
SMACS: Smart Contract Access Control Service
Bowen Liu∗, Siwei Sun†, Pawel Szalachowski∗

∗Singapore University of Technology and Design, Singapore
†State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing 100093, China

Abstract—Although blockchain-based smart contracts promise
a “trustless” way of enforcing agreements even with monetary
consequences, they suffer from multiple security issues. Many of
these issues could be mitigated via an effective access control sys-
tem, however, its realization is challenging due to the properties of
current blockchain platforms (like lack of privacy, costly on-chain
resources, or latency). To address this problem, we propose the
SMACS framework, where updatable and sophisticated Access
Control Rules (ACRs) for smart contracts can be realized with
low cost. SMACS shifts the burden of expensive ACRs validation
and management operations to an off-chain infrastructure, while
implementing on-chain only lightweight token-based access con-
trol. SMACS is flexible and in addition to simple access control
lists can easily implement rules enhancing the runtime security of
smart contracts. With dedicated ACRs backed by vulnerability-
detection tools, SMACS can protect vulnerable contracts after
deployment. We fully implement SMACS and evaluate it.

Index Terms—Blockchain; Smart Contract; Access control;
Ethereum; Runtime verification

I. INTRODUCTION

Blockchain-based platforms like Ethereum [1] have made
the concept of self-enforcing smart contract [2] into reality.
A smart contract is a special computer program that executes
on the global virtual machine running upon the distributed
and decentralized ledger. By running a consensus protocol and
following the replicated state machine model a unified view
of the system state over all network participants is imposed.

Like all computer programs, it is likely that most non-trivial
smart contracts will contain errors [3], [4], [5]. These smart
contract related errors should be addressed even more seri-
ously than ordinary program bugs. Firstly, smart contracts are
often deployed over transparent and permissionless blockchain
platforms, thus anyone can inspect and interact with them.
Secondly, due to its immutability, it is hard to upgrade or
simply "kill" an already-deployed smart contract when attacks
are discovered as the contract could have become an important
part of the ecosystem (i.e., other contracts hardcode its ad-
dress). Finally, smart contracts determine how units of value
convertible to real money move, making them a high-value
target with intrinsic economic incentives. In the past few years,
several hundreds of millions worth of USD were stolen or
frozen due to flawed smart contracts [6], [7]. For instance, the
infamous attack on the TheDAO [5] smart contract resulted
in over 50 million US Dollars worth of Ether were drained at
the time the attack occurred. Given the severity of the attack,
the Ethereum community finally agreed on hard-forking.

As a consequence, the community has made a great effort on
developing methodologies and tools to ensure the security of

smart contracts. One line of research focuses on the security
analysis of smart contracts by verifying their code [8], [9],
[10], [11]. However, most of these approaches are unable to
protect deployed smart contracts. Another approach is to inte-
grate runtime defensive mechanisms into the deployed smart
contracts and their runtime environment. With this approach,
security-risky interactions with a vulnerable smart contract can
be detected and mitigated “on-the-fly” in runtime [12], [13].
These mechanisms usually require integration with the exe-
cution environment (i.e., with the virtual machine deployed)
to be useful in production, but unfortunately that hinders
their adoption. Ideally, a defensive mechanism with arbitrary
complexity would be put into a smart contract itself, but in
practice it is infeasible since on-chain resources are expensive.
Moreover, such a mechanism would be difficult to manage and
update, ACRs would be publicly visible, and available smart
contract languages with virtual machines associated would
limit its capabilities. For example, it would be very costly
and inconvenient to enhance the security of smart contracts
by encoding fine-grained ACRs into them, which is a fairly
mature and traditional approach for centralized systems.

In this work, we propose the SMACS framework, a cost-
effective access control service that is not simply a token-based
authentication system but aims to enhance the runtime security
of smart contracts. In SMACS, a smart contract only needs
to perform lightweight token verifications, which introduces
a clear on/off-chain sides separation with minimized on-chain
trusted computing base. The on-chain storage and computation
requirement are minimized by various techniques and by
shifting the burden of access control and ACR management
to an off-chain service. SMACS framework not only supports
fine-grained and updatable ACRs, but also is easily extensible
by integrating recently developed smart contract vulnerability
detection tools and security enhancement mechanisms [14],
[12]. The combination of SMACS with runtime verification
tools is powerful as it provides the benefits of these tools
immediately without requiring updating virtual machines by
all blockchain participants. SMACS is deployable as today,
does not require any blockchain platform changes, and by
moving security rules off-chain preserves their privacy.

II. BACKGROUND AND MOTIVATION

A. Blockchain and Smart Contracts

In the last ten years, the blockchain technology initi-
ated by the Bitcoin [15] cryptocurrency has fueled great

ar
X

iv
:2

00
3.

07
49

5v
1

 [
cs

.C
R

]
 1

7
M

ar
 2

02
0

innovations. Relying on the consensus protocol behind Bit-
coin, it is not long before Ethereum [1] was built – a
general-purpose blockchain system well-beyond cryptocurren-
cies which can execute programs on blockchain. Similarly to
Bitcoin, Ethereum introduces its native cryptocurrency – ether,
which is also used to incentivize system participants.

Ethereum can be regarded as a decentralized and replicated
state machine whose state is maintained as a proof-of-work
blockchain. The state transition of Ethereum is processed
by the so-called Ethereum Virtual Machine (EVM) executing
programs called smart contracts written in a Turing-complete
language. Due to the Turing completeness, one can implement
self-enforcing smart contracts with nearly arbitrary logic. As
a result, we have witnessed a wide range of applications of
smart contracts in different domains [14], [16].

Smart contracts inherit some essential properties from its
underlying blockchain. Once a smart contract is deployed
on the Ethereum platform, its code is immutable and visible
by every node in the Ethereum network, and all transactions
calling it are also transparent to all. Therefore, it is the duty
of the contract developer to implement proper access control
or defensive mechanisms prior to deployment, and failed to
do so can lead to tremendous and irreversible financial losses.

B. EVM and Solidity

EVM executes smart contracts as a Turing complete stack-
based language at low level called Ethereum bytecode. In
practice, smart contracts are typically developed in high-level
languages such as Solidity, Vyper, Serpent, etc., and are
compiled into bytecode by the corresponding compilers.1 In
this work we focus on Solidity as it is the most popular and
developed language of Ethereum. There are three memory
regions of a smart contract program: stack, memory, and
storage. The stack and memory are volatile and cheap to
use. The storage is maintained on blockchain and is the only
persistent memory region across transactions.

The execution logic of a smart contract is modularized into
methods which are the executable code segments within a
contract [21]. Method calls can happen internally or externally
and have different levels of visibility towards other contracts.
There are four types of visibilities for methods in Solidity:
• external methods are part of the contract interface, which
means they can be called from other contracts and via trans-
actions. An external methods cannot be called internally,
• public methods are part of the contract interface and can be
either called internally or via messages (see the next section),
• internal methods can only be accessed internally (i.e., from
within the current contract or contracts deriving from it),
• private methods are only visible for the contract they are
defined in and not in derived contracts.

All computational or memory utilization in Ethereum is
charged in gas, which can be regarded as a separate virtual

1Note that even a smart contract is semantically bug-free with respect to
the underlying high-level language, compilers may introduce language-specific
vulnerabilities into the system [6], [17], [18], [19], [20], which once again
highlight the importance of runtime security analysis.

currency with its own exchange rate against ether [22]. The
gas system is essential to incentivize system participants and
prevent denial-of-service attacks or inadvertently resource-
devouring transactions. Performing computation or storing
data objects of large size (e.g., access rules) can be gas-
expensive. In fact, according to our experiment, creating even a
simple whitelist with 10k addresses would cost around $300.
Also managing such a list would have a linear cost in the
number of update operations.

C. Transactions and Message calls

In Ethereum, every state change of the global singleton
state machine is ultimately due to a transaction, a signed
data package originated from an externally owned account.
Transactions are recorded on the blockchain and can move
value from one account to another or/and trigger smart contract
execution. User accounts and smart contract instances are
uniformly identified by unique addresses.

Contracts can call other contracts or send ether to non-
contract accounts by message calls, the virtual objects that
are never serialized and exist only in the Ethereum execution
environment. Every transaction consists of a top-level message
call which in turn can create further message calls. It implies
that from a simple transaction initiated by an externally owned
account, a call chain of contract executions can be triggered.
Solidity allows smart contracts to access some global objects
and properties of the blockchain [23]. In the context of this
work the following objects are relevant:
• tx.origin - the sender of the transaction for full call chain
(a list of all called methods that a given transaction triggers),
• msg.sender - the sender of the message for the current
call. Let us consider a call chain triggered by a transaction
T originated from the externally owned account u, where T
calls the contract A, and A calls another contract B. Then from
B’s perspective the value of msg.sender is the address of
A while tx.origin is the address of u,
• msg.sig - the method identifier (encoded as the first
four bytes of calldata). Ethereum tags identifiers of
each method for every smart contract. When A calls
B.funcB(argA,argB), the value of msg.sig seen by B
would be the identifier of funcB(),
• msg.data - the complete calldata (the method identifier and
passed arguments). The value of msg.data for the case
above is msg.sig appended with the encoded values of
argA and argB.

Transactions are signed by their originators and before
processing them in EVM their authenticity is validated by the
Ethereum network. To prevent replay attacks each transaction
has a nonce which also is validated by participants. However,
nonces cannot be accessed by Solidity contracts.

D. Access Control in Smart Contracts

Access control is a security technique that regulates who
has access to certain system resources. The intention of access
control in Ethereum smart contracts is to restrict the access to
contract functionalities according to suitable criteria. In § II-B,

2

the programming language of smart contracts already has
some features to facilitate a minimum level of access control.
However, these features are limited, only defining access
control rules for built-in methods.

In general, implementing access control for smart contracts
based on a permissionless blockchain is difficult. A naive
approach of putting all access control logic into a smart
contract would violate privacy and consume a lot of expensive
on-chain resources. On the other hand, due to the immutability
nature of the underlying blockchain, it is difficult to update the
ACRs if they are managed over blockchain. To the best of our
knowledge, there is no generic framework in the literature real-
izing efficient and flexible access control for smart contracts.
However, such a framework could be highly beneficial for
the security of smart contracts and the ecosystem. Currently,
many token sales allow only approved users to participate in
a token sale or trade. To achieve on-chain access control, the
owner of the token sale contract maintains a whitelist listing
addresses of authorized users. When a user tries to access the
contract, there is an access control check verifying whether
the user is whitelisted. For example, the Bluzelle decentralized
database has paid 9.345 ETH (11,949 USD at the time) just
to whitelist 7473 users for their token sale [24]. Similarly,
OpenZeppelin [25] provides templates like role-based access
control or “proxy contracts”. Unfortunately, these solutions are
intended for on-chain contract management, do not allow for
flexible changes at runtime, and still have all other limitations
of on-chain access control.

To further illustrate the motivations behind our system, we
give several other examples with brief comments.

Example 1. A service provider may want to create a smart
contract whose methods can be called only by a dynamic set
of addresses (e.g., employees or business partners).

Example 2. The owner of a contract may want her smart
contract to block the access from a predefined set of addresses.

Example 1 and Example 2 show the needs of implementing
very basic and common ACRs such as whitelist and blacklist.
Note that the involved lists should be updatable dynamically,
and the method for defining the lists should be flexible enough.
Implementing even such a basic access control on-chain in
smart contracts would be highly expensive if a black/whitelist
is long and/or updated frequently. Moreover, managing such
an access control list would be impractical as executing
blockchain transactions is significantly delayed (minutes to
hours [26]). The list maintained on-chain would be also visible
to anyone which in most cases is undesired.

Example 3. The owner of a contract may require that only
authorized parties can call a specific method. She may demand
more fine-tuned controls: only authorized parties can call the
method with specific arguments.

This kind of selective restrictions may be useful in almost
any smart contract application, e.g., to determine who can
move the money, who can stop a service, etc. The latter rule

hints at an even more exciting application of access control:
the owner can specify that an address can call a method in
a smart contract only when the payload will not trigger any
known security problems. By extending this kind of rules, we
may prevent attacks on vulnerable contracts even after their
deployment – see the next example.

Example 4. The owner of a contract may require that a
given call can be executed only when it is validated by some
sophisticated runtime verification tool(s).

In contrast to the previous examples, such a rule would
allow the owner to inspect a given call in detail and limit
access in the case of any issue detected. In such a way the
owner could benefit from runtime verification tools running
them off-chain, without integrating them in the smart contract
environment. The owner may also want to ensure a given call
can be executed only once, unless a new permission is granted.

III. SMACS OVERVIEW

Throughout the paper, we describe SMACS in the context
of Ethereum and Solidity, but it can be easily extended to other
platforms and languages with similar capabilities.

A. System Participants

SMACS involves four types of actors:
• SMACS-enabled Smart Contracts are contracts on
blockchain protected by SMACS. A SMACS-enabled smart
contract verifies incoming calls by validating their correspond-
ing tokens. Any transaction or a message call will be rejected if
a valid token is not presented. For simple description, we often
refer to SMACS-enabled smart contracts as “smart contracts”
or just “contracts” and from the context it will be clear when
we distinguish them from legacy smart contracts.
• Owner is the creator of a smart contract. Normally, there
could be several smart contracts under the control of a single
owner. An owner is responsible for defining and managing the
ACRs. Also, an owner needs to manage a Token Service (TS)
instance corresponding to a SMACS-enabled smart contract.
• Token Service (TS) is a service that is responsible for
verifying requests from clients and issuing access control
tokens accordingly. A token issued by a TS determines exact
access permissions of a particular client with respect to a
SMACS-enabled smart contract.
• Clients are users who want to access the resources (e.g.,
data, methods) of SMACS-enabled smart contracts. A client
must obtain a token granting appropriate permissions from the
TS before she can access the smart contracts.

B. Goals

We design SMACS with the following goals in mind.
a) Security: We assume that an adversary cannot com-

promise the underlying cryptographic primitives (e.g., signa-
tures, hash functions, etc.) and cannot compromise the runtime
environment of the deployed smart contract platform However,
we discuss an adversary able to reverse the blockchain history
(i.e., launch a 51% attack). Under these assumptions SMACS

3

Blockchain

Smart
Contract

Public key

verify()

Client

Token Service

Private

key

Token Request

Return Token
web interface

Pass
Request

Return
Token

 Call data
 +Token

Manage

Access Granting

Front End

Owner

ACRs

ACRs

Compliance

Verification
Tools

Validation

Sign
Token

Create

Fig. 1: Details of the SMACS framework.

should prevent unauthorized entities from accessing SMACS-
enabled smart contracts. When an entity is allowed to access
a SMACS-enabled smart contract, its behavior cannot deviate
from the permission it has been granted. Moreover, apart
from enabling access control in the traditional sense, SMACS
should be able to counter certain runtime attacks even if the
underlying smart contracts are vulnerable to these attacks.

b) Flexibility and Extensibility: The SMACS framework
should be able to define complex and fine-grained ACRs for
smart contracts while keeping smart contracts simple. SMACS
should allow to manage these rules by removing, adding, or
modifying them dynamically, but without updating contracts.
Also, it should be easy to extend SMACS by integrating smart
contract protection techniques of various classes.

c) Efficiency and Low cost: SMACS should operate as
efficiently as possible. There should be no efficiency bottle-
necks with respect to throughput, storage, latency, etc. which
could hinder its applicability in real-world scenarios. The cost
of applying SMACS in terms of storage, computation, and
blockchain-related fees should be minimized. Meanwhile, the
process of integrating and deploying SMACS-enabled smart
contracts should be easy and intuitive, not incurring a high
development effort and cost.

C. Overview

In SMACS, the owner first generates a public and private
key pair (pkTS , skTS), and preloads the Token Service (TS)
with skTS and an initial set of ACRs (or token issuing rules).
The private key skTS will be used by the TS to sign tokens
it issues, while the ACRs specify the condition under which a
token can be issued. The owner is also responsible for creating
the SMACS-enabled smart contract with the public key pkTS

preloaded. The SMACS-enabled smart contract verifies the
validity of the access credentials (tokens) of the incoming
calls with the public key pkTS before continuing an actual
execution. We use Signsk(·) and SigV erifypk(·) to denote
the signing with sk and verifying with pk in later sections.

Although tokens in SMACS can have different types and can
be issued basing on arbitrary validation logic, SMACS-enabled
smart contracts stay simple and implement only an easy access
control verification. In most cases, the only overheads that
SMACS introduce are a) storing a public key, b) parsing a
token, and c) a signature verification per call. In our design, the
burden of all memory consuming and computationally heavy
operations are shifted to an off-chain TS. All intended ACRs
are initialized into TS. These rules can be updated dynamically
by the owner. Before accessing the SMACS-enabled smart

contract, a client must apply for a token with compatible
permissions from TS. Upon receiving the request from a client,
the TS checks the request against the ACRs. If the request
does not violate the rules, the TS issues a token to the client by
signing the datagram formed by relevant information extracted
from the request and metadata. The client then constructs
a transaction with the token encoded into it to access the
smart contract. The transaction constructed by the client has
to be compatible with her previous request, since the signature
creates a cryptographic binding and any attempt to modify the
actual transaction will make the signature verification fail. In
practice, the situation may be more complex. A client may
issue a transaction that triggers the execution of a chain of
smart contracts. How to handle these situations will be clear
in the following sections.

IV. SMACS DETAILS

The detailed architecture of SMACS is shown in Fig. 1. The
owner and clients are external owned accounts operated via the
client-side software (usually called a wallet) to interact with
SMACS-enabled contracts. The TS consists of a) the front end
interface, b) the access granting module that checks the rules
compliance and issues tokens, and c) the validation module
that contains all verification tools (if any) and respective rules.
These rules determine who can get a token with particular
permissions. The owner and clients interact with the TS
through an HTTPS-enabled web interface provided by the TS.
The realization of the access control of the smart contract is
ultimately due to the control of the issuance of tokens.

A. Token Types

SMACS supports three different types of tokens with differ-
ent permission semantics. These types are designed to facilitate
a flexible and fine-grained access control over the SMACS-
enabled smart contracts.
• Super token is of the highest permission level. A client with
a super token can freely call all public methods of the smart
contract with arbitrary arguments before the token expires.
• Method token limits the access to a specific method. A
client with a method token can call the specific contract’s
method associated with the token with arbitrary arguments be-
fore the token expires. A method token issued for a particular
method cannot be used to access other methods.
• Argument token is similar to a method token with the
additional restriction that the associated method can only be
called with specific arguments.

All tokens are issued with an expiration time set by the TS.
The expiration time determines the token lifetime, i.e., until
when the token can be used to authorize the corresponding
calls. Any token can have the one-time property set. A one-
time token gets invalidated once it is used to successfully
access the smart contract, which ensures that the token holder
can only access the smart contract once with issued token.

Before a client can get a token from the TS, she has to
submit a well-formed token request to the TS. As depicted
in Fig. 2, the token request varies according to the requested

4

Tab. I: Elements of a token request payload.

Type reqPayload

cAddr sAddr methodId argName argValue

Super 3 3 7 7 7
Method 3 3 3 7 7
Argument 3 3 3 3 3

token type, where type is a token type, cAddr is the address
of a targeted contract, sAddr is the address of a client’s
account, methodId is the method identifier that is going
to be accessed with a method or argument token, argName
and argValue are the argument and argument value used
when an argument token is requested (there can be multiple
argument-value pairs passed in a token request).

In SMACS, a token is implemented as an 86-byte object
shown in Fig. 3, where type indicates the type of a token,
expire encodes the expiration time, index is used for
tokens with their one-time property set (if the value of index
is a non-negative integer, then the one-time property is set),
and the signature field is computed as:

SignskTS
(type ‖ expire ‖ index ‖ reqPayload),

where type and reqPayload are extracted from the token
request sent by the client (see Fig. 2). The reqPayload is an
optional field of the token request with variable size according
to type. Its exact formulation is shown in Tab. I.

B. Token Issuance and Verification

There are two verification processes in SMACS: a TS veri-
fies incoming token requests against its rules, and a SMACS-
enabled contract verifies tokens extracted from incoming trans-
actions. Any failed attempt to access the contract is ultimately
due to the failure of one of these two verification processes.

a) Token Issuance: To apply for a token, a client sends
a token request specifying the intended type together with
a compatible reqPayload, which describes who (sAddr)
will access which (cAddr) smart contract and how it will
be accessed. The request payload (reqPayload) depends
on the intended type (see Tab. I). When receiving the token
request, the TS parses and checks it against the rules. Once
verified, a token is issued according to the request. This step
can be easily integrated into mainstream wallets, such that
it is executed seamlessly for users prior to actual transaction
sending.

b) Contract-side Verification: Once getting a token from
the TS, the client can construct a transaction whose calldata is
filled with the token together with other necessary information
that is compatible with the token (i.e., the token will be passed
as an argument). Upon receiving the transaction, the token
verification process shown in Alg. 1 is triggered, and only

type

1B

cAddr

20B

sAddr

20B

methodId

string

argName

string

argValue

string
...

reqPayload

Fig. 2: The layout of a token request.

type

1B

expire

4B

index

16B

signature

65B

86 bytes

Fig. 3: The layout of a token.

after the process succeeds the smart contract can continue to
execute the transaction accordingly.

The SMACS-enabled smart contract first extracts the token
from the transaction, checks whether it expires, and whether
it has been used if the one-time property is set. We discuss
the one-time property validity checking (i.e., the details of
reused() check) in § IV-C. Then the SMACS-enabled smart
contract reconstructs the data required to verify the token
signature according to the type of the token. In this step, the
smart contract uses the EVM’s transaction context objects (
see § II-C) to make sure that the passed ticket matches the
current transaction.

We emphasize that this verification process is generic and
the implementation of SMACS-enabled smart contracts re-
spects the common development flows. Basically, the code of
legacy smart contracts can be made deployment-ready in the
SMACS framework by ensuring that every method callable
from outside (i.e., public or external) verifies a token prior
to its actual body execution. To achieve it, for each public
and external method the tokens argument is added to the
original argument list and the verify call performing Alg. 1
is asserted prior to the actual method body.

To facilitate easy adoption we develop a tool that allows
to transform any legacy smart contract into an equivalent
SMACS-enabled smart contract. An example of such a trans-
formation is presented in Fig. 4 (note that internal methods
do not have to verify tokens and in the case of public/external
methods called internally they are split into separate methods).

C. One-time Tokens

The one-time property ensures that a given token can be
used only once. One-time tokens may be especially useful

Alg. 1: Contract-side token verification.
Input: A transaction T
Output: The verification result
tk ← extractToken(T)
if now() > tk.expire then

return False
if tk.index > −1 and not reused(tk.index) then

return False
tkData← tk.expire ‖ tk.index
addrData← T.origin ‖ address(this)
data← tk.type ‖ tkData ‖ addrData
if tk.type = Super then

data← data
else if tk.type = Method then

data← data ‖ msg.sig
else if tk.type = Argument then

data← data ‖ msg.sig ‖ msg.data

return SigVerifypkTS
(data, tk.signature)

5

Legacy SMACS
Contract SMACS {

 func f(token) external {
 assert(verify(token));
 call _h();
 call g();
 }

 func h(token) public {
 assert(verify(token));
 call _h();
 }

 func _h() private {
 call g();
 ...
 }

 func g() private {
 ...
 }
}

Contract Legacy {

 func f() external {
 call h();
 call g();
 }

 func h() public {
 call g();
 ...
 }

 func g() private {
 ...
 }
}

Fig. 4: Automated SMACS adoption for a legacy contract.

for access control of security-critical methods or for example
when a client is unknown to the requested TS. To realize
this property, one may be tempted to rely on the nonce
mechanism employed by Ethereum for counteracting replay
attacks. However, we emphasize that the transaction’s nonce
cannot be accessed by the smart contract itself. Therefore,
SMACS has to implement an in-contract mechanism to support
the verification of one-time tokens.

The TS maintains counter variable (corresponding to the
index field of a token) for issuing tokens with the one-time
property set. counter is initialized to 0, whenever a new
one-time token is being issued, it is incremented by 1, and the
updated valued is used as the index value for this token.

Since a one-time token is supposed to be used only once,
when a client with such a token tries to access an SMACS-
enabled smart contract, the contract has to check whether the
underlying token has been used before, and then permits or
denies the access attempt accordingly. A trivial way for the
contract to realize this is to store the index values of all one-
time tokens having made a successful access. However, as the
on-chain storage is expensive, this approach can be costly and
impractical if the number of issued one-time tokens is large.

Based on the observations that the TS can assign every
one-time token with a unique index consecutively and the
token lifetime is limited, we propose a cost-effective scheme
to handle one-time tokens, where every index is efficiently
encoded as a single bit of a cyclically reused bitmap. In our
approach, an n-bit map S (together with its internal state)
is used to represent the status (used or unused) of a set
of n one-time tokens with consecutive index values. The
state of the bitmap can be represented by a tuple (S, start,
startPtr, end, endPtr), where S ∈ {0, 1}n, start ∈ {0, 1, · · · },
startP tr ∈ {0, · · · , n − 1}, end = start + n − 1, and
endPtr = startP tr + n − 1 mod n. In Alg. 2, the n-bit
sequence S [startP tr] ‖ S [startP tr + 1 mod n] ‖ · · · ‖
S [endPtr] indicates the status of the n one-time tokens with
indexes start, start+1, · · · , and end. A token with the in-
dex i is regarded as unused if and only if a) i ∈ {start, start+
1, · · · , start+n−1} and S[(startP tr+i−start) mod n] = 0,
or b) i > end. When the index i of a token is unused, the state
of the bitmap is updated according to Alg. 2.

Alg. 2: Bitmap state update.
/* Initialization */
S ← [0, · · · , 0]; start← 0; end← n− 1;
startP tr ← 0; endPtr ← n− 1;
/* Update */
i← getIndex(token)
if i < start then

return False
else if start ≤ i ≤ end then

t← (startP tr + i− start) mod n
if S[t] = 1 then

return False
else

S[t]← 1
return True

else if end < i ≤ end+ n then
startP tr ← seek(S, i, end, startP tr)
endPtr ← (startP tr + n− 1) mod n
end← i; start← end− n+ 1; S[endPtr]← 1;
return True

else
/* Reset when i is too large */
S ← [0, · · · , 0]; startP tr ← 0; endPtr ← n− 1;
start← i; end← i+ n− 1; return True

/* seek(S, i, end, startP tr) returns the smallest
integer j in {0, · · · , n− 1} such that S[j] = 0
and i− end ≤ j − startP tr */

Let us consider a bitmap S with size n = 8. At the begin-
ning, all cells of S are set to 0 with start = startP tr = 0
and end = endPtr = 7.

0 1 2 3 4 5 6 7

start : 0 end : 7

After tokens whose index are 0, 1, 4, and 5 access the smart
contract, the corresponding cells are set to 1 (gray cells).

0 1 2 3 4 5 6 7

start : 0 end : 7

Upon receiving the access request by the token with index
9, seek() is responsible for finding the updated startP tr.
Since end = 7 < 9 ≤ end+8 = 15, seek() returns 2, which
is assigned to startP tr, and S[endPtr] is set to 1, where
endPtr ← startP tr+n− 1 mod n = 2+8− 1 mod 8 = 1.

0 1 2 3 4 5 6 7

start : 2end : 9

At this point, S[2] ‖ S[3] ‖ · · · ‖ S[7] ‖ S[0] ‖ S[1] represents
the status of the tokens with indexes in {2, 3, · · · , 9}. We
continue to consider a more complicated case where an access
request is made by the token with index 13. Then the state
of the bitmap is updated as follows.

0 1 2 3 4 5 6 7

start : 6end : 13

This state only represents the status of the tokens with indexes
in {6, · · · , 13}, and the information of the unused tokens with

6

 import B.sol

 contract A {
 ...
 B b(addr _b);

 func callA() {
 ...
 b.callB();
 …
 }
 }

SCA SCB SCC

 import C.sol

 contract B {
 ...
 C c(addr _c);

 func callB() {
 ...
 c.callC();
 …
 }
 }

 import D.sol

 contract C {
 ...
 D d(addr _d);

 func callC() {

 …

 }
 }

Fig. 5: A call chain with the depth three.

indexes 2 and 3 is lost (access requests originated from these
two tokens will be rejected). Moreover, if an access request is
made by a token with very large index i such that i > end+n,
the bitmap will reset all cells to zero and update the pointers
according to Alg. 2.

Therefore, the bitmap approach ensures that any one-time
token can be used at most once. It is possible that in certain
situations some one-time tokens become invalid before they
are used, which is called a token miss. For example, if the
smart contract has processed a token with the index 13, the
range of the bitmap is updated to start=6 and end=13. This
implies that any (even unused) token with an index smaller
than 6 will be rejected (missed) by the contract. In this case, a
holder of such an unused token would need to re-apply for a
new token from the TS again. To avoid this situation, an owner
should allocate a large-enough bitmap in its smart contract.
There is a trade-off between the size of the bitmap and the
miss rate. The two factors that allow to model the bitmap
size are a) a token lifetime, and b) the (expected) maximum
number of transactions per second that the contract is going to
process. Then the bitmap size required to not reject any unused
and non-expired token is token_lifetime× max_tx_per_second
bits. Fortunately, as we show in § VI-A, even for the most
popular Ethereum contracts and realistic token lifetimes, the
cost of the bitmap storage is low.

D. Tokens for Call Chains

Starting from a transaction originated by an external owned
account, an invoked contract method can call a method of
another contract which in turn can call a method of a third
contract, and this call chain (see § II-C) can go on.

When the smart contracts involved in the call chain are
protected with SMACS, the client initiating the call chain has
to obtain proper tokens for all these smart contracts. Let us
consider a simple example shown in Fig. 5. Before a client
triggers this call chain, she needs to obtain three tokens (e.g.,
method tokens) from the TSes corresponding to SCA, SCB ,
and SCC (these TSes can be operated by different owners).

Assuming that the client successfully gets the three tokens
tkA, tkB , and tkC , then she can embed an array of the three
tokens of the following form in the transaction:

SCA : tkA ‖ SCB : tkB ‖ SCC : tkC .

1 {
2 sender: {
3 whitelist: ["0x366c...", "0xd488...",...],
4 },
5 method: {
6 methodA: {
7 blacklist: ["0xBa7F...", "0xb1D4...",...],
8 },
9 ...

10 },
11 argument: {
12 argA: {
13 whitelist: ["0x3540...", "0x9e9B...",...],
14 },
15 ...
16 }
17 }

Fig. 6: An example of whitelists and blacklists.

When SCA receives the transaction, it can extract the token
(tkA) associated with its address and verify validity according
to Alg. 1. Subsequently, this array of tokens will be passed
to SCB via a message call who parses out tkB and verifies
it. Finally, the array is passed while calling SCC which can
perform the analogous operations as SCA and SCB .

E. Access Control Rules (ACRs)

Rules in SMACS define the set of token requests which
can successfully get the token from a TS when submitted. For
every token type, there is a set of rules associated with it. A
token request of a particular type will be checked against the
set of rules associated with that type. In the following section,
we present sample rules that can be implemented in SMACS.

a) Blacklist and Whitelist: Blacklist and whitelist are
generic ACRs supported in SMACS. In our context, the
simplest form of a whitelist is just a set of Ethereum addresses.
Every address outside this list cannot obtain a valid token
from the TS, and therefore it cannot access the SMACS-
enabled smart contract. As depicted in Fig. 6, each token
type has either a blacklist or whitelist. SMACS does not
mandate how these lists are created and for instance an address
whitelisted for super tokens can be blacklisted for argument
token. Moreover, the listed objects are not necessarily account
addresses. For example, it is possible to blacklist dangerous
argument values for certain contract methods. In SMACS, all
these access lists can be dynamically updated by the owner
without any modification to the deployed smart contract.

b) Rules for Runtime Verification: Apart from these
basic rules above, the argument token type allows us to craft
more advanced ACRs that can enhance the runtime security
of the SMACS-enabled smart contract. Imagining that a client
tries to access a method of a smart contract with a particular
set of arguments. SMACS allows TSes to simulate the runtime
behavior of the smart contract in an isolated off-chain envi-
ronment and deny access if any abnormal behaviors triggered
by the requested call are observed. Then a TS implementing
proper rules for argument tokens would be able to protect
even vulnerable already deployed smart contracts. We show
concrete instantiations of such rules in the next section.

7

V. RUNTIME VERIFICATION CASE STUDIES

Defensive logics with arbitrary complexity can be plugged
into SMACS. In particular, SMACS can be powerful when
combined with any other runtime verification tools preventing
specific attack classes. In this section, we show two concrete
examples where third-party tools are employed to implement
advanced rules enforcing certain runtime security properties.

A. Enforcing Hydra Uniformity

Hydra is a recent framework for smart contract bug bounty
administration, which enables runtime detection and rewarding
of critical bugs [27]. Basically, in the Hydra framework,
multiple independent program instances written in different
programming languages but with the same intended high-
level logic run in parallel over the blockchain. These program
instances are called the heads (of the Hydra).

When a smart contract protected by Hydra executes, its
intended logic proceeds normally only if the outputs of the
heads are identical. If the outputs diverge for different heads,
it is likely that certain erroneous state is triggered for some
heads. At this point, the execution of the smart contract aborts
and the rewarding logic of Hydra takes control to pay out a
bounty. Therefore, Hydra can detect bugs at runtime at the
cost of increased on-chain resource consumption by a factor
round N when N heads are employed.

We integrated Hydra into SMACS by defining a dedicated
rule for argument tokens. This rule dictates that an argument
token is issued only when the outputs of all heads are identical
when called with the payload specified in the token request.
In contrast to Hydra, heads in SMACS are run by a TS on
its local testnet. Hydra acts as a simulator in SMACS, does
not consume on-chain resources, and therefore it is possible
to implement more heads in our case without introducing
additional on-chain cost. In summary, this rule enforces Hydra
uniformity, where transactions leading to different head out-
puts are unable to get a token at the first place. We show the
efficiency of Hydra-supported SMACS in § VI-B.

B. Blocking Re-entrancy Attacks

In this case, we show how to protect a smart contract from
the so-called re-entrancy attack, the essence of the real-world
TheDAO attack [12], leading to a loss of over $50 million
worth of Ether at the time the attack occurred.

Let us consider the vulnerable smart contract Bank, a
simplified version of TheDAO [28], as shown in Fig. 7.
Anyone can deposit ether into Bank, the amount of ether
is recorded in the mapping balance. The ether deposited
can be withdrawn by calling withdraw(), which sends the
ether to the msg.sender address. This transfer implicitly
triggers a fallback method (an anonymous method that does
not take any arguments) of the receiver. This default behavior
can have security consequences as the execution flow can be
controlled by a remote fallback method. The re-entrancy attack
can be lunched by an attacker using the smart contract shown
in Fig. 7. She first calls the deposit() method to deposit
two ethers into the target smart contract Bank. Now she is

1 contract Bank{
2 mapping(address=>uint) balance;
3 function addBalance() public{
4 balance[msg.sender] += msg.value;
5 }
6 function withdraw() public{
7 uint amount = balance[msg.sender];
8 if (msg.sender.call.value(amount)() == false)

{throw;}
9 balance[msg.sender] = 0;

10 }
11 }
12
13 contract Attacker{
14 bool isAttack; address bank;
15 function Attacker(addr _bank, bool _isAttack){
16 bank = _bank; isAttack = _isAttack;
17 }
18 function() payable{
19 if(isAttack == true){
20 isAttack = false;
21 if(bank.withdraw()) {throw;}
22 }
23 }
24 function deposit(){
25 bank.call.value(2).addBalance();
26 }
27 function withdraw(){
28 bank.withdraw():
29 }
30 }

Fig. 7: The Bank contract with a re-entrancy vulnerability and the Attacker
contract exploiting it.
ready to attack the target by calling the withdraw() method
of Attacker. Subsequently, Attacker.withdraw()
calls Bank.withdraw() which then triggers a recursive
Bank.withdraw() call via Attacker’s fallback method,
and the line 11 of the Bank smart contract is never reached.
The above attack strategy effectively moves all ether from
Bank to the account controlled by the attacker.

To prevent Bank from being exploited, we use SMACS
with a rule employing ECFChecker [29] – a developed tool for
detection of effectively callback free objects [12]. To integrate
that, the TS deploys an ECFChecker-supported implemen-
tation running an off-chain testnet with the Bank contract
deployed. For every token request, the TS calls a requested
method with the passed arguments and observes the output of
ECFChecker. The TS issues the tokens only if ECFChecker
does not report any security issue. We emphasize that the
described integration gives the contract owner ECFChecker
security benefits without requiring Ethereum participants to
update their configurations to support ECFChecker. In § VI-B
we show the efficiency of this setup.

VI. IMPLEMENTATION AND EVALUATION

To evaluate our design, we fully implement the SMACS
framework. SMACS-enabled smart contracts are developed by
Solidity v0.4.24 and deployed on a testnet. The TS is
implemented as a web server running Node.js v10.2.1
bundled with the node-localStorage package for stor-
ing rules and signature key-pairs. We implement client and
owner with web3.js [30]. This software interacts with
deployed SMACS-enabled smart contracts and TSes. We use

8

Tab. II: Single token processing gas cost.

Cost Token type (without the one-time property)

Super Method Argument

Verify 108282 (65%) 115108 (67%) 330889 (85%)
Misc 57675 (35%) 57675 (33%) 57678 (15%)
Total 165957 172783 388567
USD 0.041 0.042 0.094

Cost Token type (with the one-time property)

Super Method Argument

Verify 108531 (56%) 115651 (58%) 330914 (79%)
Misc 57426 (30%) 56994 (28%) 57331 (14%)
Bitmap 27471 (14%) 27839 (14%) 28003 (7%)
Total 193428 200484 416248
USD 0.047 0.048 0.101

Tab. III: Gas cost for multiple one-time argument tokens.

Cost Number of Token

1 2 3 4

Verify 330914 (79%) 662952 (79%) 994552 (78%) 1326506 (78%)
Misc 57331 (14%) 102991 (12%) 150463 (12%) 203499 (12%)
Bitmap 28003 (7%) 56746 (7%) 84612 (7%) 112034 (7%)
Parse – 16986 (2%) 34182 (3%) 57872 (3%)
Total 416248 839675 1263809 1699911
USD 0.101 0.204 0.307 0.412

the Ethereum’s ECDSA signature scheme as the default one,
as Ethereum provides a native and optimized support for it.

A. Gas Cost

In the SMACS framework, clients send transactions with
proper tokens which are verified by smart contracts. Therefore,
the main cost is introduced with respect to the computation
and storage whose utilization is charged by the Ethereum
network. We perform a series of experiments to measure the
cost introduced by SMACS in terms of gas consumption.

We conduct experiments for different types of tokens and
record their gas cost, together with the cost converted to US
dollars in Tab. II. The conversion was according to the gas
price from [31] at the time of writing the paper. From the table,
we can see that the dominating operation is the signature ver-
ification. The cost also increases in arguments tokens as they
require more processing (argName and argValue have to
be processed). However, the overall cost of a token verification
is around $0.04 for super and method tokens and around $0.1
for argument tokens. As shown in the table, for tokens with the
one-time property the verification gas consumption is similar,
despite additional operations are required by the bitmap.

As discussed in § IV-D, SMACS supports transactions
that invoke a call chain of contracts. In this case, the token
verification cost varies according to the depth of the chain,
and additional cost is induced since a contract has to parse the
passed token array before verification. We conduct analogical
experiments as in the previous case and the results are shown
in Tab. III and Fig. 8. (Note that the table presents the results
for the argument token type whose verification is around two
times more gas consuming than other types.) As presented, the
verification cost increases linearly with the call chain length.

Tab. IV: Storage cost for the bitmap (this cost is one-time).

Cost Transaction frequency (tx/s)

35 3.5 0.35

Storage 15.38 KB 1.54 KB 0.154 KB
Deployment 8849037 886054 88605
USD 2.140 0.214 0.021

1 2 3 4

0.3

0.6

0.9

1.2

1.5

1.8
·106

Number of tokens

G
as

C
os

t

Super
Method
Argument
Arg. (one-time)

Fig. 8: Aggregated gas cost for verifying multiple tokens.

Implementing the one-time property requires to store a
bitmap by smart contracts. The size of this storage depends
on the token lifetime and the expected transaction frequency,
however, this cost is one-time, paid upon the contract creation.
To give insights on the cost we take the ten most popular
smart contracts based on the number of transactions by Jan,
2019 [32] and analyze their transactions distribution. We found
that on average the transaction peak is 35 tx/s which is close to
the Ethereum’s maximum throughput [33]. Setting the lifetime
of one-time tokens to one hour and assuming conservatively
that all transactions use one-time tokens, Tab. IV shows the
required storage and its cost. We can see that to handle even
35 one-time tokens/s a smart contract has to be initialized with
storage costing only one-time fee of $2.14. This cost is linear
in transaction frequency and token lifetime.

B. Token Service Performance

a) TS Throughput: We evaluate the TS throughput
running a TS instance on a system with macOS Sierra 10.12.6,
Intel Core i5 CPU (2.7 GHz), and 8GB RAM. For each token
type, we send 10i (0 ≤ i ≤ 5) token requests to the TS, record
the total time needed by the TS , and compute the average time
required per token request. The rules used are composed of
blacklists and whitelists as presented in Fig. 6. The obtained
results are summarized in Fig. 9.

From Fig. 9 we can see the number of token requests
handled per second raises when the requests are processed in
batches. The throughput becomes stable when the number of
requests is greater than 105, with the time cost about 5ms for
most token types. The single TS instance can easily handle all
transactions processed by the current Ethereum main network
even in peak times. We found the ever highest transactions
peak in Ethereum for one of the most popular smart contracts
– CryptoKitties [34] when it received about 48 transactions
per second (on 05-Dec-17 00:43:03 UTC [35], [36]).

b) Integration with Runtime Tools: In § V we integrate
SMACS with two runtime verification tools, i.e., Hydra and

9

100 101 102 103 104 105

100

200

300

Number of requests

R
eq

ue
st

s
pr

oc
es

se
d

pe
r

se
co

nd

Super
Method
Argument
Arg. (one-time)

Fig. 9: Throughput of the TS.

ECFChecker. In both cases, TS to verify incoming requests
requires local Ethereum testnets (no code changes at the
deployed contracts or Ethereum software used by network
nodes are required, however). To improve throughput of the
tools we configure the testnets (i.e., geth [37]) to minimize
the latency between submitting and executing transactions.
For Hydra, we implement a simple contract in three different
programming languages and deploy it on a Hydra-supported
testnet. For ECFChecker, we deploy the vulnerable contract
presented in § V. We send 100 transactions each and measure
the average time needed by a tool to process a transaction.
In our setting, SMACS with Hydra needs 120ms to process
a request, while ECFChecker-supported SMACS can process
a request in only 10ms. Thus, with these tools SMACS can
handle around 8 and 100 token requests per second.

VII. DISCUSSION

A. Security

Our first claim is that an adversary cannot bypass the access
control in SMACS. All contract’s public interfaces require the
token verification process (see § IV-B). This process ensures
that a token is authentic (i.e., signed by the TS), non-expired,
and matches the calling transaction. The only way of obtaining
such a token is to request the TS which would verify the
request against its access rules. All valid tokens are signed
by the TS, therefore an adversary without passing the TS
validation or without the TS’ private key cannot get a valid
token for its transactions. Moreover, one-time tokens could
be issued only the clients satisfied the rules predefined in
whitelist, guaranteeing one-time access even if an adversary
controls multiple addresses.

a) Substitution Attack: An attacker can intercept a trans-
action from a legitimate client, extract the token from it, and
then construct a transaction with the intercepted token. This
transaction will be rejected by the contract-side verification,
since the signature of the TS creates a cryptographic binding
of the token and the context in which the token can be applied.
Any tiny change of the context (e.g., address, argument, etc.)
will be caught by the signature verification process.

b) Replay Attack: An attacker can capture the transac-
tion originated from a legitimate client, and replay it in the
Ethereum network. This attack is against Ethereum itself and
cannot succeed since the built-in countermeasure of Ethereum
against replay attack will reject the replayed transaction. The

nonce value included in the transaction ensures that every
single transaction is unique. If a transaction has been accepted
by Ethereum, it will not be processed again. Moreover, the
client’s address is protected by a token’s signature, thus, the
attacker cannot extract and reuse others’ tokens. SMACS
implements in-contract replay protection for one-time tokens
by assigning each such a token with a unique index (set by
the TS) and recording every use of a one-time token in the
stored bitmap. A client can try to replay a one-time token by
creating a new transaction with the used token embedded. Such
a transaction will not trigger an actual execution of the targeted
method, as the token verification procedure (see § IV-C) will
check whether the token index was already used, and in that
case deny access.

c) 51% Attack: In the 51%-attack an adversary possesses
more than 50% of the total voting power of the blockchain
network, what allows her to rewrite the blockchain history.
This kind of attacks is devastating as they allow to double-
spend, however, in our context even such a strong adversary
cannot bypass the SMACS access control. The adversary can
disorder or even remove transactions at will, compromising the
availability of smart contracts, but she cannot obtain a valid
token for a non-compliant transaction.

d) Privacy: SMACS moves access rules to TSes which
are off-chain services. Therefore deployed rules, verification
tools, and their configurations are kept private and are not re-
vealed even to clients. As blockchain transactions are publicly
visible, an adversary can learn successful access control cases
and try to predict the applied rules, however it is still a black-
box analysis (in contrast to any in-contract access control).

B. Deployment

a) Availability: Requiring a TS to keep verifying and
signing tokens introduces a single point of failure, as with
the failed TS clients would not be able to interact with
the contract. Fortunately, TSes in SMACS are easy to scale
and replicate. For issuing tokens (without the one-time prop-
erty) providing availability is as easy as providing redundant
TSes that do not require any coordination (except a load-
balancer/failover system). If a TS service is offering one-time
tokens, then its replicas have to coordinate on the current
counter value (see § IV-C). That can be efficiently realized
via a replicated counter primitive usually implement upon a
standard consensus algorithm [38], [39].

b) Service Discovery: We implicitly assumed that clients
know how to reach the TS corresponding to a SMACS-enabled
smart contract. In practice, clients have to learn an URL
address of the service. We propose to implement this discovery
process by adding the service address as a smart contract
instance metadata (similarly as contract’s name or the compiler
version it was created with).

VIII. RELATED WORK

In practice, the community has developed some design pat-
terns and even third-party libraries to facilitate the application
of access control over smart contracts [25]. However, this

10

paradigm puts the burden of all access control logic and its
management on the smart contract itself. Due to the high cost
of on-chain resources, only simple and inflexible ACRs can
be developed using this approach (e.g., a blacklist or whitelist
with small size, a role-based ACRs supporting a very limited
number of roles, etc.). In summary, although smart contracts
access control is an obvious need and an important aspect of
smart contract security which has been extensively investigated
over the last years, we are not aware of any framework
similar to SMACS, which could implement complex ACRs
supporting runtime security verification at a very low cost.
The most relevant research to SMACS is the investigation
and development of methodologies and tools for detecting
vulnerabilities of smart contracts, which can be divided into
two general categories: static and runtime security analysis.

a) Static Security Analysis: These methods or tools
mainly based on formal verification and symbolic execution.
Oyente [8] and Manticore [9] are symbolic execution tools
for finding potential security bugs. Mythril [10] uses concolic
analysis, taint analysis, and control flow checking to detect
multiple smart contract security vulnerabilities. Securify [11]
extracts semantic facts by performing advanced static anal-
ysis to prove the presence or absence of certain security
vulnerabilities. Zeus [40] employs model checking to verify
the correctness of smart contracts. MAIAN [41], processes
the bytecode of smart contracts and tries to build a trace of
transactions to find and confirm bugs based on inter-procedural
symbolic analysis. The list of tools are difficult to enumerate
and new relevant tools are constantly emerging [20], [42], [43],
[44]. Most of these tools are meant to provide pre-deployment
security verification. Thus they can only identify bugs (rather
than protect from them) for already deployed smart contracts.

Another drawback is that it cannot fully cover all runtime
behaviors and therefore is susceptible to missing novel runtime
attack patterns. In fact, this has been demonstrated in [13],
where new re-entrancy attack vectors are crafted which bypass
the security check of existing static analysis tools [40], [8].

We see this class of tools as orthogonal to SMACS, however,
we believe that in some cases they could be used in com-
bination providing security benefits. For example, the owner
of a SMACS-enabled smart contract can scan the deployed
contract regularly with such tools (e.g., perform a vulnerability
scan whenever the security analysis tools get updated). Once
a vulnerability is detected, she can blacklist transactions with
specific patterns that can potentially trigger the vulnerability.

b) Runtime Security Analysis: In contrast to static secu-
rity analysis, tools [12], [14], [13] performing runtime moni-
toring has the potential to prevent deployed smart contracts
from being exploited. Hydra [14] enables post-deployment
security through N -of-N -version programming, a variant of
classical N -version programming that runs multiple inde-
pendent program instances to detect runtime security issues.
ECFChecker [12] is a runtime detection tool dedicated to
finding effectively callback free objects. This tool can be
used for finding Ethereum re-entrancy attacks. More detailed
overview of Hydra and ECFChecker can be found in § V.

Another interesting example is the Sereum [13] architecture,
a hardened EVM which is able to protect deployed contracts
against re-entrancy attacks in a backward compatible way by
leveraging taint tracking to monitor runtime behaviors of smart
contracts. Sereum can also be integrated into the SMACS
framework easily by using dedicated ACRs.

The main drawback of these tools is their requirement
of changing and upgrading the runtime environment. We
emphasize that in the replicate state machine model followed
by blockchain platforms, this implies that a majority of nodes
would need to update their EVMs to support such a tool.
SMACS enables contract owners to benefit from these tools
without this requirement. Moreover, as we presented, these
tools can be easily and seamlessly integrated with SMACS.
Another preferable feature offered by combining runtime
security analysis tools with SMACS is that a vulnerable
smart contract may still operate normally, since only innocent
transactions pass through and suspicious transactions identified
by the tools are rejected at runtime.

IX. CONCLUSIONS

We presented SMACS, to the best of our knowledge, the
first framework that achieves efficient, flexible, and fine-
grained access control of smart contracts with low cost by
combining lightweight on-chain verifications and off-chain
access control management infrastructures. Apart from en-
abling malicious addresses prevention and abnormal runtime
behaviors resistance for smart contracts, SMACS offers sev-
eral preferable features. Firstly, when combined with runtime
verification tools, a SMACS-enabled smart contract can deny
suspicious access attempts on the fly while keeping operat-
ing for innocent transactions. Secondly, the architecture of
SMACS allows rules for enhancing post-deployment security
to be designed based on which it is possible to prevent vul-
nerabilities discovered after deployment from being exploited.
Therefore, it is meaningful to test SMACS-enabled contracts
with new verification tools regularly and adjust the rules
accordingly. Finally, due to the extensibility of the framework,
we could expect more security-related tools that can be applied
in SMACS to emerge in the future.

An interesting research direction is to investigate trusted
execution environments (TEEs, e.g., Intel SGX) in the context
of SMACS to fully decentralize it. For instance, a TS im-
plemented within a TEE enclave could decentralize the entire
system: an owner would just publish its ACRs which would
be validated by the enclave code running locally on a client
(without contacting any central service). We leave a detailed
design of such a system as future work.

ACKNOWLEDGMENT

We thank the anonymous reviewers and our shepherd Yinzhi
Cao for their valuable comments and suggestions. This re-
search is supported by the Ministry of Education, Singapore,
under its MOE AcRF Tier 2 grant (MOE2018-T2-1-111) and
by the SUTD SRG ISTD 2017 128 grant.

11

REFERENCES

[1] V. Buterin, “Ethereum: A next-generation smart contract and decentral-
ized application platform,” 2013.

[2] N. Szabo, “Smart contracts: building blocks for digital markets,” EX-
TROPY: The Journal of Transhumanist Thought, 1996.

[3] “Rubixi bug,” https://bit.ly/2VifC3z, 2016.
[4] “Hackergold token bug,” https://bit.ly/2U9JQt1, 2017.
[5] “Dao exploit example,” https://bit.ly/2S3Y5cE, 2016.
[6] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum

smart contracts (sok),” 2017.
[7] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,

and B. Scholz, “Vandal: A scalable security analysis framework for smart
contracts,” arXiv preprint arXiv:1809.03981, 2018.

[8] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016.

[9] “Manticore symbolic execution tool.” https://github.com/trailofbits/
manticore, 2018.

[10] “Mythril tool.” https://github.com/ConsenSys/mythril, 2018.
[11] P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and M. Vechev,

“Securify: Practical security analysis of smart contracts,” in The 25th
ACM Conference on Computer and Communications Security, 2018.

[12] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky,
M. Sagiv, and Y. Zohar, “Online detection of effectively callback free
objects with applications to smart contracts,” in 44th Proceedings of the
ACM on Programming Languages, 2017.

[13] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting
existing smart contracts against re-entrancy attacks,” in 26th Network
and Distributed System Security Symposium, 2019.

[14] L. Breidenbach, I. Cornell Tech, P. Daian, F. Tramer, and A. Juels, “Enter
the hydra: Towards principled bug bounties and exploit-resistant smart
contracts,” in 27th USENIX Security Symposium, 2018.

[15] S. Underwood, “Blockchain beyond bitcoin,” Communications of the
ACM, 2016.

[16] K. Korpela, J. Hallikas, and T. Dahlberg, “Digital supply chain trans-
formation toward blockchain integration,” in Proceedings of the 50th
Hawaii international conference on system sciences, 2017.

[17] Y. Hirai, “Formal verification of deed contract in ethereum name
service,” 2016.

[18] S. Amani, M. Bégel, M. Bortin, and M. Staples, “Towards verifying
ethereum smart contract bytecode in isabelle/hol,” in Proceedings of the
7th ACM SIGPLAN International Conference on Certified Programs and
Proofs. ACM, 2018.

[19] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy et al., “Formal verification of smart contracts: Short paper,”

in Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security. ACM, 2016.

[20] I. Grishchenko, M. Maffei, and C. Schneidewind, “Foundations and tools
for the static analysis of ethereum smart contracts,” in International
Conference on Computer Aided Verification. Springer, 2018.

[21] D. Mohanty, “Basic solidity programming,” in Ethereum for Architects
and Developers. Springer, 2018.

[22] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier:
An authenticated data feed for smart contracts,” in The 23rd ACM
Conference on Computer and Communications Security, 2016.

[23] “Globally available variables in solidity,” https://solidity.readthedocs.io/
en/v0.4.24/units-and-global-variables.html, 2018.

[24] “The whitelist cost in bluzelle,” https://bit.ly/30AYloI, 2018.
[25] “Openzeppelin,” https://openzeppelin.com/, 2019.
[26] I. Weber, V. Gramoli, A. Ponomarev, M. Staples, R. Holz, A. B. Tran,

and P. Rimba, “On availability for blockchain-based systems,” in IEEE
36th Reliable Distributed Systems Symposium, 2017.

[27] “Hydra tool,” https://github.com/IC3Hydra/Hydra, 2018.
[28] “Dao exploit discovery,” https://bit.ly/2X4y0y7, 2016.
[29] “Ecfchecker tool,” https://github.com/shellygr/ECFChecker, 2018.
[30] “web3.js,” https://web3js.readthedocs.io/en/1.0/.
[31] “Eth gas station,” https://ethgasstation.info/, 2018.
[32] “Top contracts by number of transactions by 2019,” https://blockspur.

com/ethereum_contracts/transactions, 2019.
[33] “Ethereum maximum throughput,” https://bit.ly/2H7wrY1, 2018.
[34] “Address of cryptokitties smart contract,” https://bit.ly/33SQeFH.
[35] “Blockspur,” https://bit.ly/2TOvOZu, 2018.
[36] “Etherscan,” https://etherscan.io/, 2018.
[37] “Geth: Official golang implementation of the ethereum protocol.” https:

//github.com/ethereum/go-ethereum.
[38] M. Burrows, “The chubby lock service for loosely-coupled distributed

systems,” in Proceedings of the 7th symposium on Operating systems
design and implementation, 2006.

[39] D. Ongaro and J. K. Ousterhout, “In search of an understandable
consensus algorithm.” in USENIX Annual Technical Conference, 2014.

[40] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts,” in 25th Network and Distributed System Security
Symposium, 2018.

[41] “Maian: a tool for automatic detection of buggy ethereum smart con-
tracts,” https://github.com/MAIAN-tool/MAIAN, 2018.

[42] S. Ducasse, H. Rocha, S. Bragagnolo, M. Denker, and C. Francomme,
“Smartanvil: Open-source tool suite for smart contract analysis,” 2019.

[43] “Solgraph tool.” https://github.com/raineorshine/solgraph, 2018.
[44] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and

M. Vechev, “Verx: Safety verification of smart contracts,” in the 41st
IEEE Symposium on Security and Privacy, 2020.

12

https://bit.ly/2VifC3z
https://bit.ly/2U9JQt1
https://bit.ly/2S3Y5cE
https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore
https://github.com/ConsenSys/mythril
https://solidity.readthedocs.io/en/v0.4.24/units-and-global-variables.html
https://solidity.readthedocs.io/en/v0.4.24/units-and-global-variables.html
https://bit.ly/30AYloI
https://openzeppelin.com/
https://github.com/IC3Hydra/Hydra
https://bit.ly/2X4y0y7
https://github.com/shellygr/ECFChecker
https://web3js.readthedocs.io/en/1.0/
https://ethgasstation.info/
https://blockspur.com/ethereum_contracts/transactions
https://blockspur.com/ethereum_contracts/transactions
https://bit.ly/2H7wrY1
https://bit.ly/33SQeFH
https://bit.ly/2TOvOZu
https://etherscan.io/
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
 https://github.com/MAIAN-tool/MAIAN
https://github.com/raineorshine/solgraph

	I Introduction
	II Background and Motivation
	II-A Blockchain and Smart Contracts
	II-B EVM and Solidity
	II-C Transactions and Message calls
	II-D Access Control in Smart Contracts

	III SMACS Overview
	III-A System Participants
	III-B Goals
	III-C Overview

	IV SMACS Details
	IV-A Token Types
	IV-B Token Issuance and Verification
	IV-C One-time Tokens
	IV-D Tokens for Call Chains
	IV-E Access Control Rules (ACRs)

	V Runtime Verification Case Studies
	V-A Enforcing Hydra Uniformity
	V-B Blocking Re-entrancy Attacks

	VI Implementation and Evaluation
	VI-A Gas Cost
	VI-B Token Service Performance

	VII Discussion
	VII-A Security
	VII-B Deployment

	VIII Related Work
	IX Conclusions
	References

