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Abstract—Network diversity has been widely recognized as
an effective defense strategy to mitigate the spread of malware.
Optimally diversifying network resources can improve the
resilience of a network against malware propagation. This
work proposes a scalable method to compute such an optimal
deployment, in the context of upgrading a legacy Industrial
Control System with modern IT infrastructure. Our approach
can tolerate various constraints when searching for optimal
diversification, such as outdated products and strict configura-
tion policies. We explicitly measure the vulnerability similarity of
products based on the CVE/NVD, to estimate the infection rate
of malware between products. A Stuxnet-inspired case demon-
strates our optimal diversification in practice, particularly
when constrained by various requirements. We then measure
the improved resilience of the diversified network in terms
of a well-defined diversity metric and Mean-time-to-compromise
(MTTC), to verify the effectiveness of our approach. Finally,
we show the competitive scalability of our approach in finding
optimal solutions within a couple of seconds to minutes for
networks of large scales (up to 10,000 hosts) and high densities
(up to 240,000 edges).

Keywords-ICS/SCADA Security, Network Diversity, Optimal
Diversification, Malware Propagation

I. INTRODUCTION

Industrial Control Systems (ICS) are cyber-physical sys-

tems that are responsible for maintaining normal operation

of industrial plants such as water treatment, gas pipelines,

power plants and industrial manufacture. Modern industrial

organizations perform an increasing large amount of oper-

ations across IT and Operational technology (OT) infras-

tructures, resulting in inter-connected ICS. It also creates

new challenges for protecting such integrated industrial en-

vironments, and makes cyber-physical security threats even

more difficult to mitigate [1]. Therefore, many industrial

organizations started looking for methods to converge IT

and OT infrastructures in more secure and resilient ways.

In this paper, we consider software diversification as a

way of deploying products across ICS and improving the

resilience of the integrated systems. However, there are

various real-world constraints we might encounter when

finding an optimal diversification strategy, for instance,

limited flexibility of diversification for legacy systems, strict

configuration policies and other (un)desirable configuration

requirements. Therefore, our approach particularly considers

these constraints into optimization and evaluates the impact

of these constraints on the optimal diversification. Although

the proposed approach was demonstrated in the domain

of ICS, the approach can also be applied to find optimal

diversification plans for other systems in which there are

constraints on diversification of some system components.

Software mono-culture has been recognized as one of

the key factors that promote and accelerate the spread

of malware. It is widely acknowledged that diversifying

network resources (e.g. software packages, hardware, pro-

tocols, connectivity etc.) significantly mitigates the infec-

tion of malware between similar products and reduces the

likelihood of repeating application of single exploits [2].

When facing attacks using zero-day exploits (i.e. unknown

exploits), the situation becomes even worse as there are no

available defense countermeasures to stop them. Stuxnet, as

the first cyber weapon against ICS, leveraged four zero-

day vulnerabilities. Until September 2010, there were about

100,000 hosts over 155 countries infected by Stuxnet [3].

The invariability or high similarity of products used in most

affected hosts accounts for the rapid infection and prevalence

of Stuxnet. Therefore, diversity-inspired countermeasures

have been introduced to improve the resilience of a network

against malware propagation. However, it is not very clear

about (i) how much diversification is required to reach

an optimal/maximal resilience, (ii) how exactly to deploy

diverse resources across a network, and (iii) how config-

uration constraints would harm the optimal diversification.

This paper aims to mitigate stuxnet-like worm propagation

by optimally diversifying resources. We consider a variety

of off-the-shelf products to provide services at each host,

and find the optimal assignment of them to maximize the

network resilience.

There are two main trends of research investigating

diversity as an effective defense mechanism. One trend

seeks for solutions from software development such as

n-version programming [4], program obfuscation [5] and

code randomization [6]. The other trend studies diversity-

inspired defense strategies from the perspective of security

management. Specifically, the goal of this trend is to find

an optimal assignment of diverse products for each host in

a network.Detailed related work are provided in Section II.

Our work lies in the second trend of research. Most

of the existing work has made three critical assumptions:

(i) It was assumed in most existing work that there was

no configuration constraints when searching for an optimal



assignment of products; (ii) Currently only one vulnerable

product was modelled for each node in a network, which

is not realistic; (iii) Most existing work assumed that each

individual product shared no vulnerability with any other,

which implied that unique exploits are necessary to compro-

mise different products. We contend that these assumptions

in earlier work are unrealistic, and thus we drop these

assumptions in this work. We specifically defined config-

uration constraints into the process of optimization. Also

we considered a more realistic infection model of malware.

In the following subsection, a simple example demonstrates

how these assumptions prevent us from modelling the actual

infection model of malware.

In this paper, we start with formally defining the similarity

of vulnerabilities between products to reflect the similar

exploitability of products. We conduct a statistical study

to estimate such vulnerability similarities by using public

vulnerability databases such as Common Vulnerabilities

and Exposures (CVE) [7] and the National Vulnerability

Database (NVD) [8]. Furthermore, we represent each host

in a network by a multi-label node, which can be formally

mapped to a discrete Markov Random Field (MRF) model.

By combining the similarity metric and the MRF model, we

can construct the corresponding infection model of potential

zero-day exploits across a network with a given product

assignment. We then focus on computing an optimal product

assignment to minimize the prevalence of zero-day exploits.

Before we give our main contributions in Section I-B, we

present an illustrative example in Section I-A to further

explain the motivation.

A. Motivational Example

We use a simple example in Fig. 1 to explain the mo-

tivation of this work, where a simplified network with 8

hosts is presented. Most of the existing work models the

network as in Fig. 1(a), where each host is represented

by a single-label node. A zero-day exploit breaks into the

network from the entry node. In order to prevent the exploit

(which exploits circle labels) from infecting more hosts,

most existing work suggests to diversify all hosts in the

way indicated by triangle and circle labels respectively in

Fig. 1(a). The illustrated configuration is effective because

the spread of the exploit is stopped after it compromises the

entry node and hence the chance of the target node being

infected is 0.

Nevertheless, it is assumed that different products share

no vulnerabilities between each other, which is however

not always the case Therefore, we improve the model by

considering the vulnerability similarities between different

products. Fig. 1(b) demonstrates the zero-day propagation

when the two products (circle and triangle labels) have a 0.5

vulnerability similarity between each other, namely there is

a 50% chance that the same zero-day vulnerability exploited

at circle labels can also be exploited at triangle labels, and

vice versa. In this case, the probability of the target node

being breached is increased to approximately 0.125.

In most realistic scenarios, a host is supposed to de-

liver multiple services (e.g. operating systems, web servers,

email servers, databases, etc), each of which is potentially

vulnerable to zero-day attacks. That means each host ac-

tually offers several alternative attack vectors, and as a

result, sophisticated attackers can choose the vulnerability

with higher success rate to exploit the host. Therefore, we

represent each host by multiple labels corresponding to

different services on the host. As shown in Fig. 1(c), we add

another shape of labels (i.e. red squares) to some hosts, and

introduce a sophisticated attacker in possession of two zero-

day exploits (one for round labels and the other for square

labels). It can be seen from Fig. 1(c), the attacker uses the

square label exploit (rather than the round label exploit) to

infect its adjacent node, which gives a greater chance of

success. Consequently, with the collaboration of two zero-

day exploits, the risk of the target being compromised is

further increased to approximately 0.5.

B. Main Contributions

From the example above, we learn that in order to find

the optimal way to diversify network resources, we first

need to model the resources accurately, based on which

we can determine the optimal assignment of products to

minimize the prevalence of exploits. We summarize the main

contributions of this paper as follow:

(i) Our approach can be directly applicable in practice

to find the optimal diversification strategy when in-

tegrating ICS with modern IT infrastructure. We use

a real-world case study inspired by Stuxnet, to find

optimal diversification to IT-OT convergence of ICS,

particularly accommodating configuration constraints

and limited flexibility of diversification in legacy areas.

(ii) To the best of our knowledge, our work is the first at-

tempt to explicitly consider the vulnerability similarity
between products when finding the optimal diversifica-

tion solutions. Specifically, we represent each host by

a multi-labelling model with each label corresponding

to a product of the host.

(iii) In order to compute the optimal assignment of prod-

ucts, we model the network by a discrete Markov
Random Field (MRF), which then can be optimized by

an efficient sequential tree-reweighted message passing
(TRW-S) algorithm [9]. In this way, our approach can

scale up well to analyze large-scale networks.

II. RELATED WORK

Software diversity has long been recognized as a mech-

anism for improving resilience and security of networked

computing systems [2], [10], [11]. The rationale is that it

forces attackers to develop an unique exploit to compromise

an individual product at each node in a network, thus
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Figure 1: Motivational example about diversifying products in a network

substantially increasing the attacking time and cost needed

to penetrate a networked system at a massive scale.

A variety of methodologies for software diversity have

been studied in the literature, among which the first direc-

tion of research focuses on software development diversity.

Examples include n-version programming [4], execution

environment diversity [12] and code randomization [6].

The second direction, which is also the focus of this

paper, is the strategies for diversified deployment of re-

sources in a networked system. For instance, based on

the assumption that different variants of products share no

common vulnerabilities, O’Donnell and Sethu [13] proposed

to assign diverse software packages in a communication

network by a distributed coloring algorithm to limit the

total number of nodes an attacker can compromise using

a limited attack toolkit. Newell et al. [14] found an efficient

approach to compute the optimal solution for placing diverse

software/OS variants on routing nodes to improve overall

network resilience given the assumption that each variant is

compromised independently with some probability metrics.

Besides, there were some work defining formal security

metrics for software diversity. For example, Wang et al.
[15] defined a network security metric, k-zero day safety,

for measuring the risk of unknown vulnerabilities based on

the number of unknown vulnerabilities required for com-

promising network assets. Furthermore, Zhang et al. [16]

introduced three security metrics to evaluate the resilience

against zero-day attacks using different diversity strategies

based on the number and distribution of distinct resources

inside a network, the least attacking effort required for

compromising certain important resources, and the average

attacking effort required for compromising critical assets,

respectively. Borbor et al. [17] explicitly considered cost

constraints on optimizing software diversity strategies. It is

noticed that most existing work assumes that there is a very

limited attack surface provided at each host, namely there is

only one vulnerable product at each host. By contrast, we

explicitly model various attack vectors (offered by multiple

products) at each host.

Vulnerability databases such as CVE/NVD can provide

statistical evidence for measuring software diversity. For

example, Garcia et al. [18] presented a study on the overlap

of vulnerabilities in 11 different OSes with OS vulnerability

data from NVD. In [19], Bozorgi et al. trained classifiers

to predict whether and how soon a vulnerability is likely

to be exploited by applying machine learning techniques on

CVE data. On the validity issue of CVE/NVD, Johnson et
al. conducted the assessment of several well-known vulner-

ability databases and concluded that NVD was actually the

most trustworthy database [20]; we used NVD in this paper.

Some existing work [15] [16] [21] studied malware prop-

agation based on attack graphs to assess the risk of malware

along with specific attack paths and network topology. At-

tack graphs have been extensively studied in the community

to express the exploitation conditions of vulnerabilities.

However, due to the unknown nature of zero-day vulner-

abilities, we contend that such approaches are not always

feasible to model zero-day malware. In contrast to existing

work using attack graphs, our work focuses on the speed

of zero-day exploits across a network configured by similar

products. Highly similar configurations (in terms of potential

vulnerabilities) would accelerate the prevalence of zero-day

exploits. Instead of producing specific propagation paths,

we use more general undirected edges to symbolize the

connections (rather than directed information flow) between

different hosts. We then use the proposed similarity metric

to estimate the infection rate on each edge and find optimal

diversification solutions.

III. SIMILARITY OF PRODUCT VULNERABILITY

In this section, we formally introduce the notion of

vulnerability similarity between a pair of products, namely

the likelihood of an exploit compromising both products.

Definition 1 (Similarity of Product Vulnerability): Let

xi, xj be a pair of products, Vx1
and Vxj

are sets of

vulnerabilities of xi and xj respectively. The vulnerability

similarity between xi and xj can be obtained by the Jaccard
similarity coefficient [22]: sim(xi, xj) =

|Vxi
∩Vxj

|
|Vxi

∪Vxj
|

Given a pair of products, the vulnerability similarity is

estimated by the ratio of the number of shared vulnerabilities

between the two products to the total number of vulnerabil-



ities. The rationale for this is to capture statistically how

similar the vulnerabilities found on two products are.

To provide a more realistic sense, we can use the data

from the NVD database [8] to calculate the similarity

metric for any pair of off-the-shelf products. An example

of an NVD entry is given in Table I, where the affected

products of a vulnerability are sorted by Common Platform

Enumerations (CPEs). CPE provides a well-formed naming

scheme for IT systems, platforms and packages.

Table I: Simplified NVD Summary for CVE-2016-7153

CVE-ID CVE-2016-7153

Vulnerable
software
&Versions

cpe:/a:microsoft:edge:-

cpe:/a:microsoft:internet_explorer:-

cpe:/a:google:chrome:-

cpe:/a:apple:safari

cpe:/a:mozilla:firefox

cpe:/a:opera:opera_browser:-

Given the large number of vulnerabilities in NVD, CPE

serves the role of sorting vulnerabilities according to their

affected products. We developed a program based on CVE-

SEARCH [23] to fetch necessary data from NVD, filter out

vulnerabilities for each studied product, and calculate the

similarity of vulnerabilities between products. The pairwise

similarities are stored as Similarity Tables. In this way, we

can calculate the similarity of vulnerabilities between any
pair of products listed in NVD. Note that the effectiveness of

the vulnerability similarity metric is subject to an assumption

that the metric that is based on past zero-day attacks is a

good predictor with respect to future zero-day attacks. We

believe that this is currently the best way available to predict

the future zero-day vulnerabilities.

For the purpose of illustration, here we use operating

systems and web browsers as examples. We collect vul-

nerabilities for 9 common OS products and 8 common

web browsers reported in the period between 1999 and

2016. Table II enumerates the pairwise similarity between

the chosen OS products and Table III for the chosen

web browsers. The reason for choosing these products is

mainly because they have been ranked as most vulnerable

products by CVE Details [24]. Each entry of the two

tables contains the pairwise similarity calculated by Def.(1)

and the number of shared vulnerabilities between products

in brackets. The diagonal entries in tables are the total

number of vulnerabilities of the row/column product. As

the pairwise similarity is symmetric, the other half of a

similarity table is omitted. For preserving the generality

and flexibility of our study, we implicitly consider each

different release/version of a product as a distinct product
to compare. For instance, Windows 8.1 and Windows 7 are

treated as two individual products and sorted by two differ-

ent CPE queries cpe:/o:microsoft:windows_7 and

cpe:/o:microsoft:windows_8.1.

Based on the statistical studies in both tables, we conclude

that a single vulnerability is likely to affect multiple products

across different versions, different vendors and different

platforms, which implies that a single zero-day vulnerability

could probably be exploited on heterogeneous hosts in a

network. Therefore, to maximize the resilience of a network

against zero-day exploits, it is desirable to use the up-
to-date products from diverse vendors across a network.

For instance, Windows 10 has much lower similarities of

vulnerabilities with the other Windows OS, and even shares

no vulnerability with Windows XP. However, it is not always

feasible to deploy the latest and diverse products due to their

incompatibilities with other services. For instance, SIMATIC

WinCC is one of the most widely applied SCADA systems,

but it can only operate on Windows OS, and most releases of

WinCC do not fully support Windows 10 yet [25]. It is one

of the key constraints addressed in our work when finding

optimal deployment for ICS.

In this section, we demonstrated the usage of CVE data to

calculate the vulnerability similarity. The NVD database is

one of the most well-known publicly accessible vulnerability

databases, which also covers most off-the-shelf products and

up-to-date vulnerability information. It is worth mentioning

that the versions of selected software in both tables are con-

strained by the granularity of CPE search engine. The CPE

entries for many vulnerabilities in NVD are not complete or

of different granularities.

IV. DIVERSE PRODUCT ASSIGNMENT

In this section, we present the formal model of a product

assignment for a given network, which is to find a diversifi-

cation solution to assigning products to each host such that

the malware propagation between similar products can be

effectively mitigated.

Each host has to provide a set of services S, such as an

operating system, a web browser and a database server. Each

service can be provided by a range of diverse products P .

Therefore, we formally define a network in terms of hosts,

links, services and products as below.

Definition 2 (Network): Let N = 〈H,L, S, P 〉 be a net-

work, H = {h0, . . . , hn} is a set of hosts. L captures the

links between a pair of hosts, L ⊆ H×H . S = {s1, . . . , sm}
is a set of services, and Shi ∈ 2S denotes a set of services

provided by a host hi. Shi
= {s1, . . . , sk}, where Shi

∈
2S , k � m. P denotes a set of products, and hence each

service sj can be provided by a range of diverse products,

p(sj) = {p1sj , . . . , plsj}, where pxsj ∈ P.
Assigning one product for each service on a host is termed

as an assignment of products for a host.

Definition 3 (Product Assignment): Given a network

N = 〈H,L, S, P 〉, an assignment of products is captured

by α′ : H × S → P , such that α′(hi, sj) is the product

assignment for a service sj ∈ Shi at the host hi:

α′(hi, sj) = pxsj . The assignment for all services at a host



Table II: Similarity Table for Common OS Products from CVE/NVD

WinXP2 Win7 Win 8.1 Win10 Ubt14.04 Deb8.0 Mac10.5 Suse13.2 Fedora

WinXP2 1.00 (479)

Win7 0.278 (328) 1.00 (1028)

Win8.1 0.009 (10) 0.228 (298) 1.00 (572)

Win10 0 (0) 0.124 (164) 0.697 (421) 1.00 (453)

Ubt14.04 0 (0) 0 (0) 0 (0) 0 (0) 1.00 (612)

Deb8.0 0 (0) 0 (0) 0 (0) 0 (0) 0.208(195) 1.00 (519)

Mac10.5 0 (0) 0.081 (109) 0 (0) 0 (0) 0 (0) 0 (0) 1.00(424)

Suse13.2 0 (0) 0 (0) 0 (0) 0 (0) 0.170(161) 0.112 (102) 0 (0) 1.00(492)

Fedora 0 (0) 0 (0) 0 (0) 0 (0) 0.083(75) 0.049 (41) 0.001(1) 0.116 (89) 1.00(367)

Table III: Similarity Table for Common Web Browser from CVE/NVD

IE8 IE10 Edge Chrome Firefox Safari SM Opera

IE8 1.0 (349)

IE10 0.386 (240) 1.0 (513)

Edge 0.014 (7) 0.121 (73) 1.0 (194)

Chrome 0 (0) 0 (0) 0.001 (2) 1.0 (1661)

Firefox 0 (0) 0 (0) 0.001 (2) 0.005 (15) 1.0 (1502)

Safari 0 (0) 0 (0) 0.002 (2) 0.009 (21) 0.003 (6) 1.0 (766)

SeaMonkey 0 (0) 0 (0) 0 (0) 0.001 (3) 0.450 (683) 0.001(1) 1.0(492)

Opera 0 (0) 0 (0) 0.003 (1) 0.003 (6) 0.004 (7) 0.004(4) 1.00(492) 1.00(225)

h0

h1

h2

h3

h5

h4

db1 db2 db3
db1 db2 db3
wb1wb2 wb3

wb1wb2 db2 db3
wb2 wb3

db1 db2
wb1wb2

db1 db2 db3
wb1wb2 wb3

Figure 2: A network with an assignment α by red circles

hi ∈ H can be derived by α : H × 2S → 2P :

α(hi, Shi
) = (α′(hi, s1), . . . α′(hi, sk))

= (pms1 , . . . , p
n
sk
)

where pms1 ∈ p(s1), . . . , pnsk ∈ p(sk)

Therefore α allocates products to all services running on

a host, whilst α′ assigns a product to a specific service of

a host. An example network is illustrated in Fig. 2, where

a network consisting of 6 hosts H = {h0, . . . h5} is mod-

elled. Each host provides up to two essential services web
browser and database. Three diverse web browser products

{wb1, wb2, wb3} and three database products {db1, db2, db3}
are available to choose. Each host might have different

ranges of products to choose. A possible product assignment

α is highlighted by red circles in Fig. 2

Now the problem is to find an optimal assignment which

allocates most diverse products for each pair of connected

hosts, so that the likelihood of a malware propagation

between two hosts can be minimized. Nevertheless, some

configuration requirements might hinder us from choosing

the most optimal product assignment in practice. Therefore,

we formally introduce local and global constraints to repre-

sent those requirements into the optimization process.

A local constraint indicates that for a particular host,

a product pj is required to either configure with another

product pl (expressed by cy), or avoid the product pk
(expressed by cx). Such requirements can also be applied

to all hosts by using global constraints.

Definition 4 (Configuration Constraints): Given a net-

work N = 〈H,L, S, P 〉, a set of constraints C expresses

any (un)desirable product combinations in the solution. A

constrained solution αC allocates products subject to C.

• a local constraint is applied to a specific host hi ∈
H in the form of: cx := 〈hi, sm, sn,+pj ,−pk〉 or

cy := 〈hi, sm, sn,+pj ,+pl〉 such that the constrained

solution αC satisfies:

∀cx ∈ C : α′
C(hi, sm) = pj ∧ α′

C(hi, sn) 	= pk

∀cy ∈ C : α′
C(hi, sm) = pj ∧ α′

C(hi, sn) = pl

• a global constraint is applied to all hosts in H in

the form of: cx := 〈ALL, sm, sn,+pj ,−pk〉 or cy :=
〈ALL, sm, sn,+pj ,+pl〉 such that αC satisfies:

∀cx ∈ C , ∀hi ∈ H : α′
C(hi, sm) = pj ∧ α′

C(hi, sn) 	= pk

∀cy ∈ C , ∀hi ∈ H : α′
C(hi, sm) = pj ∧ α′

C(hi, sn) = pl

The usage of constraints is demonstrated in the case study

(Section VII-B). We next define the optimal assignment of

products α̂ and the constrained optimal assignment α̂C .

Definition 5 (Optimal Diversification): Given a network

N = 〈H,L, S, P 〉, an optimal assignment of products is

captured by α̂ : H × 2S → 2P , such that α̂(hi, Shi
)

is the optimal product assignment for a host hi ∈ H .



A constrained optimal solution is denoted by α̂C which

provides an optimal product assignment subject to a set of

local and global constraints C.

We adopt the following notation convention throughout

this paper. α denotes an assignment of products for a

network in general. α̂ is for an optimal assignment without
constraints, and α̂C is for a constrained optimal assignment.

Specifically, α(hi, Shi
) includes the products assigned to a

host hi, and α′(hi, sm) is the product assigned to a particular

service sm at the host hi.

In the next section, we focus on finding such an optimal

assignment of products α̂ for a given network, as well as

computing constrained optimal solutions in Section V-A.

V. FINDING THE OPTIMAL DIVERSIFICATION

We need a model to represent a network in which each

host has multiple services and each service can be provided

by a range of products. Besides, this model has to offer

sufficient flexibility, allowing each host to run a customized

set of services and even the same service can have various

selections of products at different hosts. Furthermore, we

have to consider whether there is any existing efficient

optimization algorithm to such a model. For these purposes,

we choose to model the problem as a discrete Markov

Random Field (MRF), which is converted into an optimal

assignment problem of MRF that can be solved by an

efficient message passing algorithm.

Specifically, we model this problem as a discrete MRF

where each host has up to |S| services, and there are up

to |P | products for each service sk ∈ S. The optimization

assigns up to |S| products – one for each service on each

host – to reach the global minima of the propagation. Given

a network N = 〈H,L, S, P 〉, we derive the optimization

function E to denote the unary cost for each host and

pairwise cost between a pair of connected hosts.

E(N) =
∑
hi∈H

sk∈Shi

φ(hi, sk) +
∑

(hi,hj)∈L

ψ(α(hi, Shi), α(hj , Shj ))

(1)

where φ(·) denotes how likely a product is preferred by a

host hi to deliver the service sk, and ψ(·, ·) is a pairwise

cost between the products assigned to a pair of connected

hosts, which in our context would be the pairwise similarity

between products.

A. Unary Cost φ(·) with Constraints

The unary cost is derived from the preference of a

specific product for a host. By considering one product being

assigned to each host, our unary cost φ(·) is expressed as
∑
hi∈H

∑
sk∈Shi

Pr(α′(hi, sk)|hi) (2)

where Pr(·) presents the probability that a product is

assigned to hi. If there is no specific preference amongst

available products for each host to deliver a service, this

term can be replaced by a small constant Prconst for

optimization. However, we considered real-world networks

that are constrained by practical requirements. Therefore, the

unary cost is further refined subject to any constraints. For a

local constraint c ∈ C expressing an undesirable requirement

c := 〈hi, sm, sn,+pj ,−pk〉 or a desirable requirement

c := 〈hi, sm, sn,+pj ,+pk〉, our unary cost φ(·) can be

represented as follows:

Pr(α′(hi, sj)|hi)

=

{
Pc(α|α′(hi, sm) = pj , α

′(hi, sn) = pk) if sj = sm

Prconst otherwise

For the constrained services (when sj = sm), the unary

cost is given by Pc(·) :

Pc(α|α′(hi, sm) = pj , α
′(hi, sn) = pk)

∝
{
0 if c := 〈hi, sm, sn,+pj ,+pk〉
∞ if c := 〈hi, sm, sn,+pj ,−pk〉

where the desirable constraint contributes no additional cost

whilst the undesirable constraint introduces a large cost. The

optimization is then induced to reach desirable assignments,

but avoid undesirable ones. Note that such customized unary

cost can also be applied for any global constraint, which is

equivalent to applying a local constraint to all hosts.

B. Pairwise Cost ψ(·, ·)
The pairwise cost is derived from the similarity between

the assigned products. As mentioned previously, a pair of

connected hosts being assigned with more similar products

would have greater infection rate. When defining the pair-

wise cost, we penalize such similarities in order to provide a

more diverse product assignment for the network. To achieve

that, we define the pairwise cost term ψ(·, ·) as:∑
(hi,hj)∈L

∑
sk∈Shi

∩Shj

sim(α′(hi, sk), α
′(hj , sk)) (3)

where hi and hj denote a pair of connected hosts, and

sim(·, ·) presents the similarity between two products pro-

viding the same service on a pair of connected hosts. It

serves as a strong regularization on the product assignment

as it ideally prevents the same product from being assigned

to connected hosts.

C. Optimization
Based on the unary cost and pairwise cost, we can

determine the optimal assignment α̂ for N by minimizing

the optimization function as below:

α̂ = argmin
α

E(N)

= argmin
α

∑
hi∈H

∑
sj∈Shi

Pr(α′(hi, sj)|hi)

+
∑

(hi,hj)∈L

∑
sk∈Shi

∩Shj

sim(α′(hi, sk), α
′(hj , sk))



Solving such a problem is NP-Hard [9], and the alternative

way is to use an approximate minimization algorithm to

achieve a solution. The well-known techniques for solving

such problems are based on graph-cuts and belief propaga-
tion (BP). The former is currently considered as the most

accurate minimization approach for optimization functions

arising in many complex scenarios but it can be applied to a

limited range of optimization function forms. If the form is

outside the class, like our optimization function in Eq. 1, BP

is the common alternative. However, BP might not converge

when applying to a wide range of convex functions. Instead,

we employ a sequential tree-reweighted message passing
algorithm (TRW-S) [9]. Similar to BP, TRW-S can be applied

to the type of problems with the function form in Eq. 1. It

is also guaranteed to give an optimal MAP solution in most

cases [9]. TRW-S outperforms BP and graph-cuts on many

heavy tasks. It also demonstrates a great potential for the

cases of labeling of nearly flat probabilities, as well as the

cases of large-scale networks.

Our optimization scheme mainly follows [9], which is

also extended to a multi-level fashion to better fit our prob-

lem. Specifically, we enable the possibility of the parallel

computation and even GPU acceleration. In addition, the

optimization with constraints is also straightforward because

the constraints are efficiently encoded into the unary cost by

manipulating the cost for specific hosts and assignments.

More details about the scalability analysis are given in

Section VIII. A case study using our optimization approach

in practice can be found in the later Section VII.

VI. EVALUATION OF NETWORK DIVERSITY

This section evaluates how much diversity a specific

assignment can bring about into a network, and we achieve

this by using a network diversity metric based on BN [16].

Given a network N and a specific assignment α, we first

construct its corresponding BN to estimate the infection rate

on each edge between hosts, based on which we can evaluate

the network diversify by calculating the value of the metric.

We first need a way to capture the impact of the attacker’s

behaviour on malware propagation. From an attack entry

host, there are different ways to reach the final target by

continuously exploiting a number of stepping-stone hosts.

At each attack step from one host to another, there are often

more than one vulnerable products to exploit and induce

further spread of the malware. Therefore, we extended the

conventional attack paths by introducing a set of attack
nodes to capture which exact product is chosen to exploit

between a pair of connected hosts.

Attackers can choose one of the products to exploit or

keep silent. Different choices lead to different propagat-

ing rates to the destination host. Without considering the

similarity, the probability of a host being infected P ′
hk=T

only depends on the products being chosen to exploit at the

host and the infection rate is set to the average zero-day

propagation rate Pavg .

In this paper, we adapt the diversity metric used in this

paper to evaluate product assignments for a network. The

network diversity metric was proposed by Zhang et. al. [16]

to evaluate a diversified network by measuring the average
attacking effort needed to compromise the network. We

adapt the metric to fit our model considering the vulner-

ability similarity of products.

Definition 6 (BN-based Diversity Metric dbn): Given a

BN B constructed for a diversified network N , and a specific

target host ht, the network diversity based on B can be

defined as below in term of the probability of the target host

being compromised: dbn =
P ′

ht=T

Pht=T
where Pht=T (P ′

ht=T ) is

the probability of ht being infected with (without) consid-

ering the vulnerability similarity of products.

The probabilistic metric dbn estimates the average attack-

ing effort by combining all valid attack paths. Naturally, the

diversity metric dbn is always less than 1.0 and the greater

value indicates higher diversity. With the help of BN, Pht=T

captures the risk of the target host when the vulnerability

similarity of products is considered. Pht=T reflects the

current robustness of the network, which is provided by the

given assignment. P ′
ht=T indicates the maximum potential

of the network diversity. More explanations are in [16].

VII. CASE STUDY - UPGRADING LEGACY ICS WITH

MODERN INDUSTRIAL NETWORKS

In this section, we present a case study on upgrading

legacy control systems with interconnected IT systems, to

achieve the convergence of IT and OT in modern industrial

networks. Such an integration can facilitate highly intercon-

nected Industrial Internet of Things (IIoT) applications, but

also leave ICS more vulnerable by introducing more attack

vectors, i.e. as the control networks are no longer isolated,

malware can propagate itself across IT systems to breach

the core control units causing physical damage.

Therefore, in this case study, we demonstrate the usage of

our approach in finding an optimal diversification strategy to

improve the resilience of the integrated systems. Particularly

we consider three main constraints that might arise when

applying the approach in practice:

(i) Most hosts in OT networks run legacy software, which

have no flexibility to diversify or upgrade.

(ii) Some hosts in various networks are required to run

specific software and hence cannot be diversified.

(iii) Some desirable and undesirable product combinations

should be taken into account.

We start with a brief description of the case study in

Section VII-A. An optimal solution and two constrained op-

timal solutions are then computed and illustrated in Section

VII-B. In Section VII-C we evaluated the produced optimal

solutions in terms of (i) the diversity metric discussed in
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Figure 3: A typical structure of integrated modern ICS

Section VI, and (ii) the Mean-time-to-compromise (MTTC)
obtained from NetLogo simulations we have developed.

A. Experiment Configuration

The example is adapted from the Stuxnet-like worm

propagation analysis in [26]. There are newer ICS-targeted

attacks such as German steel mill [27] in 2014 and Ukrainian

power outage [28] in 2015, but Stuxnet is still the one with

the most detailed disclosure and hence used as a case study

here. Fig. 3 depicts a typical ICS architecture integrating ex-
isting OT zones (e.g. Operation Network, Control Network)

with new IT zones (e.g. Corporate Sub-Network, Clients
Network, Vendors Support Network). We use gray shading

to indicate that OT zones have no flexibility to diversify or

upgrade deployed software. Specific firewall white-list ac-

cess rules are given in Fig. 3 to provide perimeter protection

between different zones.

We use the example to demonstrate the Stuxnet worm

propagation across an ICS. The primary intrusion can be

introduced from the Corporate Network, Clients Network or

Vendors Support Network. Once a host has been exploited as

a foothold, the worm can continue scanning other connected

hosts for similar vulnerabilities, by which the worm can

propagate itself through the network. Stuxnet eventually

breached the hosts in Control Network, such as t4, t5 and

t6 in Fig. 3, which can access field devices.

In the following experiments, we consider the optimal

assignment of products to provide three key services, i.e. an

Operating System (OS), a Web Browser(WB) and a Database
Server(DB). These services are distributed across all the

hosts in the network according to the key role each host

plays (indicated in Fig. 3). For instance, the host c1 in

the Corporate Network is configured as a WinCC Web

Client, which runs WinCC V7.x as the main application. The

essential requirements for this application are a Windows OS

and an IE web browser [25], and hence a range of available

products that we can choose to install on c1 is provided

in Table IV. The host z2 in DMZ requires a Windows OS

and a Microsoft Database Server to run the WSUS server,

which is reflected accordingly in the table. As a result,

Table IV lists essential services required at each host and

the corresponding selections of products for each service.

We highlight the legacy hosts in grey in Table IV, which

run outdated software and cannot be diversified (e.g. the

host p2, p3 in the Operations Network). The example also

includes outdated versions of software running on legacy

hosts such as Windows XP, MS SQL 2008. All of these

introduce extra constraints in finding the optimal diversifi-

cation strategy. The other chosen products in Table IV are

either frequently suggested in WinCC manuals or rated as

one of the most vulnerable products by CVE Details [24].

The similarities of web browsers and operating systems

refer to Table II and III, and the similarities for DB are

obtained in the same way as described in Section III. Given

the products for each host in Table IV, we can compute the

optimal assignment to the networked ICS by the approach

discussed in Section V. It is worth noticing that our approach

offers high generality and flexibility, by which each host can

have a customized range of services, and each service can

have various ranges of products to deploy.

B. Optimal Assignment of Products

The optimal assignment α̂ for the case study is computed

by the approach introduced in Section V and illustrated in

Fig. 4(a). The assignment indicates the optimal strategy to

deploy the software in IT networks when integrating with OT

systems. The solution attempts to minimize the vulnerability

similarity between each pair of connected hosts. From the



Table IV: Available products for essential services in the case study

Serv. Products c1 c2 c3 c4 z1 z2 z3 z4 p1 p2 p3 t1 t2 t3 t4 t5 t6 e1 e2 e3 e4 r1 r2 r3 r4 r5 v1 v2 v3

s1

WIN XP � � � � � � �
WIN 7 � � � � � � � � � � � � � � � � � � � �

Ubuntu 14.04 � � � � � � � � � � � � � � � � � �
Debian 8.0 � � � � � � � � � � � � � �

s2

IE8 � � � � � � � � �
IE10 � � � � � � � � � � � � � � � �

Chrome 50 � � � � � � � � � � � � � �

s3

MS SQL 08 � � � �
MS SQL 14 � � � � � � � �
MySQL 5.5 � � � � � � �
MariaDB 10 � � � � � �

figure, we can find that each pair of connected hosts is

generally assigned with different products from each other.
As mentioned in the beginning of this section, the second

type of constraints we might encounter is that some hosts

are required to run specific software according to certain

company policies. For this case study, we specify that the

host z4, e1, r1 and v1 are required to run specific products.

We outline fixed choices for these hosts in Table IV in

grey. Having adding those constraints into the optimisation,

we now compute the constrained optimal assignment α̂C1 ,

which is given in Fig. 4(b). It can be seen that whilst we fixed

the products of the four hosts, the new solution accordingly

updates assignments of products for several hosts to find a

new optimal diversification, as highlighted by red squares.
We can also specify undesirable product combinations to

avoid during optimisation. For instance, the solution α̂C1

in Fig. 4(b) uses the IE10 on Ubuntu14.04 at host v2. If

we want to eliminate such undesirable assignments, we can

specify and embed product constraints C2 in the computation

of optimal solutions, as introduced in Definition 4. Then we

can compute the constrained optimal solution α̂C2
that is

illustrated in Fig. 4(c). It can be found that the web browsers

at c2 and v2 are changed to Chrome as required.
The optimal solution α̂ is produced by minimizing the

optimization function presented in Section V-C, and hence

it guarantees the minimal infection rate of the worm and the

most diverse product assignment possible. In order to ac-

commodate the host and product constraints, the constrained

solutions α̂C1 and α̂C2 have to sacrifice a certain amount of

diversity. In the next section, we evaluate all these optimal

solutions and quantify the compromised diversity of the con-

strained solutions in terms of the diversity metric proposed

in Section VI and MTTC by our NetLogo simulation.

C. Case study analysis
1) Evaluation by Network Diversity Metric: We first

construct a BN for the case study with a given assignment

of products, to estimate the propagation of malware. In the

following experiments, we consider an attacker breaks into

the system from c4 in Corporate Network, and hence we

set c4 to be the root being infected with a prior probability

1.0. The final target of is set to the host t5 which has

the direct access to controlling the critical field devices.

Therefore, the probability of the target t5 being infected

becomes the key element to calculate the network diversity

metric dbn = P ′
t5=T /Pt5=T , as defined in Definition 6.

Given an assignment of products (e.g. the optimal one

α̂), we can determine the possible infection rate of malware

at each edge with the help of the constructed BN. As we

investigate the infection of multiple zero-day exploits, we

assume that the attacker is in possession of three unique

zero-day exploits, each of which exploits a particular type

of product respectively (i.e. OS, WB and DB). Once a host is

infected, attackers search for similar products/vulnerabilities

to exploit amongst the connected hosts and proceed. When

multiple exploits are feasible, attackers evenly choose one to

use. The similarity between the source and chosen product

decides the likelihood of infecting the chosen product.

Table V: Diversity metric dbn of different assignments

Label Description logP ′
t5=T logPt5=T dbn =

P ′
t5=T

Pt5=T

α̂ optimal assign. -3.151 -3.062 0.81457

α̂C1
host constr. -3.151 -2.838 0.48590

α̂C2
product constr. -3.151 -2.833 0.48119

αr random assign. -3.151 -2.576 0.26622

αm mono assign. -3.151 -1.978 0.06709

The first row of Table V is the evaluation of the optimal

assignment α̂ which reaches a very high diversity dbn =
0.81457. The constrained optimal solutions α̂C1

and α̂C2

produce lower diversities as the two solutions are required

to accommodate certain constraints.
For the purpose of comparison, we also generate a ho-

mogeneous assignment αm which generally allocates the

same operating system, the same web browser and the

same database server for all non-constrained hosts. Such

mono-assignment provides the worst possible diversity for

the ICS case. It also shows how vulnerable the network

would become if we use homogeneous products. Besides, a

randomly diversified assignment αr is also provided, which

delivers a limited diversity that is significantly lower than

our optimal solution.
The notation P ′

t5=T denotes the probability of the target

t5 being infected without considering the vulnerability sim-

ilarities between products. Therefore, P ′
t5=T has a constant

value for all different assignments. When we take similarities

into consideration, the probability of t5 being infected P ′
t5=T

increases with less diverse assignments of products.
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Figure 4: Optimal Assignment of products for the case study

2) Evaluation by NetLogo Simulation: NetLogo is an

agent-based modelling tool that enables a programmable

modelling environment for simulating behaviours of com-

plex systems [29]. We use NetLogo to construct the net-

worked ICS as shown in Fig. 3 and simulate the propagation

of malware. After breaking into the system from a host,

attackers can further spread the malware across the network.

Given an assignment of products (e.g. the one in Fig. 4(a)),

we can determine the possible infection rate of exploits at

each edge. By deploying the simulation with a given product

assignment, we can determine how much time is required by

attackers to penetrate the diversified network, which implies

the average effort required to compromise the network. More

optimal assignment should provide more resilience to the

network against the penetration.

To test the resilience provided by the diversification, we

designed five sets of experiment to simulate the malware

propagation from five different entry points respectively –

c1 and c4 from the Corporate Network, e3 from the Clients
Network, r4 from the Remote Clients, and v1 from the

Vendors Support Network. Once the entry host is infected,

attackers search for similar products/vulnerablities to exploit

from the connected hosts. We looked at the sophisticated at-

tackers who conduct reconnaissance activities before launch-

ing attacks, and hence at each step this type of attackers

always chooses the exploits with the highest success rate.

Table VI: MTTC (in ticks) against different assignments

Assignment MTTC

from c1
MTTC

from c4
MTTC

from e3
MTTC

from r4
MTTC

from v1

α̂ 45.313 37.561 52.663 52.491 24.053

α̂C1
28.041 16.812 44.359 48.472 15.243

α̂C2
14.549 15.817 45.118 46.257 14.749

αm 14.345 12.654 19.338 18.865 15.916

We deployed the network according to the three optimal

assignments α̂, α̂C1
and α̂C2

respectively, as well as the

mono-assignment αm. Each experiment ran the simulation

for 1,000 times. The average MTTC for each test is given in

Table VI. The MTTC is the time steps (i.e. ticks in NetLogo)

consumed by attackers to successfully reaching the final

target. The results show that the optimal α̂ provides the

strongest resilience to the network, as it requires the longest

period of time to be compromised across all five scenarios,

while the other two constrained optimal assignments can

be compromised in a shorter period of time. The mono-

assignment provides the weakest resilience to the network.

VIII. SCALABILITY ANALYSIS

We run the optimization against a series of randomly gen-

erated networks to analyse the scalability of this approach.

Our optimizer is implemented using C++ and enables the

multi-threading mechanism to provide high convergence

speed in multi-level optimization. We apply a GPU-friendly

compute unified device architecture to gain extra efficiency

on complex matrix operation. All the experiments run on a

mid-range computer with an Intel i5 2.8GHz CPU, a 8GB

RAM and an Nvidia GTX 750. The optimization in all the

following experiments can be achieved within a reasonably

short time from a couple of seconds to minutes.

Table VII provides the computational time of optimizing

networks with the middle-scale (20 degrees and 15 services

per host) and high density (40 degrees and 25 services per

host). We observe that the number of hosts has a major

impact on the computational time, but our method still finds

the optimal solution within 3 minutes for large-scale (6000

hosts) high-density network. Moreover, we run experiments

on mid-scale and large-scale networks with various densities

and the results in Table VIII show that the degree has less

influence on the computational time than the number of

hosts. Finally, we vary the number of services for each host

on both mid-scale and large-scale networks in Table IX. For

a large-scale network of 6000 hosts with up to 240,000 edges

and 30 services per host, our method still performs well and



Table VII: Computational time (in seconds) for networks of various densities over different # hosts

# deg. # serv.
# hosts

100 200 400 600 800 1000 2000 4000 6000

mid-density 20 15 0.239 0.438 1.099 1.478 1.944 2.784 6.706 16.517 33.392

high-density 40 25 0.640 1.766 3.553 5.881 8.135 10.999 27.484 82.500 151.110

Table VIII: Computational time (in seconds) for various sizes of networks over different # degrees

# hosts # serv.
# degree

5 10 15 20 25 30 35 40 45 50

mid-scale 1000 15 0.759 1.577 1.954 2.693 3.294 4.040 4.652 5.174 5.758 6.309

large-scale 6000 25 21.239 40.940 59.216 77.583 95.750 117.810 144.470 152.040 167.190 189.710

Table IX: Computational time (in seconds) for various sizes of networks over different # services

# hosts # deg. # edges
# services

5 10 15 20 25 30

mid-scale 1000 20 ∼ 20,000 0.603 1.608 2.709 4.008 5.253 6.974

large-scale 6000 40 ∼ 240,000 10.306 27.214 51.587 90.407 134.340 188.050

converges at about 3 minutes.

IX. DISCUSSION AND CONCLUSION

Moving towards integrated ICS enables an efficient way

to operate, but also provides new attack vectors. It is now a

challenging and urgent issue for many industrial organiza-

tions to find a secure way to converge OT and IT systems

to provide an efficient and also resilient industrial environ-

ment. Furthermore, there are other constraints hindering us

from finding an optimal solution, such as outdated legacy

systems, strict company policies and other configuration

requirements. In this paper, we proposed an approach based

on software diversification to increase the system resilience

of the integrated ICS against malware propagation.

We introduced the similarity metric to capture how similar

the vulnerabilities of two products are, which was then

applied in a statistical study on CVE/NVD databases. The

study showed that most vulnerabilities could affect multiple

products, even from different vendors. Therefore, when

finding the diverse assignment of products, we explicitly

considered such vulnerability similarities of products. The

similarity metric can estimate the likelihood of a zero-day

exploit successfully propagating itself between two products.

By assigning diverse products for a pair of connected hosts,

such propagation can be effectively reduced. Unlike most

existing work, we do not assume that there is only one

vulnerable product on each host, and instead we adopted a

multi-label model to represent various attack vectors on each

host, offered by different products. Such a model is of great

help to investigate the collaboration of multiple exploits.

We formally represented a network by a MRF model with

different services and products for each host. Such a model

can be efficiently optimized by the TRW-S algorithm. We

can then obtain an optimal assignment of products for the

given network. The optimal solution maximizes the defense

strength of the network against malware propagation. Com-

pared to random diversification, the optimal solution is more

effective in cutting off valid attack paths. In the scalability

analysis, we illustrated that our method scaled well in large-

scale high-density networks.

We contend that our approach has great value and po-

tential in practical applications, by which we can advise

on the best diversification strategy for a system operator to

decide the most robust way to upgrade an existing ICS. We

also demonstrated the practical usage of our optimization

approach in a realistic case study. Furthermore, we provided

a way to specify configuration constraints that we might

encounter in practice. Constrained optimal solutions can be

produced to accommodate these constraints.

There are several promising lines of research to carry

on. The vulnerability similarity of products in this work

is estimated by data from CVE/NVD. We are aware of

the potential “publication bias” of CVE/NVD. However, as

discussed in [20], NVD is currently the most trustworthy

database, compared to the others. Besides, a more systematic

way is needed to estimate the vulnerability similarity, such

as (i) from the perspective of software engineering [30]; or

(ii) by estimating how diverse two products are [31]. Another

future direction is to evaluate the diversified network from an

adversarial perspective, subject to different level of attacker’s

knowledge about the network configuration and vulnerabil-

ities that can be leveraged. In such a way, we can further

evaluate the results to prove that the proposed approach can

provide a more resilient network against zero-day exploits.
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