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Abstract—The popularization of blockchains leads to a resur-
gence of interest in Byzantine Fault-Tolerant (BFT) state machine
replication protocols. However, much of the work on this topic
focuses on the underlying consensus protocols, with emphasis
on their lack of scalability, leaving other subtle limitations
unaddressed. These limitations are related to the effects of
maintaining a durable blockchain instead of a write-ahead log
and the requirement for reconfiguring the set of replicas in
a decentralized way. We demonstrate these limitations using a
digital coin blockchain application and BFT-SMART, a popular
BFT replication library. We show how they can be addressed
both at a conceptual level, in a protocol-agnostic way, and by
implementing SMARTCHAIN, a blockchain platform based on
BFT-SMART. SMARTCHAIN improves the performance of our
digital coin application by a factor of eight when compared
with a naive implementation on top of BFT-SMART. Moreover,
SMARTCHAIN achieves a throughput 8x and 33x better than
Tendermint and Hyperledger Fabric, respectively, when ensuring
strong durability on its blockchain

I. INTRODUCTION

Recent years have seen a resurgence of interest in state ma-
chine replication (SMR) protocols, specifically in the context
of permissioned blockchain systems [1]—[4]]. Such protocols
are used to maintain a set of stateful replicas, which execute
the same set of requests in the same order, deterministically.
Byzantine Fault-Tolerant (BFT) state machine replication pro-
tocols such as PBFT [5] and its descendants [6]—[11] are
particularly relevant, as they implement the model properties
even in the presence of an adversary that may be able to
corrupt and control a fraction of the replicas. Such protocols
are a direct fit for permissioned blockchains [12], where
every peer/replica is known and approved to participate in the
system. They are also a fundamental building block for some
recent high-performance permissionless or open blockchains
(e.g., [13[|-[16]) that elect a subset of peers to be a transaction
processing committee running the BFT protocol.

Most of the recent research on BFT replication applied
to blockchain has focused on the scalability of the under-
lying consensus protocol [17]-[24], as most BFT protocols
described before were typically designed considering few
replicas. Nevertheless, there are other subtle but important
differences among the BFT state machine replication approach
and blockchains. While many replicated state machine pro-
tocols build an internal log of executed operations for state
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synchronization after a leader change or a replica recovery, a
blockchain system differs from traditional SMR as such log
must (1) be written to stable storage to ensure durability, (2)
include the result of the transactions for auditing purposes, and
(3) be self-verifiable by any third party. Another key difference
is that while the vast majority of the literature about BFT SMR
assumes a static set of processes, in a blockchain consortium,
peers are expected to join and leave at any time, without the
need for an additional trusted party.

In this paper, we show that these differences lead to inherent
limitations, which we demonstrate by designing and running
a simple digital coin blockchain application on top of BFT-
SMART [25[], a well-known BFT replication library. Our
experiments show that depending on how the blockchain is
implemented, and how much we are willing to trade in terms of
blockchain features for better integration with the SMR library,
the system throughput can go from 1.7k to 14.8k txs/sec.

Furthermore, we identify subtle issues related with trans-
actions persistence and blockchain forks. More specifically,
we show that it is possible to lose a suffix of the committed
transaction history in case of a full crash of the system. This
calls into question the finality of permissioned blockchains
and makes them weaker in terms of durability than the
centralized transactional systems they are supposed to replace.
Additionally, we observe that blockchain forks might appear
as a side effect of run-time consortium reconfigurations since
compromised keys from past members of the consortium can
be used to generate such forks.

We show that these limitations can be addressed at a
conceptual level in a protocol-agnostic way, by describing
novel mechanisms for efficiently logging transactions and their
results as a self-verifiable chain of immutable blocks and
reconfiguring the replica set in a secure and decentralized
way. These mechanisms are independent from the consensus
protocol employed to order transactions, being thus general
enough to be potentially useful for any blockchain system.

The proposed techniques were implemented on
SMARTCHAIN, a blockchain platform based on BFT-
SMART. SMARTCHAIN improves the performance of the
digital coin application by a factor of 8 when compared with
running it on top of BFT-SMART, and provides a performance
8x and 33x better than existing comparable production-level
blockchains like Tendermint [3]] and Hyperledger Fabric [1]],
respectively.



In summary, this paper makes the following contributions:

1) It identifies three fundamental limitations of running
blockchain applications on top of “classical” BFT SMR
protocols: one related with potential performance issues,
and two related with the gap between the state machine
replication approach and blockchain requirements;

2) It introduces solutions for addressing these limitations,
namely: an efficient design for transforming SMR logs
in blockchains, a protocol for increasing the durability
guarantee of the system, and new strategies for recon-
figuring the replica set without opening breaches for
blockchain forks;

3) It describes SMARTCHAIN, an experimental permis-
sioned blockchain platform corresponding to the im-
plementation of these techniques, and its evaluation
showing it achieves significant performance gains when
compared with similar systems.

The remainder of this paper is organized as follows. Sec-
tion [[] presents the relevant background on blockchain and
state machine replication, including BFT-SMART. Section
presents our system and adversary model. The gap between
the SMR and blockchain is discussed in Section The
SMARTCHAIN platform is described in Section [V] Section
presents the experimental evaluation of SMARTCHAIN. Fi-
nally, some related works and concluding remarks are pre-

sented in Sections and respectively.

II. BACKGROUND
A. Blockchain

The concept of blockchain was introduced by Bitcoin to
solve the double spending problem associated with cryptocur-
rencies in open peer-to-peer networks [26]. A blockchain is an
open database that maintains a distributed ledger comprised by
a growing list of records called blocks, each of them containing
transactions executed by the system. This authenticated data
structure [27] consists of a sequence of blocks in which each
one contains the cryptographic hash of the previous block in
the chain. This ensures that block j cannot be forged without
also forging all subsequent blocks j + 1....

A distributed system implements a robust transaction ledger
(i.e., a blockchain) if it satisfies the following two properties
(adapted from [28]):

o Persistence: If a correct node reports a ledger that con-
tains a transaction tz in a block more than k blocks away
from the end of the ledger, then ¢z will eventually be
reported in the same position in the ledger by any honest
node of the system.

o Liveness: If a transaction is provided as input to all correct
nodes, then there exists a correct node who will eventually
report this transaction at a block more than % blocks away
from the end of the ledger.

Blockchain systems satisfy these properties abiding to either
the permissionless or permissioned models [29]]. Permission-
less blockchains are maintained across peer-to-peer networks
in a completely decentralized and anonymous manner [26],

[30]. In order to determine the next block to append to the
ledger, peers need to execute a Proof-of-Work (PoW) to create
a valid block [28]] (or an equivalent mechanism, e.g., Proof-of-
Stake [19]], [31]) that is then disseminated to the network. The
key idea behind the permissionless consensus, employed in
Bitcoin and Ethereum, is to prevent an adversary from creating
new blocks faster than honest participants. The first participant
that finds such a solution gets to append its block to the
ledger on all correct peers. Therefore, intuitively, as long as the
adversary controls less than half of the total computing power
present in the network, it is unable to tamper with the ledgerE]
This phenomenon also enables participants to establish a total
order on the transactions by adopting the longest ledger with
a valid PoW as the de facto transaction history.

The PoW mechanism makes permissionless blockchains
slow and extremely energy demanding [29]. By contrast,
permissioned blockchains do not expend as many resources
and are able to reach better transaction latency and throughput.
This is because nodes participating in this type of ledgers
execute a traditional BFT consensus (e.g., PBFT [3]]) to
decide on the next block to be appended to the ledger [12].
However, this approach requires a consortium of nodes that
know each other for executing the consensus protocol. In this
scenario, the bound on the adversary’s power is structural, not
computational, i.e., safety is ensured as long as the adversary
controls less than a fraction of the nodes (usually a third).

B. State Machine Replication

In the state machine replication approach [32], [33], an
arbitrary number of client processes issue requests to a set
of replicas. These replicas implement a stateful service that
receives these requests and updates its state accordingly to
the operation contained in the clients’ requests. Once enough
replicas transmit matching replies to the client, its invocation
returns the result computed by the service.

The goal of this technique is to make the service state
maintained by each replica evolve in a consistent way. In order
to achieve this behavior, it is necessary to satisfy the following
requirements [33]:

1) Any two correct replicas r and 7’ start with state sq;

2) If any two correct replicas r and r’ apply operation o to

state S, both r and r’ will obtain state S’;
3) Any two correct replicas r and r’ execute the same
sequence of operations og, ..., 0;.

The first two requirements can be easily fulfilled if the
service is deterministic, but the last one requires a fotal
order broadcast primitive, which is equivalent to solving the
consensus problem [34]).

C. The BFT-SMART Library

BFT-SMART [25] is an open-source library that imple-
ments a modular SMR protocol [35], as well as features such
as state transfer and group reconfiguration. In this section

%In fact the speed of the network also affects the maximum adversarial
power tolerated, which is typically assumed to be much smaller than 50% [28]].
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Fig. 1: BFT-SMART ordering message pattern.

we describe these features as they are fundamental for any
practical deployment of SMR.

1) SMR protocol: BFT-SMART uses the Mod-SMaRt pro-
tocol to implement the SMR properties described in Sec-
tion Mod-SMaRt is a modular SMR protocol that works
by executing a sequence of consensus instances based on the
BFT consensus algorithm described in [36]. During normal
operation, the resulting communication pattern is similar to
the well-known PBFT protocol [5] (Figure . Each consensus
instance ¢ begins with a leader replica proposing a batch
of client operations to be decided within that instance. All
replicas that receive the proposal verify if its sender is correct
by exchanging WRITE messages containing a cryptographic
hash of the proposed batch with all other replicas. If a replica
receives WRITE messages with the same hash from more than
two thirds of the replicas, it sends a signed ACCEPT message
to all others containing this hash. If a replica receives ACCEPT
messages for the same hash from more than two thirds of the
replicas, it delivers the corresponding batch as the decision for
this consensus instance, alongside a proof comprised by the
set of signed messages received in this last phase.

If the leader replica is faulty and/or the network experiences
a period of asynchrony, Mod-SMaRt may trigger a synchro-
nization phase to elect a new leader for the consensus instances
and synchronize all correct replicas [35].

2) State transfer: BFT-SMART also allows crashed repli-
cas to recover and resume execution. This is done by using an
intermediate layer between the Mod-SMaRt protocol and the
replicated service, which is responsible for triggering service
checkpoints and managing the request log.

The library provides two state transfer implementations in
this layer. One uses an approach similar to PBFT that consists
of storing the request log in memory which is periodically
truncated after a snapshot of the service state is created. A
recovering replica obtains the state by probing other replicas
about their last completed consensus instance and asking f+1
replicas to send the version of the state up to that instanceﬂ

The other implementation is the durability layer described
in [37]. When this layer is enabled, BFT-SMART stores the
request log into stable storage to preserve the service state even
if all replicas fail by crashing. In order to write requests to disk
as efficiently as possible, delivered requests are written to the

3In order to render this mechanism as efficient as possible, only one replica
sends the entire state, while other f replicas send only a hash of it [5].

durable log in parallel with their execution by the service. To
better exploit the large bandwidth of stable storage devices,
the system tries to write multiple batches at once, diluting
the cost of a synchronous write among many requests. More
specifically, the latency of writing one or ten request batches
in the stable log is similar, yet the throughput would ultimately
increase roughly by a factor of 10 in the latter [37].

This durability layer also enables replicas to execute check-
points at different moments of their execution and a collabo-
rative state transfer. These features alleviate the performance
degradation caused by checkpoint generation and state transfer
when the system is under heavy load.

3) Group Reconfiguration: BFT-SMART provides mecha-
nisms for reconfiguring the replica set. In particular, the recon-
figuration mechanism assumes the existence of a distinguished
trusted client known as the View Manager, which uses the
aforementioned state machine protocol to issue updates to
the replica set. To change the current replica set (view) of
the system, the View Manager issues a signed reconfiguration
request that is submitted just like any other client operation.
However, this request is never delivered to the application
and instead is used to update the view. Since these special
operations are also totally ordered, all replicas will observe
the same updates to the view along the system’s lifespan.

Once the View Manager receives confirmation from the
current replicas that its update was executed, it notifies the
joining replicas that they can start participating in the repli-
cation protocol. At this point, they invoke the state transfer
protocol to retrieve the latest application state from other
replicas (as described previously) before actively participating
in the replication protocol. Once these replicas receive and
install the state, they are ready to process new requests.

III. SYSTEM MODEL

We consider a fully-connected distributed system composed
by a universe of processes U that can be divided in two
subsets: an infinite set of replicas II = {ry,ro,...}, and an
infinite set of clients C' = {c1,c,...}. Clients access the
blockchain/SMR system maintained by a subset of the replicas
(a view) by sending their transactions to be executed and
appended to the blockchain maintained by these replicas. Each
process (client or server) of the system has a unique identifier.
Servers and clients are prone to Byzantine failures. Byzantine
processes are said to be faulty. A process that is not faulty
is said to be correct. Each process has a permanent public-
private key pair and has access to cryptographic functions for
digital signatures and secure hashes. We assume all processes
can obtain the public keys of other processes by standard
means. Moreover, there are authenticated fair point-to-point
links connecting every pair of processes.

We assume further an eventually synchronous system
model [38]. This means the network may behave asyn-
chronously until some unknown instant 7' after which it
becomes synchronous, i.e., time bounds for computation and
communication shall be enforced after 7.



a) Dynamic replica groups: During system execution, a
sequence of views is installed to account for replicas joining
and leaving. Process arrivals follow the infinite arrival model
with bounded (and unknown) concurrency [39]. We assume
a non-empty initial view v;,;; known to all processes (e.g.,
which is written in the genesis block, as will be discussed
in later sections). The system current view cv represents the
most up-to-date view installed in the system, with its replicas
being the only ones that may participate in the execution of the
ordering protocol. We denote by cv.n the number of replicas
in cv and cv.f the number of replicas in cv allowed to fail,
being cv.f < [Lg’lj A replica that asks to leave the system
must remain executing the protocols until it knows that a more
up-to-date view is installed, otherwise it is considered faulty.

b) Crashes and recoveries: We consider that all replicas
in cv are subject to recoverable crashes, i.e., all replicas can
crash at once. A replica that is in the process of being restarted
is said to be in recovery mode and cannot participate in the
ordering protocol until its service state is restored. Therefore,
the system only make progress when there are at most cv.f
faulty and recovering replicas.

In order to potentially bring back the entire set of repli-
cas in cv without losing the service state, all replicas have
access to a local stable storage device. Any data successfully
stored in such a device will not be lost in the advent of a
recoverable crash fault. Nonetheless, this guarantee does not
extend to Byzantine faults, since a malicious replica is able to
overwrite/corrupt its own stored data.

IV. LIMITATIONS OF SMR AS BLOCKCHAINS

Blockchains and SMR share strong similarities since the
main objective of both is to run a replicated deterministic
service that executes transactions in total order. However,
even if we put aside consensus protocol properties, such
as finality, commit latency, and scalability [15], [29], there
are still important features blockchain applications need that
SMR systems do not necessarily implement. For example,
blockchain applications need to maintain a self-verifiable
persistent ledger with the executed transactions and support
reconfigurations on the group of replicas, two features not
present in most SMR implementations.

This section assesses the hindrances of the classic SMR
model when supporting blockchain applications. We start by
presenting a ubiquitous digital coin application used in our
evaluation. Afterward, we analyze some experimental results
that highlight the performance limitations of this blockchain
application.

A. SMaRtCoin

To demonstrate the inherent inefficiencies of SMR for
supporting blockchain applications, we developed SMaRtCoin,
a digital coin application on top of BFT-SMART. SMaRtCoin
was broadly inspired by Bitcoin and more specifically by
FabCoin. The latter being an application used to benchmark
Hyperledger Fabric [1]]. This application represents the sim-
plest useful blockchain application we are aware of.

SMaRtCoin is a deterministic wallet-like service that man-
ages coins based on the UTXO (Unspent Transaction Output)
model introduced in Bitcoin [26]. In this model, each object
(coin) represents a certain amount of currency possessed by a
user. This means that a transaction consumes a given number
of input objects to produce a number of output objects.
Therefore, this service supports two basic transaction types:
MINT, used to create a certain amount of coins for a given
address, and SPEND, to transfer coins to other addresses. The
state of the service is comprised of a table with the coins
assigned to each address in memory and a list of addresses
authorized to create new coins.

MINT operations require the public key of the account that
issued the transaction and the value of each coin to create
for the issuer. For that, the issuer needs to have permission
to execute this operation, i.e., its public key must be in the
list of authorized addresses to issue MINT transactions which
is defined in the genesis block. SPEND operations require the
issuer’s public key, the id of the coins that will be used as input
and a set of key-value pairs each containing a public key of
an account and the amount of coins it will receive. Both types
of requests need to be signed to ensure their authenticity and
thus prove the ownership of the affected funds.

We implemented SMaRtCoin as a BFT-SMART service,
using the invoke and execute interfaces provided by the
library [25]]. Clients generate signed SMaRtCoin transactions
and submit them for the BFT-SMART ordering protocol. This
protocol runs a Byzantine consensus to order a batch of opera-
tions, instead of a single one. Therefore, each replica receives
a batch of transactions from the library’s ordering protocol and
delivers it to SMaRtCoin. If SMaRtCoin successfully verifies
that the client that issued the transaction has the right to
execute it (e.g., it is the owner of the coins being transferred),
the transaction is executed.

After transactions execution, a block containing the deliv-
ered batch together with the transactions results is created
and appended to the ledger. Once this block is synchronously
written to stable storage, each replica replies to the clients with
the results associated to each executed transaction.

B. SMaRtCoin Limitations

The experience of designing and running SMaRtCoin on
top of BFT-SMART lead us to the observation of several gaps
between the classic SMR and blockchain models.

a) Observation 1 (Performance issues): We run a set
of experiments using different setups of SMaRtCoin on top
of BFT-SMART. Table [[] reports the throughput for SMaRt-
Coin when writing its blockchain synchronously and asyn-
chronously to stable storage, considering different transaction
signature verification strategies. The experimental setup and
methodology are detailed in Section|[V1} For these experiments,
we configured the system with four replicas to tolerate a single
Byzantine failure.

In order to compare the results with other works, it is
important to consider the size of the messages exchanged
since this factor significantly affects the performance of BFT



TABLE I: SMaRtCoin average throughput (txs/sec) with dif-
ferent signature verification and storage strategies.

Seq. Sign. Verification ‘ Parallel Sign. Verification

Tx. type ‘

‘ sync. async. ‘ sync. async. Dura-SMaRt
MINT 1801 1821 4079 4149 15015
+ 321 + 82 + 152 + 187 + 422
1729 1760 3881 4027 14829
SPEND ‘ + 302 +213 + 177 =205 + 549

protocols [25], [40]]. For MINT operations, the requests and
replies have an average size of 180 and 270 bytes, respectively.
For SPEND operations, the size of the request is around 310
bytes, and the replies are 380 bytes long. The size of the replies
also approximates the space taken up by a serialization of each
transaction (according to its type) in the ledger.

As can be seen on the left side of Table [l there is not
much difference between the performance of the system with
synchronous or asynchronous writes to stable storage when the
signature of the coin objects is done sequentially, i.e., inside
the state machine. However, if we push this verification to
the BFT-SMART message verification pool of threads [25],
effectively exploiting the multiple cores of our servers to verify
signatures in parallel, we improve throughput more than twice,
moving the bottleneck to the blockchain stable storage. We
remark that signature verification can be further improved by
parallelizing it through different replicas [41]].

Although parallel signature verification significantly im-
proves system performance, if we remove the blockchain
durability implementation out of the SMR application layer,
and instead use the BFT-SMART durability layer [37]], we
still have similar guarantees in terms of service durability, but
the performance improves more than 3.6x. As explained in
Section [[I-C2] this gain is due to the fact that the BFT-SMART
durability layer accumulates several batches of transactions
before delivering them to the SMR service for processing
while writing these batches in a single 10 operation.

b) Observation 2 (SMaRtCoin does not implement an
immutable ledger): It is worth pointing out that, in all the
scenarios evaluated so far, there is no immutable ledger
that could be fetched to verify transactions. This happens
because writing synchronously to stable storage only during
the execution of the state machine and before sending a reply
to the client, ensures only what we call external durability:
an executed operation is never reversed after the client see
its completion [37]. In other words, an operation is durable
only if the client that issued it receives matching replies from
a (f-dissemination) Byzantine quorum with [%J >
2cv.f + 1 replicas [42]. This ensures that these replicas wrote
the operation in their logs and, even if there is a full crash
and recover of the system, any other Byzantine quorum will
see this operation on the log of at least one correct replica and
recover the state with such operation. Notice a single log is
enough because each value decided in BFT-SMART comes
with a proof that it was the result of a consensus, as discussed

in Section The consequence of this guarantee is that a
single durable log of a replica does not provide a durable
committed history of the system execution, as a suffix of the
logged operations can be undone. To be sure some logged
operation will not be undone, one needs to check logs from
a Byzantine quorum of replicas. What is missing here is log
self-verifiability, i.e., verifying a single correct log should be
enough for obtaining the complete execution on history of the
system up to that point.

c) Observation 3 (Reconfiguration depends on a cen-
tralized authority): Most BFT SMR systems assume a static
set of nodes participating in the ordering protocol [5]-[11],
[43]], [44]. However, this is not suitable for a blockchain
platform, since the set of nodes participating in the consortium
are expected to change during the lifespan of the system.
Moreover, there are indeed a few SMR systems that are
prepared to accept new replicas to join the system and older
ones to leave it, but they rely on a centralized third party with
administrative privileges [45]]-[47]]. This is also not well suited
for blockchains, since nodes should have the ability to join and
leave in an autonomous way.

V. SMARTCHAIN

SMARTCHAIN is a blockchain platform based on BFT-
SMART that efficiently support applications such as the digital
coin described in Section SMARTCHAIN addresses the
aspects discussed in the previous section, with two novel
mechanisms: the blockchain storage layer, and the decentral-
ized reconfiguration protocol. Before diving into the details
about them, we present an overview of what need to be done
to transform SMR to blockchains.

A. Overview: Transforming SMR to Blockchains

The previous limitations show that naively implementing
a blockchain application, even the simplest one, can result
in a low-performance system with some missing features,
independently of how good is the consensus being employed.
Observation 1 shows that beside the scalability issues [24],
[29], which have been the main focus of most of the recent
work on BFT replication, it is also important to ensure that
the system (1) can deal efficiently with messages of significant
size, (2) is able to exploit multi-cores for cryptographic
operations, and (3) implements an effective durability layer.
Observations 2 and 3 are more complex to overcome and
require addressing two fundamental issues on state-of-the-art
SMR systems.

1) Turning Operation Logs into Blockchains: Practical
SMR systems require the usage of an internal log of delivered
requests, both to recover from a faulty leader and to enable
the transference of service state to recovered replicas [5],
[25]]. Three requirements must be addressed to transform such
internal log into a blockchain.

Firstly, this log must be durable. It is necessary to carefully
devise a solution for log durability in order to ensure that
synchronous writes to disk do not cripple system perfor-
mance [37]. Furthermore, to approach the idea of blocks,



logs should no longer be comprised of individual operations,
and instead composed by a sequence of blocks with the
transactions ordered by the underlying protocol. Most existing
SMR protocols already assume that batches of transactions are
ordered on each consensus, thus making the notion of blocks
quite natural. In addition, each entry in the log will require a
block header and a certificate that renders the block/log self-
verifiable. Moreover, request processing and block persistence
must be decoupled to ensure log self-verifiability (as defined
before) and not only BFT-SMART external durability.

The second requirement is related to state snapshots.
Most systems truncate the log when snapshots are created.
In a blockchain platform, snapshots would allow a fast
(re)initialization of replicas. Thus, the file in which they are
stored should be linked with the chain of blocks.

Finally, the result of the transaction execution must also be
stored within each block to enable auditability of transactions,
matching the blockchain model.

2) Reconfiguring the Set of Nodes: As discussed before,
most BFT SMR systems assume a static set of replicas, and
the few that are prepared to accept replica group changes rely
on a centralized third party with administrative privileges [25]],
[46]). Such centralized management goes against the distributed
trust promised by blockchains. A more appropriate solution for
a blockchain scenario would be to enable the nodes themselves
to judge if another node can join the system. In addition, this
mechanism should be designed in such a way that the criteria
by which nodes are allowed to join should be specified by the
blockchain application.

An additional problem associated with reconfigurations is
how to ensure the security and verifiability of the blockchain
data structure when the set of keys that validate blocks
change. More specifically, new mechanisms must be designed
to impede (malicious) nodes removed from the consortium to
create forks on the blockchain.

B. The Blockchain Layer

This section details how the issues previously discussed can
be addressed in a blockchain design. We start by defining the
blockchain data structure and then we proceed with an in-depth
discussion on how it can be extended with new transactions,
checkpoints, and consortium changes.

1) Blockchain structure: Figure P]illustrates the structure of
the blockchain maintained by SMARTCHAIN. On the top of
the figure (block 1) we have a detailed description of a block,
which is composed of three parts: (1) a header containing
block metadata, (2) a body containing the list of transactions
decided in a consensus instance and associated results, and (3)
a certificate with a cryptographic proof of the block validity.

The header is composed of three integers representing the
block number, the number of the block containing the last
reconfiguration, and the number of the block in which the
last service snapshot took place. Moreover, the header also
contains hashes of the batch of transactions in the block body,
the results of the execution of these transactions, and the
previous block.
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Fig. 2: SMARTCHAIN blockchain structure.

The body of the block contains the metadata of the consen-
sus that delivered a batch of transactions (e.g., the consensus
instance number), the list of transactions on this batch, and
the list of results of each one of these transactions[]

The certificate comprises a set of [%J >2cv.f +1
signatures of the block header generated by different replicas
in the current view. In a SMR-based blockchain system this
certificate suffices to guarantee that there is no other block
that can be generated in this position on the blockchain.

2) Extending the Blockchain: The system starts with a gen-
esis block containing the initial members of the consortium,
their public keys, and other setup data. Every time a batch
of transactions is delivered in total order and executed by the
blockchain application, a new block is created containing the
batch itself and the results of each transaction. This can be
seen in blocks 1, k, and m in Figure

3) State Checkpoints: In order to accelerate the launching
of new consortium members or decrease the time to re-
pair crashed replicas, SMARTCHAIN employs durable check-
points, stored outside the blockchain. A checkpoint contains
a snapshot of the application state and a reference to the last

“#Results can include a compact representation (e.g., a Merkle tree) of the
state changes caused by the transactions, making SMaRtChain compatible
with execution engines like the Ethereum Virtual Machine, as in SBFT [20].



block covered by it (block k in Figure , i.e., the most recent
block whose transactions were executed before the snapshot
was taken. This means that a checkpoint makes the blocks
before it mostly obsoletes for starting a replica.
SMARTCHAIN requires a checkpoint to be created after
a sequence of z blocks are processed. The parameter z is
defined in the genesis block. This is different from traditional
SMR systems, in which the checkpoint is defined based on
the number of transactions executed. We changed it to blocks
to avoid having checkpoints that partially cover a block.
Each block b stores the number c of the last block for which
its transactions were included in the most recent checkpoint
at the time b was created. This is important to inform anyone
reading the blockchain that there is a state snapshot that
represents the state of the system up to block ¢ (inclusive).
4) Consortium Changes: A fundamental characteristic of
permissioned blockchains is that members of the consortium
know each other. A simple way to do that is by storing the
current composition of the consortium on the blockchain.
Our blockchain structure accommodates that in two ways.
First, by storing the initial consortium composition in the gene-
sis block. Second, by storing the transaction that reconfigures
the system and the corresponding new view, in a separated
reconfiguration block (see block [ in Figure [2). Similarly to
the checkpoint approach, each block stores the number of the
last reconfiguration block before it in the chain. This ensures
blockchain verifiers have access to enough public keys that
validate the certificate of each block created in the view.

C. Strengthening the Blockchain Persistence

As discussed before, BFT-SMART provides only external
durability, i.e., a transaction is irreversibly committed only if
its issuer sees matching replies from a quorum of replicas (see
Observation 2 in Section [[V). This limitation also affects our
blockchain architecture if no changes are made.

Considering the definition of blockchain in terms of Persis-
tence and Liveness (Section , this external durability is
equivalent to 1-Persistence, i.e., only the second to last block
is immutable. However, there are other possibilities:

o 0-Persistence: Perfect durability, once a block is written,

it is immutable.

o «-Persistence: Standard durability, with a being the num-
ber of consensus instances running in parallel in the
system. BFT-SMART runs a single consensus at time
(a = 1), as described before.

e A-Persistence: Durability provided when using asyn-
chronous stable storage writes. The value of A is depen-
dent on the environment but clearly a small integer greater
than zero.

o 6-Persistence: The durability provided (with high proba-
bility) in the Bitcoin’s blockchain [26].

o oo-Persistence: No durability, provided when storing
blocks only in memory.

In this paper we are particularly interested in achieving

0-Persistence, a guarantee similar to the durability provided
by most database systems. To do that, we need an additional
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Fig. 3: SMARTCHAIN message pattern.

communication step on the system, just after the transactions
are executed and persisted. This extra round of communica-
tion — designated as PERSIST phase — consists in making
each replica generate its own signature of the block (which
will now include the aforementioned transaction results) and
disseminate these signatures among the view. Once a replica
collects | <2m+¢v-I+L | gionatures for the same block, it appends
these signatures to the block, thus creating a certificate for it.
Notice that this write is asynchronous since if all replicas crash
after synchronously writing the header and body of a block,
when they recover the only possible next action is to create
the same certificate again.

This modification ensures 0-Persistence because the block is
considered written only when a replica knows that a Byzantine
quorum of replicas executed and recorded the same set of
transactions to their stable storage. Consequently, even if all
replicas crash and recover, these transactions will still be
visible in the blockchain.

SMARTCHAIN supports either 0- or 1-Persistence, in vari-
ants we call weak and strong, respectively. Figure [3|illustrates
the message pattern of both variants. For both cases, the
algorithm for state transfer is basically the same as used in
BFT-SMART (Section [[I-C2), sending the last checkpoint
covering up to a block b plus the blocks after it.

D. The Reconfiguration Protocol

SMARTCHAIN provides a new reconfiguration protocol
that does not rely on a trusted third party to manage re-
configurations, allowing replicas to join/leave the system in
an autonomous and secure way, following application-specific
conditions.

An important aspect related with reconfigurations is how to
avoid forks caused by faulty nodes removed from the system.
Recall that our assumption is that in each active view v, there is
at most v. f faulty nodes. However, we do not assume anything
about the nodes from past views. Figure [4| shows an example
where the failure thresholds of all views are respected, but in
which node 3, that is compromised after being removed from
the system, together with faulty nodes 2 and 4 (also removed),
is able to create a fork after block £ — 1 by extending the
blockchain without the reconfiguration block k.

In SMARTCHAIN, we solve this problem by decoupling
replicas permanent key pairs from their consensus key pairs,
which are used to create a consensus decision proof and
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also to obtain a block certificate. The idea is to make all
replicas generate new consensus key pairs for each view they
participate, certifying each generated public consensus key
with their permanent private keys, and discard their consensus
key pairs on each view change. This forgetting protocol [48]
ensures that even if a replica becomes faulty later, after a new
view is installed, it cannot recover the discarded consensus
private key and thus cannot vouch for a block in some old
view (as done by nodes 3 and 4 in the example).

The consensus public keys for a new view need to be stored
in the reconfiguration block, together with the list of members
of the view. This requires the inclusion of these keys in the re-
configuration transaction. However, to preserve reconfiguration
liveness in non-synchronous systems, the processes handling
the reconfiguration transaction(s) that will install a new view
v are ensured to collect at most v.n — v.f of such keys.
Fortunately, this quorum is enough for avoiding forks since, in
the worst case, it will contains v. f keys from faulty processes
and a collusion with the v.f processes whose keys were
not included in the reconfiguration block (that can become
malicious later) will not be enough to generate a valid proof
for a consensus decision or to certify a block, which requires
| entev-* 1| signatures. It is worth to mention that correct
processes whose keys are not included in the reconfiguration
block but that participate in the view need also to forget old
keys and generate new ones. These new keys are disseminated
in the first messages these processes send in the new view.

Concretely, for a new node to join the system the following
steps need to be executed (Figure [5a)): (1) it asks the nodes
in cv for a permission to join the system; (2) each node
may accept or not the request based on an application-specific
policy (e.g., the new node is certified by a trusted third party,
it solved a proof-of-work, or it acquired a certain amount of
the blockchain-specific cryptocurrency), by sending a signed
reply to the joining node which also contains its new public
key to be used in the next view; (3) if the joining node receives
signed acceptance replies from a quorum of cv.n—cv.f nodes
in cv, it assembles a certificate and invokes a reconfiguration
transaction that goes through the ordering protocols. After this
join transaction is executed and the new node is included in
the current view, its state is updated as previously described.

If a node decides to leave the system by itself, it collects
public keys for a new view without itself from a quorum of
nodes and notifies the others by submitting a special leave
transaction in total order. Once a node receives this transaction,
it generates a new view with that node excluded from the
group. On the other hand, if the group decides to remove some
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Fig. 5: SMARTCHAIN reconfiguration protocol.

node from the system, each node submits a special remove
transaction to the ordering protocol asking for that exclusion
and informing its public key for the new view (Figure [5b).
Once a node observes cv.n — cv.f of such transactions from
different nodes targeting the same node, it generates a new
view without that node. Notice that the overhead of requiring
all these transactions for running a single reconfiguration will
be limited due to batching.

E. Consolidated Algorithm

Algorithm [I] consolidates all the previous ideas into a single
module to be run on top of the consensus layer. During initial-
ization, several variables are initialized and the genesis block
with all consensus public keys of the initial view is written to
stable storage (lines 1-10). Every time the ordering protocol
delivers a batch of transactions, they are stored together with
the respective consensus proofs (see Section to disk (line
18). The asyncWriteBC command denotes the action of
asynchronously writing data to the blockchain stored in disk.
Moreover, the transactions are delivered to the application
code for execution (line 19) and the results are also stored
to disk (line 20). This effectively creates the block’s body.
Since writing transactions to disk is done before executing
them, asynchronously, storage and execution are performed
in parallel. Finally, the header is written to close the block
(lines 21, 26-29), the replies are sent to the clients (lines 22-
23), it is verified if a snapshot of the service must be created
(line 24), and the blockchain becomes ready to receive the
next block (line 25).

Additionally, in the strong variant, the block certificate
is also created and stored in the block (lines 31-34). More
specifically, each replica sends a signed PERSIST message
with the hash of the block header to all replicas in cv.
Once a replica receives correctly signed PERSIST messages
from a quorum of replicas in cv, it creates a certificate that
authenticates the block and writes it to disk.

Membership updates are stored in their own blocks (lines
37-48). The algorithm presents the processing needed to



Algorithm 1: SMARTCHAIN Algorithms

1 Upon [nit do

2 myld <« replica identifier /I replica identifier
3 bNum < 1 /I next block number
4 lRec « -1 // last reconfiguration block number
5 ICkp < -1 /I last checkpoint block number
6 IbHash < hash(Q) // hash of the last block
7 ISnapshot «1 /I last state snapshot taken
8 CV — Vinit // system current view
9 resetCached () /I resets the cached data
10 writeGenesisBlock () /I writes the genesis block to disk

11 Procedure resetCached ()

12 Vie N: Txs[i] « @ /I transactions for each block i
13 Vie N: Res[i] <« @& // responses for transactions on each block i
14 Vie N: Cert[i] « @ /I certificates for each block i
15 Vie N : Headers[i] <« @ /I headers for each block i

16 Upon totalOrderDeliver (BATCH, cid, tzs[], proofs[]) do

17 Txzs[bNum] « (tzs[], proofs[])

18 asyncWriteBC({ctd, Tzs[bNum]))

19 Res[bNum] « execute(Tzs[bNum])

20 asyncWriteBC(Res[bNum])

21 closeBlock({hash(Tzs[bNum]),hash(Res[bNum])))
2 foreach (clientlId, res) € Res[bNum] do

23 | send (REPLY, res) to clientld

24 checkpoint ()

25 bNum + +

26 Procedure closeBlock(htz, hres)

27 Headers[bNum] « (bNum, lRec, [Ckp, htx, hres, lbHash)
28 asynciWriteBC(Headers[bNum])

29 syncDisk ()

30 lbHash < hash(Headers[bNum])

31 if STRONG PERSISTENCE

32 send (PERSIST, bNum, (myld, leash)Umyld) to cv
3 wait until | Cert[bNum]| > [ £e0tev-l+1]

34 asyncWriteBC (Cert[bNum])

35 Upon deliver (PERSIST, bNum,(r, lbHash),, ) do
36 | Cert[bNum] < Cert[bNum]u {(r, lbHash),, }

37 Upon totalOrderDeliver (VIEW, cid, recTz, recProof,nKeys[]) do

38 if valid(recTx, recProof ,nKeysz[])

39 Txzs[bNum] « (recTz, recProof ,nKeys[])
40 asyncWriteBC({cid, Tzs[bNum], nKeys[]))
41 updates cv according to recTz

42 Res[bNum] « (recTz.senderld, cv)

43 asyncWriteBC(Res[bNum])

44 closeBlock (hash(Tzs[bNum]),hash(Res[bNum]))
45 send (REPLY, cv) to recTz.senderld

46 IRec < bNum

47 checkpoint ()

48 bNum + +

49 Procedure checkpoint ()

50 if (bNum % CHECKPOINT_PERIOD) = 0

51 ICkp < bNum

52 resetCached ()

53 ISnapshot < takeSnapshot ()

54 asyncWriteSN(ISnapshot)

s5 Upon deliver (ST_REQ, cid, stateReq) do
56 lastTxs < get transactions from [Ckp + 1 to cid from the cache
57 send (ST_REP, cid, lastTzs, lSnapshot) to stateReq.senderld

include or remove a process that asked to join or leave the
system, respectively. The processing to exclude a member
from the system is similar, but in this case, it is necessary
to wait for transactions from a quorum of nodes advocating
for the removal.

Finally, snapshots are written outside the blockchain in a
different file (line 54) and state transfer requests are replied
with the last snapshot together with the blockchain data cached

since the last checkpoint (lines 55-57).

VI. EVALUATION

We implemented SMARTCHAIN over BFT-SMART and
conducted several experiments (/) to compare the performance
of different strategies for blockchain data persistence, (2) to
compare the SMARTCHAIN performance with similar sys-
tems (Tendermint and Hyperledger Fabric), and (3) to under-
stand the system behavior under events like reconfigurations,
crashes, and recoveries.

A. Experimental Setup and Methodology

The experimental environment was configured with 14 ma-
chines connected to a 1Gbps switched network. The machines
were configured with Ubuntu Linux 16.04.5 LTS operating
system and JRE 1.8.0, hosted in Dell PowerEdge R410 servers.
Each machine has 32 GB of memory and two quadcore 2.27
GHz Intel Xeon E5520 processor with hyperthreading, i.e.,
supporting 16 hardware threads. The machines have also a
146 GB SCSI HDD (Seagate Cheetah ST3146356SS). The
experiments were conducted in up to ten replicas hosted in
separate physical machines. Moreover, 2400 client processes
were distributed uniformly across the other four machines.

SMARTCHAIN was configured to use a maximum batch
size (block size) of 512 transactions. The experiments were
conducted in two phases: the first one is composed of MINT
operations to generate new coins, and then a second phase
considers SPEND operations to transfer the generated coins to
new addresses. Following the UTXO model, this corresponds
to single-input, single-output SPEND transactions. Each client
issued up to 1000 requests of each type (MINT and SPEND).
In this section we report only the values for SPEND since both
types of transactions yield equivalent results.

For each experiment, the throughput was measured at the
replicas at regular intervals (at each 10k operations). From
the collected data, 20% of the values with greater variance
were discarded and the average values are presented. Standard
deviations were always under 500 txs/sec.

B. Results

This section presents the experimental results, which were
divided in three subsets according to the evaluation goals.

a) Comparing different blockchain strategies: We com-
pared the system performance considering different blockchain
persistence guarantees: SMARTCHAIN configured with syn-
chronous storage writes (0- and 1-Persistence in the strong
and weak variants, respectively), asynchronous storage writes
(A-Persistence for both variants), and memory only (oo-
Persistence for both variants). As a baseline, we also present
results for the efficient durability layer of BFT-SMART [37]],
which does not implement a blockchain (Section [[V-A). Fig-
ure [6] presents the throughput results for all these configura-
tions considering different consortium sizes and the use or not
of signatures.

The results show that signature verification represents the
major factor that impacts performance, followed by the storage
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Fig. 6: SMARTCHAIN throughput for different consortium sizes and blockchain persistence guarantees. Legend: Si+Sy =
Signatures and synchronous writes; Si = Signatures only; Sy = Synchronous writes only; N = None.

strategy. For n = 4 and when using signatures, SMARTCHAIN
throughput reaches around 12k and 14k txs/sec for the strong
and weak variants, respectively. When signatures are disabled,
these values increase to around 18k and 26k txs/sec in the
strong and weak variants, respectively. Notice that the size
of transactions makes the throughput of plain BFT-SMART
(N setup) reach 33k txs/sec, which is much less than the 80k
txs/sec the system achieve with transactions of few bytes [25]].

In our experiments, the size of the consortium has a minor
impact on the performance of the configurations with stronger
guarantees (signatures and synchronous writes), in all dura-
bility strategies. This shows that the consensus protocol was
not the bottleneck in these scenarios. Instead, the bottleneck is
the time demanded to write the ledger to disk and to perform
signature verification. However, it is expected that the lack of
scalability of BFT-SMART consensus protocol will make it a
bottleneck in larger groups [24].

Likewise, the results show that the additional PERSIST
phase in the strong blockchain variant does not significantly
impact system performance, as the obtained results for this
setup are only 13% lower than the ones obtained for the weak
variant.

b) Comparison with other systems: Table [[I] compares
the SMARTCHAIN performance with two other well-known
BFT blockchain systems: Tendermint [3], [49], [50] and
Hyperledger Fabric [[1]] configured with a BFT ordering ser-
vice [40]]. For both variants, SMARTCHAIN was configured
to use signatures and synchronous writes. Both Tendermint
and Hyperledger Fabric were also configured for maximum
durability. Finally, all systems were configured with four
replicas to tolerate a single Byzantine failure.

Table [[] shows that SMARTCHAIN performs significantly
better than the competing systems. Tendermint uses an ar-
chitecture that decouples application and ordering layers,
similar to SMaRtCoin, and the performance results were also
similar (Section [V-A). Although other works reported higher
throughput for Hyperledger Fabric (e.g., approximately 1k
txs/sec [51]]), we could reach at most 381 txs/sec in our testbed.

¢) Reconfigurations, crashes, and recoveries: Figure
shows the behavior of the strong variant of SMARTCHAIN,
using signatures and synchronous writes, in a run with dif-
ferent events and 600 clients accessing the system. For this
experiment, the system was configured with 8 million UTXOs
representing 10% of the current number of UTXOs in the
Bitcoin network [52]], leading to a state of 1GB.

TABLE II: Throughput and latency for different blockchains.

Blockchain ‘ Throughput (txs/sec)  Latency (sec)
SMARTCHAIN Strong 12560 + 480  0.210 + 0.033
SMARTCHAIN Weak 14547 £ 465  0.200 = 0.023
Tendermint 1602 + 395 1.378 + 0.421
Hyperledger Fabric 381 £ 102 1.602 + 0.504

We can observe that the throughput increases until all clients
become operational, around second 7. At second 120, replica 4
joins the system and the throughput decreases since large quo-
rums are used in the protocol. At second 240, replica 3 crashes,
which does not impact throughput, and later recovers at second
360. In second 442, replicas perform a checkpoint that takes
23 seconds to finish. During this period, the throughput drops
to almost zero. It is possible to configure replicas to take
checkpoints at different instants in the execution to decrease
its impact in the overall system performance [37]. Finally, at
second 480, replica 4 leaves the system and throughput goes
back to what was observed in the beginning of the experiment.

Notice that after a join or a recovery, replicas demand
approximately 60 seconds to obtain and install the 1GB state
from the other replicas (green spots in Figure [7). Throughput
is slightly smaller during this period since replicas must send
their state to the joining/recovering replica. By using check-
points and state transfer, a replica can join the system faster
than in other systems that do not employ this technique. For
example, currently a node must process a blockchain of 223GB
(9080186 blocks) to join the Ethereum network [53]], even
pruning old states. Based on this observation, Figure [§] shows
the processing time demanded to update a replica considering
different checkpoint periods and blockchain sizes. Checkpoints
boost the reconfiguration performance since joining nodes
need to process only the transactions logged after the last
checkpoint.

VII. RELATED WORK

Since Bitcoin’s inception and widespread adoption there
have been an impressive amount of work on both permission-
less and permissioned blockchain platforms. Most of these
works focus on the multiple types of blockchain consensus,
but very few provide an in-depth discussion about blockchain
durability and the issues with decentralized consortium recon-
figuration.
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a) Durability: The scale, latency, and probabilistic fi-
nality of the most popular blockchains lead to an ad-hoc
implementation of blockchain durability. However, the re-
cent popularization of small-scale permissioned blockchains
(e.g., [1]-[4], [54]) and their use as distributed transaction plat-
forms [S5]], [56]], calls for a better understanding of blockchain
durability. However, to the best of our knowledge, this subject
was not yet explored in both academic and industrial works.

One of the best known blockchain platforms is Hyperledger
Fabric [1]. The platform is designed to support pluggable
implementations of different components, such as the ordering
and membership services. Fabric’s key innovation is the exe-
cution of transactions before establishing a total order among
(blocks of) them. Only after such order is established the
blocks are validated by the peers and then written to stable
storage. Fabric durability guarantees are not well documented,
but the lack of coordination between peers during blockchain
writing suggest that the system offers guarantees at most like
SMARTCHAIN weak persistence.

Tendermint is another notorious permissioned platform that
implements a variant of the PBFT protocol [3]], making its
design more similar to SMARTCHAIN than Fabric. However,
Tendermint has two distinguished features: it uses a gos-
sip protocol to propagate transactions among nodes, and it
adopts a leader rotation mechanism similar to Spinning [9].
In terms of persistence, Tendermint writes the block before
and after operation execution, making it less efficient than
SMARTCHAIN (as evidenced by our experimental results),
without further coordination between the replicas. The conse-
quence is that the system supports only weak persistence for
its blockchain.

b) Consortium reconfiguration: Some works have also
tackled the challenges of supporting group reconfiguration in
SMR [13]], [15], [45]-[47]]. ComChain [57], Hybrid Consen-
sus [[13]], and Solida [15]] are the ones that most resemble our

solution since they support fully autonomous reconfiguration.
Similarly to our approach, ComChain allows reconfigurations
to be defined by application-specific criteria but does not
deal with forks. Hybrid Consensus determines the committee
members using Bitcoin’s (PoW-based) protocol while using
a traditional consensus protocol among current committee
members to order transactions. On the other hand, our solution
is entirely derived from a classic BFT state machine protocol.
Moreover, Solida is designed to operate in the synchronous
system model and uses a variant of the PBFT protocol adapted
to such model. Our solution is still able to operate in an
eventually synchronous model, like most SMR protocols in
the literature.

Fabric and Tendermint also support consortium reconfigu-
rations. Fabric only allows reconfiguration with the help of a
trusted network administrator [58]. Tendermint, in principle,
supports decentralized reconfigurations if the application de-
fines how this should be done [59]]. However, none of these
systems deal with the potential forks that might arise with
multiple reconfigurations.

VIII. CONCLUSIONS

This paper discussed some misalignments between the state
machine replication approach and the permissioned blockchain
requirements and proposed several techniques to address
them. The identified issues concern the low performance
of blockchain applications, the lack of strong blockchain
persistence guarantees, and the possibility of forks due to
consortium reconfigurations. We propose a set of consensus-
agnostic techniques materialized in a blockchain layer that
can be integrated into SMR frameworks to mitigate these
issues. To validate our approach, we implemented these tech-
niques on SMARTCHAIN, a proof-of-concept permissioned
blockchain on top of BFT-SMART. Experimental results show
that SMARTCHAIN improves the performance of a simple
digital coin application by 8x when compared with running it
on top of BFT-SMART, and by 8x and 33x when compared
with Tendermint and Hyperledger Fabric, respectively.
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