions.

5) What is the difference between activation and claiming?
All modules of a SPARE can be in active (i.e., in use) or
dormant mode (not in use, being redundant, and having a
lower failure rate). It is the responsibility of the SPARE
gate to switch modules from dormant to active. This
activation of redundant parts is related to “claiming”. We
give an in-depth study of the interplay between these
mechanisms.

As pointed out in [4], [14], some subtleties in DFTs are
due to undefined semantics; e.g. in [15]. We do not repeat
issues that are due to missing semantics. Instead, we discuss
the possible choices in the semantics and the issues that
arise if these choices are not carefully accounted for. The
presented intricacies are not independent of choices made in
the semantics. However, great care was taken to present a
broad range of possible choices for semantics. All intricacies
originate from possibly undesired behaviour of, or claims made
about, existing semantics. In this work, we omit the concept of
repairs, which give rise to several other open questions [16].

Organisation of the paper. Sect. II introduces DFTs and
their common interpretation. Sect. III is the main body of the
paper and extensively discusses the aforementioned five issues
with DFTs. Sect. IV discusses the existing DFT semantics.
Sect. V presents a case study collection and indicates which
intricacies occur in them.

II. DFTS: THE GENERAL RECIPE

A. Static Fault Trees

PC

M1P M2

Fig. 1. Fault Tree

FTs [2] are trees that model how com-
ponent failures propagate to system fail-
ures. Since subtrees can be shared, FTs are
directed acyclic graphs (DAGs) rather than
trees. The leaves of the tree (or rather sinks
of the DAG) model component failures.
They are called basic events (BEs) and are
usually equipped with a failure rate, i.e.,
the parameter of an exponential probability
distribution indicating the probability for

the component to fail within a deadline T . Other probability
distributions, like Weibull, are often supported as well.

Various names and symbols exist for sinks that either
have already failed or never fail. We call them constants and
denote them by CONST(�) and CONST(⊥) respectively, see
Figure 2(b)-(c). All non-sink nodes of the FT, i.e., nodes
with one or more children (a.k.a. inputs of the node), are
equipped with gates. Static fault trees feature three types of
gates, depicted in Figure 2(d)-(f): AND, OR, and VOT(k).
These fail if respectively all, one, or k of their children fail.
The latter is also known as the k out of n, where n refers to the
number of children. Clearly, the VOT(1) gate is equivalent to
an OR-gate and a VOT(k) gate with k children is equivalent to
an AND-gate. Sometimes other gates are considered, like the
XOR (exclusive OR) and the NOT gate [2], [17]. Adding such
gates makes fault trees non-coherent, i.e. an additional event

causes the TLE to switch from failed to operational again. We
exclude them here, but briefly discuss them in Sect. III-C. The
root of the tree is called the top level event (TLE, denoted
by an underlined identifier). It represents the failure condition
of interest, such as the stranding of a train, or the unplanned
unavailability of a satellite. The DFT fails if the TLE fails. A
sample SFT is depicted in Fig. 1. The fault tree encodes that
a computer either fails if both memory units M1, M2 fail or
if the processor P fails.

As the failure of the TLE is determined by the (unordered)
set of failed BEs, these FTs are static. SFTs are appealing
as they are a relatively simple, useful modelling tool. SFTs
however cannot model several important failure patterns in
safety-critical systems, such as:

• Order-dependent failures, i.e. failures that only occur if
BEs occur in a particular order. For example, a water
leakage in a pump only leads to a short-circuit if the
power supply has not failed before.

• Simple support for feedback loops. Although systems with
feedback loops in the error behaviour and cascaded errors
can be modelled with SFTs, doing so requires verbose
work-arounds which makes modelling error prone, cf. [2].

• Sequencing expressing that an event can only happen after
another one, e.g. a short circuit in a pump can only occur
after a leakage.

• Spare management and spare parts. A spare part is an
interchangeable part that is used for the replacement of
failed elements, e.g. spare car wheels. Cold spare parts
can only fail while used. Warm spare parts can always
fail but when being spare they fail with a reduced failure
rate. Hot spare parts always have the same failure rate.

• Mutual exclusion, as e.g. a valve can either fail by being
stuck open or stuck closed, but not both.x

B. Dynamic Fault Trees

We discuss six additional element types (see Fig. 2(g)-(l)).
The priority-AND gate, SPARE, functional dependency and
SEQ are commonly included. Priority-ANDs are also discussed
as single extension to static fault trees in, among others, [18],
[19] or in combination with other gates, e.g. in [20]. As DFTs
support passive standby, e.g. in spare wheels, each BE has now
two failure rates: active and passive. Also in the presence of
these gates, DFTs are coherent.

a) A priority-and gate (pand-gate, PAND) is an AND-
gate which fails only if its children fail from left to right. The
literature does not agree what happens in case two children
fail simultaneously, see Sect. III-C.

Example 1: We model two pumps and a valve, see the
DFT in Fig. 3a. Consider a pump (PA) with a backup pump
(PB). Pump PB can only replace PA after valve V has opened
the pipe to PB . Starting from the top, two conditions lead to
the system failure SF. Either (left subtree) V fails before PA

fails. Upon failure of PA, it is then impossible to switch to PB .
Or (right subtree) both PA and PB fail (in arbitrary order).

Extending SFTs with PAND gates makes the CONST(⊥)
element syntactic sugar. In Fig. 3b, using that two BEs do not
fail simultaneously, either A or B fail before both A and B
have failed, i.e. D always fails before C, thus T never fails.
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(a) BE

�

(b) CONST(�)

⊥

(c) CONST(⊥)

. . .

(d) OR
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(e) AND
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(f) VOT(k)
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(g) PAND (h) POR

. . .

(i) SPARE

→
. . .

(j) SEQ (k) FDEP

p

(l) PDEP

Fig. 2. Element types in Static ((a)-(f)) and Dynamic Fault Trees (all)
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PAV PB

(a) PAND example

T

C D

A B

(b) Model CONST(⊥)

SF

D BI

D1 BI1 D2 BI2

L1 P2P1 L2

(c) POR example

Fig. 3. Priority-gate examples

b) The priority-OR gate (POR) is considered in tempo-
ral fault trees2 by Walker et al. [21], [20], [22]. A POR fails
if the first child fails before any other child does. The binary
POR is dual to the binary PAND, as a POR with children A
and B fails iff a PAND with children B and A is infallible.

Example 2: Consider two devices connected via a data
link. The system is operational as long as one device is
operational and no device blocks the data link, e.g. by turning
into a ”babbling idiot”3. A processor failure causes a device
failure. A data link failure turns a device with an operational
processor into a babbling idiot. A babbling idiot leads to a
system failure. The DFT is given in Fig. 3c. The TLE fails if
either both devices (D) fail or a babbling idiot (BI) occurs. D
if either (D1) or (D2) fails. Device i fails if either a processor
(Pi) or the data link (Li) fails. It starts babbling (BIi) if (Li)
fails and (Pi) has not occurred before.

c) Spare gates (SPARE) manage model usage of—
potentially shared—spare components. Children of the SPARE
gate represent modules; which model groups of redundant
parts. The first child of the SPARE gate is the primary; the
other inputs are spares. Initially, the spare uses the primary.
Whenever the currently used child fails, the SPARE gate
attempts to switch to the next (left to right) available spare
module, i.e. a child which has not yet failed and is not used
by another SPARE. If no such child exists, the SPARE fails.
Thus, modules can be in active (i.e., in use) or dormant mode;
BEs in dormant mode fail with the passive failure rate. It is the
responsibility of the SPARE module to switch modules from
dormant to active, i.e. all BEs in the spare module change their
failure rates from the passive to the active failure rate.

Example 3: Consider a motor bike (or car) with a spare
wheel. Each wheel either breaks due to a broken rim or due to
a flat tire. The car fails if one of its wheels fail and cannot be
replaced, see Fig. 4a. As soon as the first tire or rim fails, the
corresponding wheel Wi (1 ≤ i ≤ 2) fails. The SPARE with
primary Wi then claims the spare wheel Ws, thereby activating

2Temporal fault trees ≈ static fault trees with priority gates.
3Babbling idiots are devices that constantly send messages over a data link,

blocking communication of other devices.

SF

W1 W2 Ws

T1 T2 TsR1 R2 Rs

(a) Motor bike with a spare wheel (b) Order-enforcing

Fig. 4. SPARE gate examples

SF →

A B

(a) Order-enforcing

SF

A B

(b) Order-dependence

→
⊥

A B

(c) Modelling Mutex

Fig. 5. Sequence enforcers

Ws—and thus its tire and its rim. For a subsequent failure of
any other wheel Wj , j �= i, its corresponding SPARE cannot
claim the spare wheel Ws anymore. Thus, the SPARE (and
the system) fail. Note that assuming a passive standby for Ws

adds a—less likely—scenario where Ws fails before any of the
primary wheels. In that case, nothing happens after the failure
of Ws, but any failure on the primary wheels immediately
causes the system to fail.

Originally, spare modules were limited to BEs, but these
restrictions have been relaxed in e.g. [11]. In the example
above, everything connected to a child of a SPARE is part
of the spare module. In Fig. 4b, we depict the DFT, with four
spare modules, which we indicate by the dotted boxes. Indeed,
a child of a SPARE represents a spare module. Children of a
gate v are in the same spare module as v, unless v is a SPARE.
We discuss the extent of spare modules in Sect. III-E.

d) Sequence enforcers (SEQ) guarantee that their chil-
dren only fail from left to right. In [15], the SEQ is presented
as an alternative to the PAND, which might be misleading.
Whereas the PAND is a special AND-gate which only fails
if the order-restriction is met, the SEQ prevents certain orders
from occurring. Unlike common gates, SEQs do not propagate
failures, therefore SEQs have no parents.

Example 4: Consider a water pump which fails if a leakage
(A) occurs and the motor has a short circuit (B), see Fig. 5a.
This short circuit can only occur after the leakage. Fig. 5b
shows a DFT that fails after the BEs have failed in the order
AB. Contrary to the DFT in Fig. 5a, the possibility that B
fails before A does is not excluded, however, the DFT does
not fail if first B and then A occurs.

SEQs are powerful elements and can be used to express e.g.
mutual exclusion, as shown for events A and B in Fig. 5c.
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(a) Feedback loops

PSU TU

(b) Shorthand

SF

0.2

MAS MB

(c) PDEP example

Fig. 6. FDEP examples

Here, the left child never fails, thus AND(A, B) may not fail.

e) A functional dependency (FDEP) is an element type
which forces other elements to fail. As SEQs, FDEPs have
no parents. The first child of an FDEP is called trigger, all
other children are dependent events. If the trigger fails, then
its dependent events also fail. FDEPs are helpful to model
common cause failures and feedback loops. We consider the
example given in [2], where a failing thermal unit (TU) causes
the power supply unit (PSU) to overheat, and a failure of
the PSU causes a failing TU. We give the corresponding
DFT in Fig. 6a. Besides offering a convenient modelling
principle, FDEPs are often used in combination with SPAREs
to work around the limitations for (indirect) children of a
SPARE, cf. Sect. III. To simplify the depicted DFTs, we use
a double dotted arrow to denote FDEPs. The origin of the
arrow corresponds to the trigger, while the target corresponds
to the dependent event. We depict the identical DFT with the
alternative notation in Fig. 6b.

f) The probabilistic dependency (PDEP) of Montani et
al. [6], [7], [23] extends an FDEP with a probability p. When
the trigger of the PDEP fails, the dependent events fail with
probability p. Thus, a PDEP with p=1 is equivalent to an
FDEP. If p=0, the dependent events are almost surely not
triggered and the PDEP is superfluous.

Example 5: Consider the pumps from Ex. 1. Besides the
failure rate, we assume that as soon as the valve is actually
opened, it fails with a given (discrete) probability. We have
modelled this by the DFT in Fig. 6c.

C. Mechanisms in DFTs

Before describing potential pitfalls in the usage and inter-
pretations of DFTs, we review the different mechanisms which
are exhibited by DFT elements.

Failure propagation. Failure propagation in DFTs is similar
as in SFTs. However, DFTs exhibit two types of failure propa-
gation: the usual upwards propagation (hereafter: failure com-
bination), and the propagation via FDEPs (hereafter: failure
forwarding). While failure combination is never cyclic, failure
forwarding may (indirectly) cause the failure to propagate to
the original element. These two mechanisms result in two
different reasons why an element can fail.

Claiming. SPAREs require exclusive use of spare modules.
Recall the car with the spare wheel from Ex. 3, where the
spare wheel can only be used once. This requires a mechanism
to ensure that a spare module is not replacing any other failed
modules. We call this mechanism claiming. As soon as a spare
module fails, the SPARE which claimed the module claims
another module (represented by the child of the SPARE) which

is not yet claimed. This newly claimed module communicates
to its parents that it is no longer available to other SPAREs.

Activation propagation. To realise the support of reduced
failure rates in case a component is in standby, DFTs introduce
an activation mechanism. Spare modules are initially consid-
ered inactive, and thus all their elements are called inactive.
The other elements are active. Active SPAREs propagate the
activation signal to their used spare module. Inactive SPAREs
do not emit any activation signal to any of the spare modules.
Thus, as soon as an already active SPARE starts a child, all
BEs in the spare module are activated. Active BEs fail with
failure It is important to notice that FDEPs do not propagate
the activation signal.

Event prevention. With SEQs, certain failure combinations
can be explicitly excluded from the analysis. This is not limited
to ruling out specific orders of BEs, but can be generalised to
restrict certain claiming resolutions, although, in many cases,
it requires ingenious fault trees.

III. DFTS: THE FLAVOURS

After having discussed the basic ingredients of DFTs, we
are now in a position to discuss the various semantic issues
raised in the introduction: lifting of cut sets to DFTs, the
expressive power of including several fates, ordering in failure
propagation, spare races, and activation versus claiming. This
section will treat each of these matters in more detail.

A. Lifting minimal cut sets

Many analysis techniques for SFTs are based on minimal
cut sets (MCSs) [3]. A cut set is a set of BEs causing the TLE
to fail. A cut set is minimal if no true subset is a cut set. An
SFT fails if one of its MCSs does so. This is rooted in AND
gates to distribute over ORs. Since the order of failures matter
in DFTs, (minimal) cut sets are extended to ordered tuples
of BEs, called (minimal) cut sequences [24], [25]. There are
however several caveats.

Minimality. First, one may think that a DFT fails whenever
one of its MCSs does so. This is not true, because failure of
the TLE may require BEs outside the cut sequence not to fail.
Indeed, inserting extra failing BEs in a cut sequence may not
yield a cut sequence. This is shown in Fig. 7(a), where AB
and AC are MCSs, but BAC is not a cut sequence.

Cut sequences require the non-failure
of BEs outside the cut sequence.

Characterisation. Whereas MCSs completely characterise the
failure behaviour of the SFT, they do not do so for DFTs. We
illustrate the issue in Fig. 7. Note that the right DFT is obtained
from the left one by distributing the PAND over the OR. The
MCSs for both DFTs in Fig. 7 are AB and AC. However,
BAC is a cut sequence of 7(b) but not of 7(a).

Minimal cut sequences are insufficient to
characterise the failure behaviour of a DFT.
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Fig. 7. Invalid distribution of ORs over PANDs.

BA C

X Y ZP S

D

Fig. 8. Part of a DFT to justify the need for causality.

B. Temporal and causal order

A temporal order indicates which events happen before,
after, or at the same time as another event. A causal order
indicates for simultaneous events which events caused the
failure of an event.

The need for simultaneity. The most common interpretation
of DTFs assumes that both failure combination and forwarding
is instantaneous. That is, as soon as a BE fails, all ancestors
whose fail condition is fulfilled fail simultaneously. In particu-
lar, all dependent events that are triggered fail simultaneously,
possibly giving rise to further simultaneous failures. Since the
behaviour of the priority gates crucially depends on the fact
whether or not their inputs fail simultaneously, it is important
to cover this semantically. In particular, simultaneity should be
included in cut sequences.

Simultaneity is needed to understand
the behaviour of a DFT.

The need for a causal order. Multiple SPAREs can fail at
once due to instantaneous failure propagation (cf. Fig. 14a).
The claiming of spare modules is then ill-defined, as an
ordering is required for claiming. This situation is called a
spare race. Spare races can be resolved in numerous ways (as
discussed later), however, it is important to respect causality.

Example 6: Consider the DFT in Fig. 8 containing three
SPAREs (A, B, C) sharing a spare module S. The failure of
P causes a spare race between A and B as they both want to
claim S. Assume that A wins the race and claims S. SPARE B
fails as it has no available children left. By failure combination,
D fails too. The failure of D triggers the failure of Z, yielding
C joining the spare race. Assuming that claiming and failure
propagation are instantaneous, this means that C is racing with
A and B so as to claim S. C however cannot win the race, as
A claimed S in the argument before. C can thus not claim S
once P fails.

In addition to temporality, causality is needed
to understand DFT behaviour.

T

A B

(a)

T

A B C

(b)

Fig. 9. Causal order and temporal ordering combined.

Embedding causal order in a temporal order. DFTs exhibit
a notion of ordering as priority gates fail depending on the
ordering of their children’ failures. Usually, this is interpreted
as a temporal order, which leads to two different notions of
ordering in DFTs. To circumvent this, a possible realisation
of causal order is by assuming (infinitesimal) time steps
for applying cause-effect relations. Thereby, only one order
relation (temporal) is present in the DFT. In many situations,
assuming infinitesimal time steps in failure forwarding seems
adequate, while for failure combination it often is not:

• In Fig. 6a+b, the failure PSU triggers TU to fail. One can
interpret this as PSU causing the failure of TU. This is
failure forwarding.

• In Ex. 3, the replacement of the spare wheel can be
interpreted as claiming the spare wheel by a SPARE
causing the wheel to be unavailable for any subsequent
replacements.

• In Ex. 1, the failure of both motors does not happen after
the last motor has failed, but exactly with the failure of
the last motor.

Thus, one might argue that failure forwarding can be naturally
embedded in a temporal ordering, thereby resolving the issues
in Ex. 6. The distinct applications of failure combination and
failure forwarding often go along the lines sketched above.
Later on, we will encounter another usage of failure forwarding
where the usage of FDEPs is used inject failures into spare
modules, see Ex. 12. In such scenarios, the natural embedding
in a temporal ordering is often lost, and reliability is impacted
by this, as in e.g. Fig. 9a, where then failure of B prevents
the failure of the PAND.

The standard interpretation of BEs uses a total order, i.e. the
standard interpretation of gates is based on this total order. If
the causal order of failure forwarding is resolved by a temporal
argument, the semantics of a temporal gate are affected by the
resolution of the causal order. This suggests that causality for
failure forwarding is a partial ordering.

Example 7: Consider the DFT depicted in Fig. 9b and
assume a causal ordering for failure forwarding. A failure of
C causes subsequent failures of A and B. Depending on the
order of A and B, T fails. Assuming that the causal order is
resolved by a (total) temporal order, then A and B fail in some
order, but not simultaneously. This causes a nondeterministic
failure behaviour of T .

Causality needs to be a partial order.

Combining causal and temporal ordering thus raises new
issues. One other issue we point at is whether in Fig.9b,
A and B should fail simultaneously after C. It could be
argued that the infinitesimal time steps are almost surely not
identical and so A and B do not fail simultaneously. On
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(c) Deleted Y

Fig. 10. Illustrating the effect of ordered failure combination.

the other hand, it seems rather natural to assume that A and
B may fail simultaneously. This should not be excluded, as
any assumption ruling out simultaneous failures of A and B
ignores potential interesting corner cases.

The embedding of causality in a temporal order
can rule out interesting corner cases.

Ordered failures of gates. The combination of the—often
unexpected—causal relation due to failure combination and
the temporal conditions of the gates yields DFTs that are
hard to comprehend and analyse. In particular, gates do not
only fail when their failure condition is fulfilled, but they
also influence the possible orderings of gate-failures. In the
next example, failure combination is assumed to be totally
ordered, i.e. gates do not fail simultaneously. If this ordering
is assumed to be temporal, seemingly equivalent DFTs have
different interpretations.

Example 8: Consider the DFT in Fig. 10a. Note that X
fails iff A fails. By symmetry, the same applies to Y . Thus
one expects that replacing X (or Y ) by A in the DFT would
result in an equivalent DFT, see Fig. 10b (and Fig. 10c). In
the original DFT, after a failure of A, either X fails before
Y or Y before X . The failure of PAND T depends on the
ordering. The two “equivalent” DFTs differ fundamentally. In
Fig. 10b, T fails, as A fails before Y —as failure combination
is totally ordered. In Fig. 10c, T does not fail, as A fails before
X violating the order of the PAND T .

Embedding causality in claiming yields also room for
different interpretations, which we do not discuss here. To
summarise, while merging a causal with a temporal ordering
seems appropriate in many situations, it leads to delicate issues
for DFTs. In particular, it seems more natural to assume a
partial-order semantics for failure combination.

Embedding causality into a total, temporal order
raises issues.

A partial-order temporal order would be more adequate.

C. Expressiveness

Priority gates. PAND and POR gates require their inputs to
fail from left to right. Various papers [2], [15] do not specify
the behaviour of such gates in case inputs fail simultaneously.
This may lead to problems [4]. The main issue is whether
a strict (denoted <) or a weak ordering (denoted ≤) of the
inputs is required. The former case is known as exclusive; the
latter as inclusive. Table I on page 1 shows that both variants

occur. Let us discuss some consequences choosing < or ≤.
In addition to OR, AND, PAND and POR gates, we consider
simultaneous-AND (SAND, for short) gates. They only fail if
their inputs fail simultaneously. Table II indicates the behaviour
of the various gates in case inputs A and B fail. There are
three possible scenarios: A occurs before B, A and B occur
simultaneously, or A occurs after B. These three situations
are listed in the table as t(A) < t(B), t(A) = t(B), and
t(A) > t(B), respectively. For every gate, the shaded area
depicts the situations in which it is considered failed.

TABLE II. BEHAVIOUR OF SEVERAL BINARY GATES WITH GIVEN

OCCURRENCE OF THEIR INPUTS.

t(A) < t(B) t(A) = t(B) t(A) > t(B)

A B A,B B A

AND(A, B)

OR(A, B)

SAND(A,B)

PAND≤(A, B)

PAND<(A, B)

POR≤(A, B)

POR<(A, B)

Assuming instantaneous failure combination it follows:

SAND and inclusive POR (PAND) can be expressed
using inclusive PAND (POR).

Exclusive priority gates cannot be expressed using
inclusive priority gates.

All priority gates are expressible using exclusive POR.

No other priority gate can be expressed using
exclusive PAND.

Using ORs to express XOR. As mentioned before, some
DFT dialects include XOR gates. These gates may yield non-
coherent fault-trees [26]: an additional failed event may turn
the system into an operational state again. As this seldomly
occurs [17], a common approach (for SFTs) is to represent
XOR elements by OR gates. Whereas this approach is guaran-
teed to under-approximate the system performance for SFTs,
it may yield an over-approximation for DFTs. Let us illustrate
this. Consider the DFT in Fig. 11, where the OR gate X is
used to model an XOR. Consider failing sequence BCD. The
system (with a truly XOR behaviour) fails after the additional
occurrence of sequence AE, as Y does not fail. The DFT
however cannot fail as X failed, causing the failure of Y and
Z, thereby violating the ordering requirement of the PAND
TLE. (Note that the precise behaviour of the PAND in case
one of its children is non-coherent is not specified. Therefore,
we use a somewhat verbose DFT in which we circumvent any
unspecified behaviour.) The above phenomenon is caused by
priority gates, where failed children may prevent the failure
propagation of their parents. Observing that SFTs are DFTs
too, it follows:

OR under- or over-approximates XOR,
depending on the context.

Emulating SEQs. Sequence enforcers (SEQ) guarantee that
elements only fail from left to right. Some papers [11], [23]
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Fig. 11. Using an OR for XOR over-approximates the system’s reliability.
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Fig. 12. Replacing a SEQ by a cold SPARE, for (c+d) this is invalid.

exclude SEQs and express them using cold SPAREs. The
underlying idea of using cold SPAREs for SEQs is that the
activation mechanism of the SPARE is able to enforce a
sequence of events, by assuming cold standby. The DFT in
Fig. 12a fails after A and B have failed, and B can only fail
after A did. The DFT in Fig. 12b is equivalent. The (cold)
SPARE ensures that B cannot fail if A did not fail, and the
SPARE only fails once A and B both failed.

This replacement of SEQs by SPARES is not applicable
in general, though. We consider two examples. Let us first
consider Fig. 12c, assuming that B and C are warm spare
modules. The SEQ expresses that C can only fail after B. Note
that as B and C are in warm standby, the failure of A is not re-
quired for B or C to fail. Replacing the SEQ by a cold SPARE
Y , say, yields—apart from some questionable syntax—that
claiming B by Y prevents SPARE S from claiming B. In
addition, C requires two distinct dormant failure distributions,
as it is both in cold and warm standby. Our second example
illustrates that application of the replacement in Fig. 12 yields
different results in case one of the SEQ children is a gate (and
not just a basic event). Consider Fig. 12d where B and C
are initially both enabled. The failure sequence BAC respects
the SEQ. For B to fail first, D needs to be active, and so B
and C need to be both active. Once B fails, C needs to be
disabled, as otherwise D could fail before A does, violating
the SEQ. But C needs (again) to be activated once A occurs.
Since SPAREs only allow spare modules to be activated once,
this behaviour cannot be expressed using SPAREs.

SEQs cannot always be expressed using cold SPAREs.

Consider Fig. 13a in which X is not allowed to fail (by
the SEQ). This enforces that B may only fail before A. Such
usages of SEQs can be more naturally expressed using the
POR, as shown in Fig. 13a.

SPAREs as dependent gates of FDEPs. FDEPs have a
trigger and a dependent basic event. Some DFT dialects allow

→

⊥

X SF

A B C

(a) With a SEQ

SF

X1

B A C

(b) With a POR

Fig. 13. Order-dependent event prevention.

FDEPs to have dependent gates (rather than events) [10]. Such
gates can fail themselves by their type-dependent condition
on their children, or when triggered. The dependent gate
then propagates it failure upwards; this can also be explicitly
modelled by an additional OR gate. Consider an FDEP with a
dependent SPARE. Assume the SPARE fails by triggering. In
this situation, it seems natural to expect the SPARE to neither
claim nor activate any of its spare modules. However, many
semantics do not support such a deactivation of a SPARE.

FDEPs with dependent gates require special treatment.

Evidence. A popular use of DFTs is to derive specific sce-
narios in which certain states (or failures)—referred to as
evidences—are assumed in the system. This is particularly
interesting when considering the system’s survivability, i.e.
how well can a system recover from a specific bad state?
Evidences can be naturally modelled by using constant fault
elements. This however requires a well-defined semantic treat-
ment of “simultaneous” failures at initialisation, a situation that
is not conform the common assumption that BEs never fail
simultaneously. In particular the treatment of SPAREs requires
attention, as the initial failure of spare modules may yield an
underspecified state of the DFT.

Setting evidence may yield underspecified initial states.

D. The resolution of spare races

Recall that spare races occur when multiple SPAREs fail
simultaneously, and some of the failed SPAREs claim a shared
spare module at the same time, see also Ex. 6. How can
spare races be resolved? One possible strategy is to resolve
spare races nondeterministically, i.e., consider all potential
resolutions by leaving open the exact claiming order. Some
authors have argued against nondeterminism in fault trees, e.g.
Merle et al. [12] claim that critical infrastructures should be
deterministic. However, especially in systems where human
actions are involved, policies might not be as precise (or
precisely followed) and system behaviour may not always be
deterministic. Moreover, FTA is not only applied to existing
systems, but often also during design time [2]. In early
design phases, not all concrete information about the system
is available, and typically deliberately left open so as to allow
for several system implementations. In these setting, nonde-
terminism is a convenient means to model underspecification.
Nevertheless, we agree that it is valuable to have additional
support for deterministic claiming policies in DFTs.
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(b) With a spare radio.

Fig. 14. DFT of a communication system.

Example 9: Consider the DFT in 14a. The DFT describes
a communication system consisting of two radios R1 and R2,
which both have to be operational. Each radio consists of an
antenna (A1 and A2, respectively) and a power unit (P1 and P2,
respectively). Both power units have their own power adaptor
(PA1 and PA2, respectively). The power adaptors are connected
to a common power supply (PS). Every power unit can use
one of the spare batteries (B1, B2) which have identical failure
distributions. The failure of PS leads to a spare race. However,
as there are spares for both P1 and P2, the actual order of
claiming has no influence. This is even true if there would be
only a single (available) spare module, as the second power
unit which tries to claim a battery would fail, and therefore, the
whole system would fail. Thus in this case the resolution of the
spare race does not influence the DFT’s reliability. However, if
the system only fails once both radios fail, i.e., if SF would be
an AND-gate, then a single spare module may lead to different
outcomes, if either one of the antennas fails prior to the spare
race, or it the antennas have different failure distributions.
Note that with two available spare modules (and without the
assumption that the failure distributions of the spare modules
are identical) the outcome may also depend on the way the
spare race is resolved.

Spare races can alternatively be resolved randomly, e.g. by
imposing a uniform distribution over all alternatives [4]. This
choice is justified by the assumption that the spare modules
(in [4] these are BEs) typically have equal properties. This
is however not enforced. The practical downside of a random
resolution is that the DFT’s reliability is influenced by the used
distributions, a fact that is often ignored when presenting the
reliability results. This bias is not present when solving races
nondeterministically.

Spare races are preferably resolved deterministically.
If impossible, nondeterministic resolution is preferred.

E. Claiming versus activation

Conceptually, there are two important differences between
claiming a spare module (e.g., a BE) and activation of a BE:
(a) the moment a module is being used somewhere is not
necessarily the moment it is activated, and (b) components
not subject to exclusive claiming may be inactive or active.

Early and late claiming. In practice, various scenarios may
occur in which spare modules itself are complex trees which
may make use of spare parts. This can be modelled by nested
SPAREs, i.e. SPAREs that have one or more SPAREs as

(indirect) child. Consider a SPARE that acts as spare module.
Can this SPARE claim one of its spare modules if it is not
itself activated yet? If yes, we call this early claiming; if not,
it is called late claiming. Under early claiming, a SPARE can
claim regardless of being activated or not. Inactive SPAREs
cannot claim under late claiming. Under early claiming it
is clear when a SPARE fails, as it can claim whenever it
wants. But for late claiming there are two possibilities: early
or late failing. With early failing, a late claiming SPARE
fails if all its primary and spare modules failed. Under this
regime, an inactive SPARE can thus fail (as a kind of “look
ahead” feature.) With late failing, this cannot happen; in this
case claiming only takes place upon activation. The following
example illustrates the differences.

Example 10: Consider the DFT in Fig. 14b, originating
from a communication system as in Ex. 9. Assume the radio R2

is in passive standby. Consider the failure of PA2. Under early
claiming, the power unit P2 directly claims some battery which
then cannot be claimed anymore by P1. Under late claiming,
P2 does not claim any of the batteries yet. Instead, it will only
claim a battery once R1 failed and R2 has subsequently been
activated. Using early failing, P2 fails—regardless of R2 being
activated or not—whenever either both B1 and B2 failed, or
one of them failed and the other was claimed by P1. Using
late failing, P2 fails only if it fails to claim something upon
activation of R2.

When to claim and when to fail do matter.

Which behaviour fits best depends on the use case and can-
not be fixed a priori in general. The different possible semantic
interpretations have more effects, however, the differences only
apply to DFTs with nested spares.

On one hand, late claiming introduces failure due to
claiming or activation, respectively. With early claiming, a
SPARE only claims after a child has failed. It does not fail
to claim without a child failing at the same moment. With late
claiming and early failure, SPAREs may fail due to children
being claimed by other SPAREs. Moreover, claiming may
cause spare races, resulting in event propagation and claiming
becoming interdependent. Analogously, for late claiming with
late failure, SPAREs may fail upon activation. Thereby, activa-
tion may cause spare races; event propagation and activation
become interdependent. On the other hand, using late claiming
allows a uniform treatment of activation and claiming.

Example 11: Consider again Fig. 14b where PA2 failed.
Let subsequently be PS B1 B2 the failure order. Under late
claiming, P2 does not claim any battery (as it is not yet active)
when PS fails. P1 thus claims B1, and once B1 fails, it claims
B2. Under early failing, P2 now fails as none of its children
is available anymore. It thus fails before B2 does. Under late
failing, P1 fails once B2 fails, and R2 is activated. Now P2 is
activated. As it cannot claim any child, P2 fails after B2.

Early and late failing (claiming) are incomparable.

Spare modules revisited. We now focus on the precise extent
of spare modules and the consequences thereof w.r.t. claiming
and activation. If we restrict spare modules to BEs, activation
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Fig. 15. Different attempts of modelling a shared power generator.

and claiming coincide. To activate a component, it has to be
claimed. As claiming is exclusive, this leads to work-arounds
to model system behaviour with DFTs.

Example 12: Consider two medical devices, which fail
once their power supply fails. The power supply can be
replaced by a power generator, which is powerful enough to
drive both devices. The failure rate of the power generator rises
on using the generator, i.e. once a primary power supply fails.
Fig. 15 shows different DFTs for the system. In Fig. 15a, once
the primary power supply (P1 and P2, respectively) fails, the
corresponding device (D1, D2) claims the power generator
Ps. If the primary supply of the other unit fails, the DFT
assumes the system fails, as the usage of the power generator
is exclusive. Thus, the depicted DFT fails to model that the
power generator is able to power both devices. Consider now
Fig. 15b. Once one of the primary power supplies fails, the
device claims their “connection” to the power generator (s1
or s2). However, only the connection is activated. The power
generator Ps thus either stays active or passive, independent
of the failure of the primary power supplies. In Fig. 15c,
we give a work-around of these problems. The first device
with a failed power supply claims and activates the power
generator. If the power supply of the other unit fails as well,
it claims and activates the connection, which fails with the
power generator. Depending on the exact failure propagation
behaviour, a failure of the power generator before the second
primary power supply fails might cause the power unit which
used the power generator before to claim the connection (s).
However, this connection would then directly fail.

A straightforward adaption would be given by propagating
activation in reverse direction through FDEPs. Upon activation
of the dependent event, the trigger of such FDEP is then
activated as well. Notice that reverse throughput is not always
appropriate, e.g. when modelling feedback loops. Without
using subtrees as spare modules, scenarios in which a module
is activated with a spare module but does not add to its failure
distribution are possible.

Until now, we have been rather imprecise about the ex-
act interpretation of spare modules. We recall the accurate
description depicted in Fig. 4b. There, the spare modules
were independent, i.e. unconnected graphs. The independence
criterium leads to work-arounds which do not agree with the
hierarchical way DFTs should be created. However, dropping it
yields multiple open questions. We do not cover further details
here, as any extension towards this requires dedicated treatment
and is not present in any existing interpretation of DFTs.

Claiming and activation coincide only for simple cases.
Their precise semantics is intricate and open.

IV. DFTS: THE COOKS

In this section, we consider and compare several existing
formalisations of DFTs. The origin of DFTs, e.g. in [27]
did not provide formal semantics. This has led to an unclear
meaning of specific fault trees, as outlined in [4]. Since this
initial formalisation, several others have been introduced which
are not fully compatible to each other. We discuss eight
different formalisations in greater depth. A tabular comparison
of specific features is given in Table I. We do neither include
the formalisations used in the Monte-Carlo approaches in [28],
[29] nor the definition in [3]. Attempts for using MCSs as
presented in [24] and in [25] are excluded as these are not
suitable to describe the behaviour of DFTs, as discussed in
Sect. III-A. Many techniques [30], [31], cf. also [3] are known
to speed-up the analysis. The correctness of such approaches
depends on the chosen semantics.

A. Fault tree automaton construction

A DFT semantics in terms of a fault tree automaton
(FTA) is given in [4]. It defines an operational semantics-style
axiomatisation of DFTs, formalised in Z [32]. The semantics
builds upon the notion of a state of the DFT containing
information about the order in which elements have failed as
well as usage information for the SPAREs. Given a DFT in
state s, an occurrence e and the resulting child s′, the semantics
formalises whether s′ is a valid resulting state. Based on this,
a FTA can be constructed which describes the DFT by a non-
deterministic automaton. For analysis, the underlying CTMC
(Continuous-Time Markov Chain) is constructed by resolving
non-determinism by a uniform distribution, see Sect. III-D.
The reliability a DFT is then computed on the underlying
CTMC. The formalisation of PANDs is inclusive. FDEPs
cause immediate failure propagation to the dependent events.
Triggers are allowed to be subtrees, while the dependent events
are BEs. SPAREs require that their children are BEs. All such
BEs are required to have only FDEPs, SPAREs or SEQs as
parents. SEQs are included in the most general form. Spare
races are resolved nondeterministically. Note that no notion
of causality is included. Tool support for FTAs in Galileo is
presented in [33]; underlying algorithms are described in [34].

B. Reduction to Bayesian networks

A popular method to support quantitative analysis of (dy-
namic) FTs is based on Bayesian Networks (BN) [35]. We
consider the reduction to Discrete Time Bayesian Networks
(DTBN) in [36], Continuous Time Bayesian Networks (CTBN)
in [5], and Dynamic Bayesian Networks (DBN, [37]) in [6],
[23], [7]. The underlying idea is to introduce random variables
for each DFT event. Random variables representing gates are
conditionally dependent on the random variables representing
the children. Cycles introduced by FDEPs are disallowed, as
this would yield a cyclic BN. BEs are represented by multi-
valued variables, which encode not only whether the BE failed,
but also whether it is active. This enables the integration of
warm-standby. Tools for BN analysis are widely available. The
reduction to BNs allows several additional analyses on fault
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trees, e.g. the most likely explanation analysis which is not
presented in other semantics.

Reduction to Discrete or Continuous Time BN. The re-
duction of a DFT to a DTBN as described in [36] is based on
discretising a time interval ]0, T ], where T denotes the mission
time, by slicing it into n possibly equidistant intervals. A
failure event occurs during an interval i ≤ n, instead of a time
point t ≤ T . Note that for limn→∞ the DTBN is equivalent
to the CTBN described in [5]. Obviously, the discretisation
introduces some inaccuracies. However, on the global level
presented here, we can ignore these inaccuracy and regard
the two formalisms as equivalent. Each gate is represented
by a random variable and conditional dependencies with all
children are given. For static gates, the conditional rules are
directly derived from the truth table of the gates. PANDs are
assumed to be inclusive. FDEPs directly cause the failure of
their dependent events. The triggers may be subtrees, while the
dependent events are assumed to be BEs. SPAREs only have
BEs as children. Sharing of spares is not considered. Moreover,
common cause failures for spare modules are not handled.

Reduction to Dynamic BN. The encoding to a DBN is also
based on discretising time. However, instead of slicing a time
interval, DBNs assume discrete time points for each event.
For each element in the DFT, a DBN is introduced, which
are merged into a single DBN afterwards. During the merging
process, the conditional probability tables are merged. For this
process, it is assumed that the conditional failure probability
equals the maximum conditional failure probability in the two
merged nodes, given any condition. This introduces an error
but yields smaller tables. For the PAND, an additional variable
is introduced which keeps track of the ordering. PANDs
are inclusive. FDEPs are extended to PDEPs. Failures are
instantaneously propagated. SPAREs assume BEs as children.
The behaviour in case of a spare race is not specified. SEQs
are not included. Tool support is provided by Radyban[7].

C. Reduction to Stochastic Well-formed Petri Nets

Stochastic Well-formed Coloured Nets (SWN) [38] are an
extension to Petri nets with exponential timing. The work
[39] reduces parametric fault trees to SWNs. Parametric fault
trees are SFTs with subtree replication aimed at yielding a
smaller state space by exploiting symmetry. This approach was
expanded to DFTs in [8]. Although the work also considers
repairs, this is outside the scope of this work. For each DFT
element, a small Petri net is given, which has input places
and an output place, i.e. each DFT element operates based
on the presence of tokens in its input places. A failure of the
gate causes a transition to fire which then places tokens in
any predecessor nets of the DFT. To compose a SWN for a
DFT with multiple elements, the inputs and outputs are merged
according to the structure of the DFT.

Remark: The semantics of a SWN as described in the
references cited in [8] allow only one transition to fire at a
time. Therefore, we assume that only one transition fires at
once. SWNs allow for priority assignments to select which
transition fires when multiple transitions are enabled. The
presented semantics for DFTs however do not mention this.

Gate failures are ordered, as synchronisation between the
elements is done via placing tokens, the effect of any element

failing is not simultaneously processed by the parents. PANDs
are inclusive, and FDEPs do not distinguish different depen-
dent events. Both triggers and dependent events are assumed
to be BEs. SPAREs assume BEs as children. Any sharing is
implicitly assumed to be amongst symmetric SPAREs using
identical BEs as spare elements. Thus, non-determinism during
claiming is hidden. Warm and cold standby are discussed,
but their interpretation remains unclear. SEQs are presented
in a general fashion, but their interpretation when putting
restrictions on gates is different. Instead of invalidating a
sequence, the failures are delayed until the more-to-the-left
children of the SEQ have failed.

D. Reduction to GSPN

A reduction of DFTs to Generalised Stochastic Petri Nets
(GSPN) [40] is given in [9]. The overall idea is to use a
graph transformation for an element-wise reduction to a GSPN.
This GSPN can then be reduced to a CTMC using existing
algorithms [41]. In a first step, a place for each vertex is added,
where a marking on such a place means that the element
has failed. Each gate is then replaced by a subnet which
places a token in its output place depending on markings in
the input places, thus, gates fail ordered. The static gates are
trivially defined. For PANDs, an extra place checks whether the
ordering is respected. The ordering is assumed to be inclusive.
FDEPs mark all dependent events failed, in a non-deterministic
ordering. It remains unclear how this non-determinism is
resolved for the reduction to a CTMC (most probably by a
uniform distribution). Warm spares are supported, but neither
spare pool sharing nor non-singleton spare pools are handled.
The SEQ requires all children to be BEs.

E. Reduction to a set of IOIMCs

Input/Output-Interactive Markov Chains (IOIMCs) extend
IMCs [42] by distinguishing inputs and outputs. This model is
amenable to a compositional design of Markovian processes.
The overall idea is to define small IOIMCs for each DFT ele-
ment and to compose these IOIMCs to obtain a representation
for the entire DFT [14], [10], [11]. Gate inputs are encoded
as input-transitions while failure propagations are modelled as
output-transitions. The behaviour of the entire DFT is given by
the parallel composition of the individual IOIMCs. Moreover,
SPAREs distribute claiming and activation information via ex-
tra transitions. It is important to notice that only one transition
at a time can fire in IOIMCs. Therefore, all elements fail in
some order, where the order is given by non-deterministic
choices. The encoding of the static gates is straightforward.
PANDs are non-inclusive (simultaneous failures do not occur),
FDEPs propagate their failures of the triggers to the dependent
elements. Both triggers as well as dependent elements can
be subtrees. Dependent gates are resolved by extra internal
transitions which are alike extra BEs connected to an OR-gate,
as discussed in III-C. SPAREs have independent subtrees as
spare modules. Nested SPAREs are allowed and follow the
late claiming regime with early failure mechanism. SEQs are
not included. Tool-support is given by DFTCalc [43], which
includes support for evidence by replacing BEs with constants.

F. Algebraic encoding

This section is dedicated to a formalisation of DFTs by
an algebraic description, as described in [12], [44], [13].
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TABLE III. LIST OF CASE STUDIES AND POTENTIAL ISSUES.

Name Source Spare races OFC FSG SEQs Evidence

AHRS [47]
B3 [48] �
CAS [49], [10] �
FTTP [1] � �
FDS [22] �
HECS [2] �
MAS [49], [1] � �
MCS [9], [43], [6] � � �
NDWP [10] � �
RC [50]
SAP [51] � �
SF [52] (�)
SSS [20]

Similar efforts can be found in [45], [20] and [46]. However,
those formalisations do not include SPAREs and are therefore
excluded here. SFTs are trivially embedded into Boolean
algebra. In [12], the authors extend Boolean algebra with tem-
poral operators for before, inclusive before and simultaneous
to formalise “priority DFTs with repeated events”, in fact
SFTs with PANDs and FDEPs. “Repeated events” are used to
emphasise that the underlying graph is not necessarily a tree.
Although the formalisation method supports both inclusive and
exclusive PANDs, the authors choose the inclusive variant as
it “seems more coherent with the designers’ expectations”.
Failure propagation is immediate. Furthermore, each DFT is
given a canonical representation in the algebra which extends
MCSs with ordering information over all BEs, as well as a
scheme for deducing the top-level failure distribution given
fault distributions of the BEs. In [44], the authors use the
same algebra for SPAREs. The considered SPAREs only allow
BEs as children. It is assumed that the BEs do not occur
simultaneously, which excludes common cause failures in
SPAREs. Activation is realised by considering two events,
one with a warm and one with a hot failure rate thereby
explicitly excluding the occurrence of both failures. SEQs are
not included. Constant failures are not presented, although
present in the algebra.

V. DFTS: BENCHMARKS

So far we have discussed the several issues of DFTs on the
basis of small illustrative examples. The question rises whether
these phenomena also occur in realistic DFTs. To answer this
question (affirmatively), we studied several DFT benchmarks
from the literature, see Table III. The spare race column marks
the benchmarks in which spare races occur and influence the
reliability of the DFT. In some other benchmarks, spare races
only occur after the DFT has failed. The OFC column lists
benchmarks in which ordered failure combination yields pos-
sibly wrong results—this also relates to inclusive vs. exclusive
priority gates. FSG indicates that only in the MCS benchmark,
the behaviour of failed spare gates is relevant. SEQs occur
in MAS and FTTP, and should have been included in SF
(see below). The column evidence indicates that including a
constant failure yields ambiguities. Evidences then give rise
to more issue in presence spare modules and (including vs.
excluding) priority gates.

A few remarks are in order. Most benchmarks, except
MAS and FTPP, were presented in the literature to show
the feasibility of some particular approach. These DFTs are
therefore often compact and have only a small static fragment.
However, with the current state-of-the-art, much larger DFTs

could be analysed. Our experience with industrial partners
indicate that most DFTs are indeed largely static, i.e. the vast
majority of gates is static, presumably even the vast majority
of subtrees. This is backed also by [46], [50], [24]. Most
DFTs accompanying DFT analysis tools do not match the
guidelines [2] for hierarchically constructed FTs—it seems
that many constructs are crafted to match the system, but
not following a hierarchical approach. Furthermore, SEQs
were only used in older versions of some DFTs to model
the spare management. With existing tool support for the
warm SPARE, SEQs are not present anymore. In the SF
benchmarks, the PANDs are (wrongly) used as SEQs. We
finally observe that (correct usage) of priority gates is mostly
used to model reconfiguration. This applies to SSS, FDS, as
it gives more freedom than SPAREs. Without SPAREs, warm
spares modules can only be modelled via a combination of
extra basic events and SEQs, as e.g. in MAS.

In all benchmarks, the spare modules are BEs—none of the
benchmarks contains subtrees, or spares, as spare modules.
This is justified by the fact that the analysis support for
this has received scant attention so far. More succinct and
comprehensible DFTs for the HECS and AHRS benchmarks
could be obtained by relaxing the restriction on spare modules
being BEs. SPARE gates in general yield more compact DFTs,
e.g. the DFTs to FTTP and MAS were significantly simplified
by exploiting SPARE gates.

VI. CONCLUSION

A detailed discussion of existing DFT features and their
possible (mis-)interpretations was presented. Problems of the
various DFT dialects were described, approaches for solving
these problems were suggested, and distinctive features with
respect to the variants’ syntactical and semantic aspects were
elaborated. The interplay between temporal and causal de-
pendencies makes DFTs complex and intricate to understand.
Classical concepts like cut sets are difficult to generalise to
DFTs. The bottom line of this thorough investigation is that
despite their seeming simplicity, DFTs are complex objects.
Engineers should be aware of the various subtleties and
nuances of interpretation so as to interpret the DFT analysis
results in an appropriate way.
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