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Abstract—Classification algorithms have been widely adopted
to detect anomalies for various systems, e.g., IoT and cloud, under
the common assumption that the data source is clean, i.e., features
and labels are correctly set. However, data collected from the field
can be unreliable due to careless annotations or malicious data
transformation for incorrect anomaly detection. In this paper,
we present a two-layer learning framework for robust anomaly
detection (RAD) in the presence of unreliable anomaly labels.

The first layer of quality model filters the suspicious data,
where the second layer of classification model detects the anomaly
types. We specifically focus on two use cases, (i) detecting 10
classes of IoT attacks and (ii) predicting 4 classes of task failures
of big data jobs. Our evaluation results show that RAD can
robustly improve the accuracy of anomaly detection, to reach up
to 98% for IoT device attacks (i.e., +11%) and up to 83% for
cloud task failures (i.e., +20%), under a significant percentage of
altered anomaly labels.

Index Terms—Unreliable Data; Anomaly Detection; Failures;
Attacks; Machine Learning

I. INTRODUCTION

Anomaly detection is one of the core operations for enforc-
ing dependability and performance in modern distributed sys-
tems. Anomalies can take various forms including erroneous
data produced by a corrupted IoT device or the failure of a
job executed in a datacenter.

Dealing with this issue has often been done in recent art
by relying on machine learning-based classification algorithms
over system logs [8], [10]. These systems often rely on a
learning dataset from which the classifier learns to distinguish
between data corresponding to a correct execution of the
system from data corresponding to an abnormal execution of
the latter (i.e., anomaly detection).

In this context, a rising concern when applying classification
algorithms is the accessibility to a reliable ground truth for
anomalies. Typically, anomaly data is manually annotated by
human experts and hence the generation of anomaly labels

is subject to quality variation, so-called noisy labels. For
1 This work has been partly supported by the IRS (Initialtive de Recherche
Stratégique) program DATE.
2 This work has been partly funded by the Swiss National Science
Foundation NRP75 project 407540_167266.

instance, annotating service failure types for data centers is
done by operators.

However, standard machine learning algorithms typically
assume clean labels and overlook the risk of noisy labels.
Moreover, recent studies point out the increasing dirty data
attacks that can maliciously alter the anomaly labels to mislead
the machine learning models [7], [11], [13]. As a result,
anomaly detection algorithms need to capture not only anoma-
lies that are entangled with system dynamics but also the
unreliable nature of anomaly labels.

Indeed, a strong anomaly classification model can be learned
by incorporating a larger amount of datasets; however learning
from data with noisy labels can significantly degrade the
classification accuracy, even for deep neural networks, at a
non-negligible computation source [29]. Such a concern leads
us to ask the following question: how to build an anomaly
detection framework that can robustly differentiate the true and
noisy anomalies and efficiently learn the anomaly classification
models from a succinct amount of clean data. The immediate
challenge of capturing the dynamics of data quality lies at the
fact that label qualities are not directly observable but only via
anomaly classification outcomes that in turn is coupled with
the noise level of data labels.

In this paper, we develop a Robust Anomaly Detector
(RAD), a generic framework that continuously learns the
anomaly classification model from streams of event logs that
are subject to label noises. To such an end, RAD is composed
of two layers of learning models, i.e., data label model and
anomaly classifier. The label model aims at differentiating the
label quality, i.e., noisy v.s. true labels, for each batch of
new data and only “clean” data points are fed in the anomaly
classifier. The anomaly classifier predicts the event outcomes
that can be in multiple classes of (non)anomalies, depending
on the specific anomaly use case. The specific choices of label
models and anomaly classifier include standard machine learn-
ing models, e.g., random forest, Adaboost, and discriminant
analysis, and deep neural networks.

To demonstrate the effectiveness of RAD, we consider two
use cases, i.e., detecting 10 classes of IoT attacks [18], and



predicting four types of task failures for big data processing
cluster [24], from open datasets. Our preliminary results
show that RAD can effectively and continuously cleanse
the data, i.e., selecting data streams with clean labels, and
result better anomaly detection accuracy per additional data
stream included, compared to classifiers without continuous
data cleansing. Specifically, RAD achieves up to 98% and
83% accuracy for detecting IoT device attacks and predicting
cluster task failures respectively.

The remainder of the paper is organized as follows. Sec-
tion II describes the motivating case studies that we consider.
Sections III and IV respectively present the proposed RAD
framework and the results of its experimental evaluation.
Section V describes the related work, and finally, Section VI
draws our conclusions and the lessons learned.

II. MOTIVATING CASE STUDIES

To qualitatively demonstrate the impact of noisy data on
anomaly detection, we use two case studies.

o Detecting IoT device attacks from inspecting network
traffic data collected from commercial IoT devices [18].
This dataset contains nine types of IoT devices which
are subject to ten types of attacks. Specifically, we focus
on the Ecobee thermostat device that may be infected by
Mirai malware and BASHLITE malware. Here we focus
on the scenario of detecting and differentiating between
ten attacks. It is important to detect those attacks with
high accuracy against all load conditions and data quality.

« Predicting task execution failures for big data jobs
running at Google cluster [24], [26]. This trace contains a
month-long jobs execution record from Google clusters.
Each job contains multiple tasks, which can be terminated
into four different states: finish, fail, evict, or kill. The last
three states are considered as anomaly states. To minimise
the computational resource waste due to anomaly states,
it is imperative to predict the final execution state of task
upon their arrivals.

The details about data definition, and statistics, e.g., no. of
feature and no. of data points, can be found in Section IV-A.
To detect anomalies in each case, related studies have ap-
plied machine learning classification algorithms, e.g., k-nearest
neighbor (KNN), nearest centroid and multilayer perceptron
(MLP) (ak.a feed-forward deep neural networks), under the
scenario where different levels of label noise are present.
Here, we evaluate how the detection accuracy changes relative
to different levels of noises. We focus on offline scenarios
where classification models are learned from 14000 records
and evaluated on a clean testing dataset of 6000 records.
We specifically apply KNN, nearest centroid and MLP on
IoT device attacks and cluster task failures respectively, and
summarize the accuracy results in Figure la and Figure 1b.

One can see that noisy labels clearly deteriorate the de-
tection results for both IoT attacks and task failures, across
all three classification algorithms. For standard classifiers, like
KNN and nearest centroid, the detection accuracy decays faster
than MLP that is more robust to the noisy labels. Such an

observation holds for both uses cases. In IoT attacks, MLP
can even achieve a similar accuracy as the case of no label
noises, when there is 50 percent of label classes are altered.

III. DESIGN PRINCIPLES OF RAD FRAMEWORK
A. System Model

We consider a dataset that consists of several data instances.
Each data instance has f features. Each data instance belongs
to a class k, where k € K = {1,...,K}. A data instance is
either labeled with a class k or is not labeled. Furthermore, a
labeled data instance is either correctly labeled (i.e., clean data
instance), or incorrectly labeled (i.e., noisy data instance). In
the latter case, the data is annotated with a wrong label due
to human error, or malicious error injection, etc. Obviously,
a non-labeled data instance is clean. The quality of a dataset
D is measured as the percentage of data instances with noisy
labels, denoted here as Y.

Data instances structured in batches are assumed to arrive
continuously in the learning system over time. D; denotes
the set of data instances arriving in batch at time ¢;, and its
set of labels Y;, for which the quality may vary from one
data instance to another inside the data batch. We assume
that Dy, a small set of initial data instances with both clean
and noisy labels is given. Other collected data instances are
also noisy, and the quality of datasets from batches to batches
may fluctuate. Data instances belonging to D; are denoted
d1,i,d24,...dn,;. Up to N new data instances are considered
for training the data classifier and building the learned data
model. We consider that the batches arrive with constant
number of data instances, VD;, |D;| = N, but not necessary
at regular time intervals.

Then, a classification request consists of sets of non-labeled
data instance P; for which the classifier predicts the class
k to which each data instance belongs. At each batch, the
classification output is thus an array of the predicted classes
for each data instance in the batch }72»73.

B. Objectives and Overview of RAD Framework

We propose the RAD learning framework. Its objective is
threefold:
(1) Accurately learning a data model from noisy data.

(ii) Continuously updating the learned model with new in-
coming data.

(iii) Proposing a general approach that applies on different
machine learning algorithms, and with different applica-
tion use cases.

Figure 2 describes the overall architecture of RAD. Each of
its components is detailed in the following.

C. Determining Data Noise

The first component of RAD aims at determining if a labeled
data instance is correctly or incorrectly labeled. RAD learns
the data label quality model £ : Rf — ¢ € Q = {0,1}.
The objective of the label quality model is to select the
most representative data instances to learn a strong data
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Fig. 1: Impact of noisy data on anomaly classification
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Fig. 2: RAD learning framework. The flowchart is iterated at
every batch, with the new data coming in (left arrows). Each
block is a machine learning algorithm, data used to train them
are represented by colored arrows coming from the top. The
data selected based on the label quality model’s predictions
provides the training data for the main task, the anomaly
classification. Global output (right arrow) is the predicted
labels of each new batch P;.

classifier model. It solicits data instances with clean labels,
avoiding the pitfall that the classifier overfits the noise. RAD
uses supervised-learning algorithms to continuously train the
label quality model from accumulated predicted clean data
instances, which are highly correlated to a stronger classifier.

The label quality model tries to learn the binary classifier
for label quality, i.e., ¢ = 1 denotes a correct label and g = 0
denotes an incorrect label. £; is the label quality model that
is trained with data instances received up to time ¢;, that
is Dg,D1...D;. Upon the arrival of a new batch of data
instances D; at time t;, we use the previously learned label
quality model £;_; to predict the quality for each data instance
d;; € Dy, this quality is denoted §; ;. If ¢;; = 0, meaning
an incorrect label, we discard such a data instance and only
consider data instances with ¢;; = 1. We thus build D*;, the
subset of D; with all correct data instances from D;. And

we incorporate D*; into the existing training set for the data
classifier. In turn, we incorporate the clean data D*; to retrain
the label model for the next batch, that is £;.

D. Generic Approach to Handle Dynamic Data

Another component of RAD is the dynamic data classifier,
¢:Rf s kek. Essentially, €; is trained on all the estimated
clean data received until batch D;, that is D*( ... D*;. Indeed,
the received data D; ...D; were cleaned using the data label
quality model £ ... £;_1 to produce clean data D*; ... D*,.
Thus, the RAD learning framework uses the data label quality
model which is updated from batch to batch, and enriches its
overall learned data classification model accordingly.

Furthermore, RAD follows a generic approach since the
proposed classification framework can be used with different
machine learning algorithms, such as SVM, KNN, random
forest, nearest centroid classifier, etc. And RAD has different
applications where noisy data are collected and must be
cleaned before learning data model, such as failure detection
and attack diagnosis that we illustrate in Section IV.

IV. EXPERIMENTAL EVALUATION
A. Use Cases and Datasets

In order to demonstrate the general applicability of the
proposed RAD framework for anomaly detection, we consider
the following two use cases: (i) Cluster task failures, and
(ii) IoT botnet attacks. In our experiments, we use real data
collected in cluster and IoT platforms.

The task traces comprise data instances each corresponding
to a task with 27 features capturing information related to static
and dynamic system state, e.g. the task start/end times, the task
resource utilisations, the hosting machine, etc. Each class is
labeled based on its scheduling state. A detailed description of
the features and labels can be found in [24]. In particular, we
are interested in the four possible termination classes: finish,
fail, evict, or kill. We filter out other classes. The resulting class
distribution is dominated by successful tasks (finish) 77.8%,
followed by kill 22.0%, fail 0.2%, and evict <0.1%. Similar



to [26], we aim to predict the task outcome to reduce the
resource waste and improve the overall scheduling and system
performance, e.g., in case of lack of resources and need to
kill a task help choosing the task with the least probability to
succeed. We apply RAD to continually train a noise-resistant
model for better accuracy.

The IoT dataset comprises data instances describing 23
network packet-level statistics recursively computed over five
different time scales totalling to 115 features. This traf-
fic statistics are collected during normal operation, labeled
as benign, or under one of ten different malicious attacks
stemming from devices infected by either the BASHLITE or
Mirai malware. Malicious traffic covers mainly scanning for
vulnerable devices and various flooding attacks. The dataset
provides traces collected at different IoT devices. More details
are provided in [18]. We aim to apply RAD to build a noise-
resistant model to categorize the attacks for post fact analysis,
e.g., for threat assessment.

The main dataset characteristics are summarized in Table I.

TABLE I: Dataset description

Use case Cluster task failures IoT device attacks
#trainig data instances 57,000 33,000

#test data instances 6,000 6,000
#classes K 4 11
#features f 27 115

data batch size 600 300

B. Experimental Setup

RAD is developed in Python using scikit-learn [21]. The
main performance evaluation metric is accuracy. Experiments
are carried out 5 times, results are aggregated by computing
mean and standard deviation.

Noise. We inject noise into the two datasets by exchanging
the true label of data instances with a random one. The
label noise is symmetric, i.e., following the noise completely
at random model [9] where a label is picked with equal
probability from all classes except the true one. The noise level
represents the percentage of data instances with noisy labels.
We emulate time-varying noise by drawing for each new data
batch the noise level from a Gaussian distribution with 20%
standard deviation and various mean levels. We assume that
all data is affected by label noise, except the testing data.

Continual learning. We start with an initial data batch of
3000 data instances for the Cluster task failures dataset, 6000
for the IoT devices one. Then, data instances arrive continu-
ously in batches of respectively 600 and 300 data instances.
Both the initial and subsequent data batches are affected by
noise. To kick-start the label and classification models in RAD
we assume to know which initial data instances are affected
by noise (no assumptions for the subsequent data batches).
We select 6000 clean data instances as the test dataset for
both use case. Test dataset will be used at the end of each
epoch to evaluate classification model’s accuracy. We show

the evolution of the model accuracy over data batch arrivals
until the performance of RAD converges.

Label model. We use a multilayer perceptron to assess
the quality of each label. For IoT dataset, the neural network
consists of two layers with 28 neurons each. For Cluster task
dataset, the network consists of two layers with 110 neurons
each. The precision and robustness of the label model are
critical to filter out the noisy/malicious labels and provide a
clean training set to the classification model. We considered
different models, but neural networks provided the best results
in terms of accuracy and stability over time. Adaboost gave
excellent accuracy when training from the initial data with
ground truth, but resulted too sensitive to the unknown noise
of subsequent data batches. Random forest is another choice
and known to be robust against label noise [9], however its
accuracy was below the neural network one.

Classification model. We use KNN to assign the correct
class label to each data instance filtered by the label model.
We set k to 5. Higher values of k can increase the resilience
of the algorithm to residual noise, but also induce extra com-
putational cost. The current choice stems from good results in
preliminary experiments.

Baselines. The proposed RAD is compared against two
baseline data selection schemes: (i) No-Sel, where all data
instances of arriving batches are used for training the classifi-
cation model; and, (ii) Opt-Sel which emulates an omniscient
agent who can perfectly distinguish between clean and noisy
labels. The two baselines are representative of the worst and
best possible data selection strategies and we expect RAD to
fall in between.

C. Handling Dynamic Data

We start by illustrating how RAD enables to increase the
anomaly detection accuracy over time, despite the presence
of noise. Figures 3 and 4 show the evolution of the mean
and variance of the classification accuracy achieved by RAD
on the thermostat and task failure datasets, respectively. Each
figure moreover presents results under two levels of label
noise: 30% and 40%. We compare RAD against no selection
(No-Sel) and optimal selection (Opt-Sel). One can notice that
learning from all data instances without cleansing (i.e., No-
Sel curves) gives consistently lower accuracy in all cases. For
the attacks classification on the thermostat, the accuracy even
oscillates and diverges. The performance when using RAD
is better. First because the accuracy does not diverge, second
because it always consistently increase until it saturates. For
the IoT attack dataset, the end accuracy is around 98%, for
the cluster tasks around 83%. While for the first dataset the
accuracy of RAD follows closely the accuracy of Opt-Sel,
for the second dataset RAD follows Opt-Sel at first but then
saturates after 40 data batch arrivals. RAD is efficient for
various classification applications, however not optimal for
all of them. Note that RAD gives also more stable results
as shown by shorter errorbars which in magnitude are in line
with the ones obtained by an ideal data cleansing. For No-
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Sel the bars are significantly larger. We discuss the results for
other IoT devices in Section IV-F.

Figure 5 presents the variations of noise over time for one
run on IoT thermostat dataset where mean noise rate sets to
30%. Overlaid is the number of data selected by RAD and the
overlap between selection and actually clean. Results highlight
the sharpness of data selection and its parsimony.

In summary: (i) continual learning is advantageous com-
pared to using only the initial dataset; however, (ii) continual
learning exposes us to possible classification accuracy degra-
dation stemming from noisy labels if proper data selection
is lacking, (iii) RAD improves the classification accuracy
compared to taking all labels, (iv) the data selection of RAD
is good, and close to being optimal in some cases.

D. Evaluation of Noise Robustness of RAD

Next we investigate the impact of different noise levels on
the RAD performance in terms of classification accuracy.

Figures 6a and 6b present the classification accuracy for
various levels of noise, ranging from 0% (all data are clean)
up to 90% for our two main reference datasets: IoT thermostat
device attacks and Cluster task failures. Accuracy is measured

#Data instances

— - Cean
50 - ; —e Sclected

< Selected & Clean
0 1 1 1 1 1 1 1 1

o 10 20 30 40 50 60 70 80 90
Data batches
Fig. 5: Data selection — Use case of IoT thermostat device
attacks with 30% noise level.

once the learning has converged. Once again, the RAD per-
formance is compared to learning from all data (No-Sel) and
an omniscient data cleanser (Opt-Sel).

As illustrated in Section II, for No-Sel the noisier the data
are, the worst the classification accuracy, dropping to 20%
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and 42% for the tasks and thermostat datasets, respectively.
A decreasing trend can also be found for RAD and Opt-Sel,
however the drops are significantly smaller: at most 5%. As
there is by definition no noise in Opt-Sel case, the decrease
in classification accuracy is only due to the reduction of
the overall amount of clean data to learn from. Since the
data cleansing of RAD is not perfect, the accuracy reduction
is caused by both pollution from the noise and the overall
clean data reduction. Nevertheless, the impact is small and
any huge accuracy pitfall is avoided which results in RAD’s
performance being close to Opt-Sel. We can conclude that
RAD can limit the impact of the amount of noise across a
wide range of noise levels.

E. Impact of Initialization

Here we study the impact on RAD of the amount of ground
truth data available, i.e., the size of the initial dataset Dj.

In Figure 7a, we vary the number of initial clean data
instances for the IoT thermostat device dataset from 100 to
6000, and measure the classification accuracy after 90 data
batch arrivals, for both RAD and Opt-Sel. We do not consider
No-Sel here since this results are meant for the framework

configuration, not its performance evaluation. Similarly, Fig-
ure 7b describes the results of the same experiments with the
Cluster task failure dataset.

In Figure 7a for Opt-Sel, no matter the number of data
instances in the initial set, the final accuracy is stable around
98%. However for RAD, the size of D, does matter: the larger
the better, with some saturation aftereffect. At |Dy| = 3000
its performances is close to Opt-Sel, and at |Dy| = 6000 they
completely overlap.

This justifies our earlier choice of 6000 data instances in our
initial set for the IoT device attacks classification as it enables
to achieve the best accuracy. However, RAD framework could
also perform well with only half of those data as initial set.

F. Analysis of All Datasets

Summary results across datasets are reported in Table II.
In addition to the average accuracy after the last batch ar-
rival, we also underline the relative accuracy improvement
obtained by comparing RAD to the initial set, i.e., the impact
of continual learning, and to the No-Sel strategy, i.e., the
impact of intelligent data selection. Columns 5 and 6 report
these results. Finally, we present the percentage of accuracy



difference between RAD and Opt-Sel, i.e., how close we are
to an omniscient data selection, in column 7.

All results are positive, with varying magnitude depending
on the dataset. In all cases, the proposed RAD improves
between 1% to 5% the accuracy compared to blindly taking
all data instances. However, more important than the absolute
gain is the trend. For example, for the thermostat dataset, we
can observe that RAD converges over time to a stable level as
well as Opt-Sel model, but No-Sel diverges. This means that
as time goes by, No-Sel becomes worse and worse.

Even more than the benefits of continual learning might
be important the resilience to high levels of noise. Under
such levels, the classification accuracy without data cleansing
diverges for all datasets. Even if it is rare to have noise levels
of 90% or above, they might still happen for short periods of
time in case of attacks to the auto-labelling system via flooding
of malicious labels. Hence this property can be crucial for the
dependability of the auto-labelling system.

G. Limitation of RAD Framework

Though the RAD framework works well for datasets of
Cluster task failures and IoT device attacks. We can still see
the potential limitations of this model, for example: (1) the
assumption of availability of a small fraction of clean data
which may not be possible; (2) if data is coming at high rates,
or the structure of quality model becomes more complicated,
training and predicting time of first layer will slow down the
system.

V. RELATED WORK

Machine learning has been extensively used for failure
detection [6], [22], [23], [25], and for attack prediction [1], [3],
[4], [14], [15], [33]. Considering noisy labels in classification
algorithms is also a problem that has been explored in the
machine learning community as discussed in [5], [9], [19].

The problem of classification in presence of noisy labels can
be organized into various categories according to, on the one
hand, the type of classification algorithm subject to noise, and
on the other hand, the techniques used to remove the noise.

Regarding the type of classification algorithm, the problem
of noisy labels has been studied both for binary classification
where noisy labels are considered as symmetric (e.g., [16]) and
for classification with multiple classes where noisy labels are
considered as asymmetric, e.g., [20], [27]. In the context of this
paper, we consider the problem of classification with multiple
classes. Furthermore, noisy labels have been considered in
various types of classifiers KNN [32], SVM [2], and deep
neural networks [30]. In the context of this paper, our proposed
approach is agnostic to the underlying classifier type as noise
removal is performed ahead of the classification.

To deal with noise, various techniques have been explored
including forward loss correction. These algorithms learn
about the label noise by adjusting the loss to the end of
the model. However, these solutions either rely on strong
assumptions or have limited accuracy as they generally do
not rely on clean labels to remove the noise. More accurate

solutions, which rely on clean labels during the training phase
have thus been explored (e.g., [12], [17], [31]). These solutions
generally train a separate network for distinguishing noisy
labels from clean ones. Robustness to label noise has also
been studied for GANs performing image recognition, both
in the context of known and unknown noise distribution [28].
However, all these solutions have been designed and tested
on static datasets and in an off-line setting. Instead in the
context of this paper, we consider a dynamic model where the
network has been trained using clean labels continues to learn
over time.

VI. CONCLUDING REMARKS

While machine learning classification algorithms are widely
applied to detect anomalies, the commonly employed assump-
tion of clean anomaly labels often does not hold for the data
collected in the wild due to careless annotation and malicious
dirty label pollution. The noisy labels can significantly degrade
the accuracy of anomaly detection with an increasing amount
of data and are challenging to tackle due to the lack of ground
truth of label quality. In this paper, we present a framework for
robust anomaly detection, RAD, which can continuously learn
the system dynamics and anomaly behaviours from streams of
arriving data after filtering out suspicious noisy data.

RAD is a general framework that composes of sequence of
quality and classification models, where the former captures
the label dynamics and the latter focus on detection anomaly.
We demonstrate the effectiveness of RAD on two uses cases,
i.e., detecting IoT device attacks, and predicting task failure
at Google clusters. RAD can robustly improve the detection
accuracy against different levels of label noises, reaching up
to 83% and 98% accuracy for predicting task failure and
detecting IoT device attacks, respectively, whereas learning
directly from all the data streams without filtering degrades
the detection accuracy.
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