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Sentiment Analysis based Error Detection for
Large-Scale Systems

*Regular paper

Abstract—Today’s large-scale systems such as High Perfor-
mance Computing (HPC) Systems are designed/utilized towards
exascale computing, inevitably decreasing its reliability due to
the increasing design complexity. HPC systems conduct extensive
logging of their execution behaviour. In this paper, we leverage
the inherent meaning behind the log messages and propose a
novel sentiment analysis-based approach for the error detection
in large-scale systems, by automatically mining the sentiments in
the log messages. Our contributions are four-fold. (1) We develop
a machine learning (ML) based approach to automatically build
a sentiment lexicon, based on the system log message templates.
(2) Using the sentiment lexicon, we develop an algorithm to
detect system errors. (3) We develop an algorithm to identify
the nodes and components with erroneous behaviors, based on
sentiment polarity scores. (4) We evaluate our solution vs. other
state-of-the-art ML algorithms based on three representative
supercomputers’ system logs. Experiments show that our error
detection algorithm can identify error messages with an average
f-score of 96%, while the best ML model (Random Forest) obtains
only 68%. To the best of our knowledge, this is the first work
leveraging the sentiments embedded in log entries of large-scale
systems for system health analysis.

Index Terms—Sentiment analysis lexicon, large-scale systems,
Stochastic Gradient Descent, logistic regression, error detection

I. INTRODUCTION

Failure log analysis in large-scale computer systems, such as
supercomputers, has attracted more and more researchers from
academia and industry in order to improve the system reliabil-
ity. These systems, composed of sophisticated hardware and
software, often fail due to their scale and design complexity.
The components of these systems, such as OS and parallel file
systems, generally generate masses of valuable log messages
that are critical for system administrators to assess the state of
the system [1]. These message or event logs are considered the
first source about the system’s health state for administrators,
because it contains rich information about normal behavior
(i.e., informational messages) or abnormal behavior (i.e., error
messages) of various system components.

Failure-directed analysis, such as error detection, using
these system logs has been extensively studied for years. In [2],
the authors performed error detection in supercomputers by
combining entropy, mutual information, and PCA approaches.
In general, techniques have focused on capturing anomalies in
system logs, e.g., these recent works were based on anomaly
detection techniques [3]–[5]). Recently, techniques based on
natural language processing (NLP) and artificial intelligence

(AI) have been applied towards failure log analysis of these
systems [6]–[8].

In this paper, we explore a novel perspective on the problem
of failure log analysis. In general, the log messages often
encapsulate the sentiment of system developers, which pertains
to the perceived health of the system. For example, if a
typical log entry states a timeout issue on a particular node,
this message implies the fact that there is something wrong
with the network level. That is, such a message indicates
that the system developer has a negative sentiment about the
current network status. The question is can we leverage these
sentiments to develop a sentiment analysis-based technique
for failure log analysis? Our answer is yes. Specifically, we
propose two novel algorithms for detecting error messages and
faulty nodes and components in these systems.

Sentiment analysis, which is a text classification technique
that combines NLP and AI, is based on assignment of
weighted sentiment scores to the text entities within a word,
phrase, sentence, or document. One class of approaches for
sentiment analysis makes use of a sentiment lexicon where
the focus is on developing specific list of words that carry
cues of affection or sentiment, instead of using every word
as a feature [9]. However, the development process of the
sentiment lexicon has some weaknesses: (i) it is often config-
ured manually, which is tedious and inaccurate to users; (ii) it
tends to be domain-specific for efficiency reasons. We address
these two respective problems as follows: (i) we develop a
machine-learning approach that exploit the log sentiments to
develop a sentiment lexicon to support the detection of errors
in large systems1 and identifying the erroneous components or
nodes and (ii) based on the observation that such HPC systems
often share similar components such as OS, a lexicon for one
system (i.e., source system) can be reused for another (i.e.,
target system).

The fundamental principle of our design is that the sen-
timent intensity scores can accurately represent the system
state, among which the system developers generally use very
similar concepts or terms to record the events/messages across
different systems. In fact, the system developers often use
negative sentiments to log serious problems such as errors
and failures, neutral sentiments to highlight informational
messages indicating the system works as expected, and posi-

1A system fault refers to a potential event that may adversely affect the
system execution.



tive sentiments to mark the system faults/problems that have
been fixed. Typically, the sentiment of a log message can
be classified into three classes (polarity of a sentiment): (i)
negative, to indicate a problem in the system, (ii) positive, to
indicate that a problem has been fixed and (iii) neutral, which
are merely informational.

However, to detect errors, sentiment polarity is not adequate.
Thus, a sentiment intensity score keeps track of the strength
of a sentiment, e.g., the features ‘failed’ and ‘unexpected’ are
associated with higher negative scores than the features ‘slow’
and ‘monitor’, while the features ‘recovered’ and ‘success-
fully’ are assigned higher positive scores than ‘normal’ and
‘valid’ states. This potentially allows us to exploit system logs
(source) that are labelled with severity levels (e.g., Blue Gene
systems) and extract their sentiment features to label the logs
of other systems (target) that are unlabelled, automatically as
an unsupervised approach.

We make four main research contributions:

1) We develop a machine learning-based method using
stochastic gradient descent logistic regression, to auto-
matically construct a reusable sentiment lexicon for such
systems.

2) We develop an algorithm for error detection based on
the sentiment intensity score of log messages.

3) We develop an algorithm to discover system components
(e.g., nodes) which show erroneous behaviors based on
sentiment polarity scores of messages logged by those
components during a specific time period.

4) We perform the evaluation using the system logs of three
large systems: (i) Blue Gene/Q Mira, (ii) Ranger and (iii)
Lonestar4 which were built by three different vendors -
IBM, Sun, and Dell respectively. Also, we compare our
sentiment lexicon’s performance with machine learning
classification algorithms, including Random Forest (RT),
Extreme Gradient Boosting (XGBoost), Multinomial
Naive Bayes (Multinomial NB), and K-Nearest Neigh-
bor (KNN). Experiments show that our sentiment-based
solution can efficiently detect error messages based on
their associated sentiment scores, with an average f -
score of 96%, whereas the best machine learning model
(Random Forest) obtains only 68%. Our technique iden-
tifies error messages with an f -score of about 98% for
Blue Gene/Q Mira system. Using the sentiment lexicon
items extracted based solely on the Blue Gene systems
logs, a majority of errors in Ranger and Lonestar4 logs
can be successfully detected, with f-scores of about
94%, and 95%, respectively. This effectively shows
that our technique can generate reusable lexicon for
such systems, enabling the automated labelling of any
systems’ logs.

The remainder of this paper is organized as follows: Sec-
tion II presents the background for the system/fault model
& log data, and Section III formulates the research problem.
Sections IV∼VI present the main steps of our approach.
Section VII shows the results of our evaluation performed on

the logs of three large systems. Section VIII discusses related
work, and we conclude the paper in Section IX.

II. SYSTEM/FAULT MODEL AND LOG DATA

In this section, we describe the targeted system model, fault
model, the supercomputers studied in our work as well as their
system logs used in our experiments.

A. System Model

We present a generic system model of HPC cluster systems.
A cluster system consists of a set of nodes N1, . . . , Nm to
execute a set of jobs J1, . . . , Jn over a set of production time-
slots T1, . . . , Tp. To support these activities, components such
as a resource scheduler and a set of software components,
such as a file system and an operating system, are needed. The
nodes and production slots on the HPC system are allocated
to a job by the resource scheduler. Data, as input or output,
may be transferred to and from the file system by each node
or job. As the software components execute, they output log
messages and resource usage data which may be written to
containers.

B. Fault Model

We assume that various discrete fault models may be con-
sidered, depending on the abstraction level. One may consider
faults occurring at the node level, the file system level, or
an aggregate cluster level. When a fault occurs, the resulting
error leads to the output of an error message in the system log
file. If the error is not adequately handled, a failure can occur
which will also be logged. We assume that faults can occur in
any component at any level within the HPC system.

We now describe the production clusters along with their
logs used in our research, which is the fundamental in-
formation of our following sections (problem formulation,
methodology, etc.).

C. Blue Gene/Q Mira Cluster and RAS Logs

The Argonne National Laboratory Mira supercomputer used
to be one of the most powerful supercomputers in the world,
and its comprehensive system logs (including RAS log, job
scheduling log, I/O behavior log, etc.) have been released
to the public to promote the understanding of extreme-scale
systems. Mira was ranked as the 3rd place in the top 500 list
[10]. Mira consists of 48 racks, each containing two midplanes.
Every midplane has 32 compute nodes, each being facilitated
with 16 active cores on a PowerPC A2 1600 MHz processor
and a total of 16G DDR3 memory. As such, the entire Mira
system has a total of 786,432 cores and 786,432 GB of
memory. The Mira system’s storage capacity reaches up to
35PB with 384 I/O nodes, and adopts a 2GB/s chip-to-chip-
link 5D torus network, with each node containing 10 links with
2 Gb/s bandwidth. Mira’s job-scheduling log involves 32.44
billion core-hours, about 1,300 users, and about 630 projects
throughout its whole 5-year service [11], which creates an
outstanding use-case for a resilience study.

In the Mira cluster with diverse system logs, the Reliability,
Availability, and Serviceability (RAS) log is our focus. The
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TABLE I
DESCRIPTION OF THE KEY FIELDS IN RAS LOGS

Field Description
MSG ID Unique identifier of RAS event

SEVERITY Severity level of the message (FATAL, WARN, or
INFO)

EVENT TIME Time stamp of the event (e.g, 2015-04-03-
17.30.26.691211)

LOCATION Particular occurrence location (e.g., midplane, node
board)

MESSAGE Detailed description of the event (e.g., Health Check
detected an abnormal status flag set for the IO board
at location Q2H-I0. The status flag is for OPTICS.)

event in the RAS log is identified by one of three severity
levels (INFO, WARN, or FATAL). Although one message in
the RAS log consists of 14 fields, we focus only on a few of
them related to the system reliability (illustrated in Table I),
such as MESSAGE, MSG ID, LOCATION, SEVERITY, and
EVENT TIME, as suggested by [12].

D. Ranger and Lonestar4 Clusters and System Logs

Here, we describe the Ranger and Lonestar4 cluster systems
operated by the Texas Advanced Computing Center (TACC)
[13]. Ranger was a Linux-based high-performance computing
(HPC) system that consisted of 4,048 nodes. It was operated
from 2007 to 2013. A high-speed Infiniband network provided
communication among all the nodes. A job scheduler provided
job scheduling and resource management services. The Lustre
file system provided high-speed file access to the users of
Ranger. The Ranger cluster is the first HPC system at a
United States academic institution that deployed Rationalized
message logs [14].

Lonestar4 was a Linux-based HPC system that consisted
of 1,888 nodes. It was operated from 2009 to 2015. As
was described in the description of Ranger, a high-speed
Infiniband network provided communication between all the
nodes on Lonestar4, a job scheduler provided job scheduling
and resource management services, and the Lustre file system
provided high-speed data I/O.

Next, we give an example of a system log:

Apr 4 15:58:38 012324 mds5 kernel: LustreError
: 138-a: work-MDT0000: A client on nid .*.*
.5@o2ib was evicted due to a lock blocking
callback to .*.*.5@o2ib timed out: rc

The fields in the system log are: (i) time-stamp
(Apr 4 15:58:38), (ii) job number (012324), (iii) node number
(mds5), (iv) system software component (kernel) and (v)
message (A client on nid ...). The message is a client
eviction due to a lock blocking callback. We focus on the
message field, as this will allow for the classification of the
log as faulty or non-faulty. Logs of Ranger and Lonestar4
are missing the severity attribute information. We collected 2
months worth of system logs on Ranger and 2 months worth
of system logs on Lonestar4. We removed all the repeated
messages to obtain a set of unique messages. A summary of

TABLE II
SUMMARY OF SYSTEM LOGS COLLECTED ON RANGER AND LONESTAR4

Ranger
Month No. of messages No. of unique messages

June 2011 10,021,516 1,513
July 2011 64,822,682 1,676

Lonestar4
Month No. of messages No. of unique messages

February 2013 8,993,154 2,804
March 2013 12,267,629 2,576

the system logs collected on Ranger and Lonestar4 is given
in Table II.

In the Ranger system logs, we identified: (i) 1,513 unique
messages in June 2011 and (ii) 1,676 unique messages in
July 2011. In the Lonestar4 system logs, we identified: (i)
2,804 unique messages in February 2013 and (ii) 2,576 unique
messages in March 2013.

III. PROBLEM FORMULATION

We formulate our research problem based on the three
aforementioned supercomputers, including Blue Gene/Q Mira
(involving 49K nodes with a total of 786K cores), TACC
Ranger (involving 4K nodes) and Lonestar4 (about 2K nodes
with up to 63K cores), which were built by three different
vendors - IBM, Sun, and Dell respectively.

Without loss of generality, the general system model for a
large-scale system (e.g. IBM Blue Gene) contains a set N of
nodes, a queue of J jobs, a set T of production times, a job
scheduler JS, and various software components such as a file
system. The scheduler JS allocates the J jobs to the N nodes
to execute during time period T . Further, the components write
message logs in to a central writing container [13].

The problem that our approach addresses can be formulated
as follows: Assume (i) a set of log messages is generated by a
large-scale system, (ii) these log messages have different sever-
ity levels, and (iii) the message templates comprise system
developers’ sentiments (either negative, neutral, or positive),
our objective is to develop an efficient approach that is able
to:

1) Automatically construct a reusable sentiment lexicon
intended for large-scale systems.

2) Using the lexicon, identify system faults.
3) Using the lexicon, as an unsupervised approach to detect

faults of other systems (target) that are missing the
severity attribute information.

4) Using the lexicon, identify the erroneous nodes and
components to assist precaution (e.g., avoid node crash),
thereby preventing job failures.

IV. LEXICON CONSTRUCTION USING STOCHASTIC
GRADIENT DESCENT LOGISTIC REGRESSION

In this section, we describe a machine learning based
model (namely SGDLRSL) that allows for the automatic
construction of sentiment lexicons to detect errors in large-
scale systems via the stochastic gradient descent logistic
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Fig. 1. ∼ 60 of IBM Gene systems lexicon’ items associated with their sentiment intensity scores

regression technique. A sentiment lexicon is a dictionary that
consists of features (N-gram) associated with their sentiment
polarity values, and these sentiment scores are estimated based
on a model trained on a sample of log message templates.
Stochastic gradient descent logistic regression was employed
since it is a discriminative model which assigns high weights
(sentiment scores) to the significant log message features that
can distinguish error messages from non-error messages. To
generate a sentiment lexicon for a large-scale system, our
model requires four components:

• M input/label pairs of log message templates (xi,yi)
where each input log message template xi is represented
by a vector of f j features [f1, ..., f j ].

• the sigmoid (logistic) function to compute the estimated
class ȳ = σ(w.x+ b) for each log message template.

• the cross-entropy loss function for features weights
(i.e.,coefficients) learning through minimizing error on
training log messages.

• the stochastic gradient descent algorithm for optimizing
the cross-entropy loss function and updating weights.

The SGDLRSL model performs two main phases to learn
sentiment lexicon items (features and their weights).

A. Phase I. Log Message Template Preprocessing

In the first phase, we use M representative training log
message templates (xi,yi) that are labelled as either [−1, 1]
faulty or non-faulty messages where the numbers of erroneous
and non-erroneous messages are balanced. We can use severity
levels as log message template labels for those large-scale
systems with this feature in their log data. The following
preprocessing steps are conducted on the dataset with log
message templates:

• Divide log message templates into tokens such as strings,
variables, and punctuation.

• Remove all alphanumeric words, punctuation, stop words,
variables that are not strings from log messages and use
other NLP methods to clean text, such as lowercasing all
texts, etc.

B. Phase II. Sentiment Lexicon Learning

We present the sentiment lecicon learning pseudo-code in
Algorithm 1. Basically, the stochastic gradient descent logistic
regression (SGDLR) technique obtains sentiment scores (a
vector of weights) of lexicon elements by learning from the
log message templates training set. Each weight wj(used later
as a sentiment score) is a real number (∈ R) and is linked with
one of the log message features f j . The weight wj signifies
how important the log message feature is to classifying a faulty
log message from a non-faulty log message. Without loss of
generality, we assume that a high positive weight indicates
a message with a normal state or correctable error, and
a very negative weight implies that the message is a failure
or non-correctable error. This machine learning technique
automatically computes the scores of lexicon items as follows:

Algorithm 1: SGDLR to construct a sentiment lexicon
for large-scale systems

Input: M log message templates (x, y),Logistic regression
h(),Loss function L(), learning rate η , regularization
parameter λ

Output: Log features f with their weights W
initial W , b, η ← 0.01, λ;

for each (x) ∈M do
1) Tokenization
2) Removal of alphanumeric words, variables, etc.
3) Convert into TF-IDF representation format via Formula (1).

end
repeat

for (x, y) ∈M randomly do
1) Compute ȳ ← 1

1+e−θT x
2) Compute the loss by Formula (5).
3) Compute the gradient g ← η∇L(h(x; θ), y)
4) Update weights and bias θt+1 ← θt − η∇L(h(x; θ), y)

end
until SGD Converged;
return (f,W )

Step 1. We employ the Term Frequency-Inverse Doc-
ument Frequency (TF–IDF) representation technique [15]
to extract n-gram features f j from log message templates
xi and convert these features to numerical vectors ∈ R|L|,
where lexicon L is a set of n-gram features. The TF–IDF
value of each feature is calculated by multiplying two metrics:

4



Term Frequency tf(f j , xi) and Inverse Document Frequency
idf(mfj ,M) as follows:

tfidf(f j , xi,M) = tf(f j , xi) × idf(mfj ,M) (1)

In TF-IDF, TF measures how frequently a feature f j occurs
in a log message template xi and is defined as follows

tf(fj ,xi) =
nfj ,xi∑
k nfk,xi

(2)

where nfj ,xi is the total number of feature f j occurrences
in a log message template xi divided by the total number
of features

∑
k nfk,xi in that message template. The IDF

idf(f j ,M) measures how important a feature f j is in all
message templates M by taking the logarithm of the ratio
of the total number of log message templates M to the total
number of log message templates mfj ≤ M containing the
feature f j plus 1, to prevent dividing by zero, as follows:

idf(mfj ,M) = log (
M

mfj + 1
) (3)

We refer the readers to read [15] for more details.
Step 2. We use SGDLR to train our model on log message

features to extract the dense weights vector W as follows:
1) Compute the estimated class ȳ = σ(w.x+b) for each log

message template via the following logistic regression
function:

h(x) =
1

1 + e−θTx
(4)

where θ includes two types of parameters: features’
weights W and bias b (we neglect this parameter).

2) Then, we use the cross-entropy function and L1 regu-
larization (Formula (5)) to compute the loss L(ȳ, y) in
order to measure how close ȳ is to the actual label y.

L(ȳ, y) = −[ylogȳ + (1− y)log(1− ȳ)] + λ|w| (5)

The weights W of log message features and bias b are
learned from labelled log messages training set through
a loss function that must be minimized to make ȳ for
each log message as close as possible to the actual
output y. L1 regularization (i.e., Lasso Regression) λ|w|
where parameter λ > 0 is added to the cost function
to prevent the overfitting problem and improving model
generalization by penalizing weights.

3) Minimize the loss function in our model via the stochas-
tic gradient descent technique (Formula (6)) to obtain the
optimal weights W of log message features.

θt+1 = θt − η∇L(f(x; θ), y) (6)

Stochastic gradient descent is a technique which is used
to minimize the loss function by calculating its gradient
after each mini-batch of log messages and updating the
vector’s parameters values θ (weights W and bias b).
Since the loss function for logistic regression is convex,
the SGD will reach the minimum of a lost function.

Step 3. The dense weight vector W is used as the senti-
ment scores with their associated log message features f as

our lexicon items. For systematic observation, we normalize
sentiment scores by dividing them by a uniform coefficient.

V. SENTIMENT POLARITY-BASED ERROR DETECTION

In this section, we present a novel error message detection
algorithm, i.e., log message labelling algorithm, exploiting
the sentiment lexicon, which is constructed using stochastic
gradient descent logistic regression. We present the approach
in Algorithm 2.

Algorithm 2: Error detection algorithm based on sen-
timent lexicon

Input: Unlabelled messages logs (x1, · · · , xn), Sentiment Lexicon
Items(fi, wi),Absolute lexicon threshold µ = µ, detection
threshold ϕ = ϕ

Output: (x1posScore, · · · , xnposScore), (x1negScore, · · · , xnnegScore),
(x1SentiScore, · · · , xnSentiScore), Labels(yi, · · · , yn)

Parsing messages logs (x1, · · · , xn)
for i = 1 to n do

xiposScore ←
∑

i wi∑
i fi

; wi > 0

xinegScore ←
∑

i wi∑
i fi

; wi < 0
xiSentiScore = xiposScore + xinegScore
if xiSentiScore < ϕ then

yi ← faulty;
else

yi ← non-faulty;
end

end

The algorithm includes three phases, which are described
as follows.

1) Phase I: Log Parsing: This phase is similar to the log
message preprocessing phase presented in Section IV, where
the opensource toolkit LogAider [16] and NLP techniques are
employed to preprocess and clean the system logs. For exam-
ple, all duplicated events with spatial or temporal correlations
are filtered out by LogAider.

2) Phase II: Log Message Sentiment Scores Assignment:
In this phase, each log message xi is associated with a
sentimental polarity score using an assignment method similar
to NLP’s lexicon techniques (e.g., Vader [17]), in which the
lexicon learned from the SGDLRSL model is used to assign
each log message a sentiment score made up of three different
scores: positive, negative, and the overall log sentiment score,
as follows:

xiposScore =

∑
i wi∑
i fi

; wi > 0 (7)

xinegScore =

∑
i wi∑
i fi

; wi < 0 (8)

xiSentiScore = xiposScore + xinegScore (9)

In general, the faulty messages contain the system develop-
ers’ negative sentiments expressing concern about unexpected
system operations, unusual situations, serious problems, failed
services, and corruption. Consequently, the xinegScore is cal-
culated by summing the negative valence scores wi < 0 for
each feature fi of a log message that matches the sentiment
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lexicon features divided by their total number; the intensity of
this score lies between 0 (neutral) and -1 (extremely negative).
Moreover, log messages are generally embedded with more
negative sentiments than positive or neutral ones, as the system
developers tend to be more interested in abnormal systems’
events. On the other hand, non-faulty messages include neutral
sentiments indicating normal system behaviors and progress
of system software (e.g., service started or stopped); positive
sentiments indicate the system issues that are resolved (e.g.,
corrected errors, recovered failures). Therefore, the xiposScore
is calculated by summing the positive valence scores wi > 0
for each feature fi of a log message that matches the sentiment
lexicon features divided by their total number; the intensity of
this score lies between 0 (neutral) and +1 (extremely positive).
The xiSentiScore is the overall log polarity score that combines
The xinegScore and xiposScore. In other words, by summing the
valence scores (i.e., whether it is positive or negative) for each
feature fi of a log message that matches the sentiment lexicon
features divided by their total number. This score lies between
-1 (extremely negative) and +1 (extremely positive).

3) Phase III: Detection Phase: Once system log messages
are associated with sentiment polarity scores, the xiSentiScore,
detection threshold ϕ, and absolute lexicon threshold µ are
used to detect whether these messages are faulty or non-faulty.
A log message is classified as faulty when xiSentiScore < ϕ
and as non-faulty otherwise. We can refine the ϕ threshold
until we achieve an optimal value which results in a satisfied
classification. Furthermore, the absolute lexicon threshold µ
can be adjusted until satisfactory classification accuracy with
fewer lexicon features is achieved.

VI. ERRONEOUS COMPONENT IDENTIFICATION BASED
ON SENTIMENT POLARITY SCORES

We can use our learned sentiment lexicon to calculate the
sentiment polarity scores of the log messages for a certain time
window t over some period (e.g., one hour time window over
one day) for identifying the problematic components (e.g.,
nodes). The idea is that based on the sentiment scores, the
system administrators can forecast which components may
have erroneous behaviors, such that the jobs involved can
be reassigned to other backup resources, and the problematic
components would be temporally isolated until their problems
are fixed. Specifically, the components’ sentiment scores are
anticipated to be neutral when they work as expected by
logging informational messages or logging nothing. The nega-
tive scores are anticipated to associate with some components
experiencing errors, especially when these abnormal states last
for multiple consecutive time windows. However, when the
components’ issues have been resolved and they start to log
the recovery and correction messages, their sentiment scores
are expected to be increased or set to positive, indicating that
they have been recovered well.

Our approach is composed of our sentiment lexicon that
was learned in the previous section IV, system’s components
(Ci, ..., Ck), log messages (x1, ..., xn), time window t, where
the system developers define the start time tS and end time tE

, and a detection sentiment score ϕ. The phase of erroneous
component identification is similar to that of detecting error
message logs; however, the components’ associated sentiment
scores are calculated within a certain time window specified
by the systems’ administrators. We present the pseudo-code
of erroneous component identification algorithm based on a
specific window time [ts, te] in Algorithm 3.

Algorithm 3: Erroneous component identification in
large-scale system based on sentiment scores

Input: Components (Ci, ..., Ck), Unlabelled messages logs
(x1, · · · , xn), Sentiment Lexicon Items(fi, wi), detection
threshold ϕ , Start time tS ← ts , End time tE ← te

Output: CiposScore, CinegScore, CiSentiScore, CiState
initial ϕ← ϕ, CiLogs ← “ ”
Parsing messages logs (x1, · · · , xn)
for i = 1 to k do

for j = 1 to n do
CiLogs ← Concatenate (xj , xj+1) ;xj ∈ Ci && ts ≥
t ≤ te

end
end
for i = 1 to k do

CiposScore ←
∑

i wi∑
i fi

; wi > 0

CinegScore ←
∑

i wi∑
i fi

; wi < 0
CiSentiScore ← CiposScore +CinegScore
if CiSentiScore < ϕ then

CiState ← Erroneous;
else

CiState ← non-Erroneous;
end

end

1) Phase I: Component’s Log Parsing: Unlike the log
parsing phase in the error detection phase, the component’s
log messages should not be filtered out, in order to keep the
spatial and temporal information. Moreover, in this phase, the
system administrator are allowed to specify the time window
in which the component logs are grouped together. Our model
aims to assign sentiment polarity scores based on what each
component logs about its health in a specific time.

2) Phase II: Component Sentiment Scores Assignment: In
this phase, the system’s components are associated with senti-
mental polarity scores using an assignment method similar to
that used in the second phase of error detection presented pre-
viously. In particular, all negative features and positive features
indicating error correction learned from the SGDLRSL model
are used to assign each component a sentiment score for a
specified time window. It is composed of three scores: positive,
negative, and overall sentiment score (denoted as CiposScore,
CinegScore, and CisentiScore, respectively), whose calculations
are similar to those of the phase II in the error detection (see
Formula (7), (8) and (9)).

3) Phase III: The Erroneous Component Identification:
Once the system components are associated with sentiment
polarity scores, the CiSentiScore and detection threshold ϕ, are
used to detect whether these components are erroneous or not.
A component is classified as erroneous when it is attached with
CiSentiScore < ϕ for consecutive time windows and as non-
erroneous otherwise. This model can be plugged into each
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system’s components to generate sentiment scores over the
time windows customized by administrators time windows.
It works as an assistant tool that continuously alerts the
administrator of erroneous components within negative scores
and positive scores as the components’ issues are corrected.

VII. EXPERIMENTAL EVALUATION

We perform the evaluation by automatically generating a
sentiment lexicon from IBM Blue Gene systems’ distinc-
tive log message templates: BlueGene/L log templates(2007),
BlueGene/P Intrepid log templates(2012), and BlueGene/Q
MIRA log templates. Specifically, we carefully evaluate the
viability of our error detection sentiment-based approach for
three systems - Mira (year 2017&2020), Ranger, and Lon-
estar4, respectively. We will release the data and code used
in our experiments after the acceptance of the paper. In the
following, we first describe our evaluation indicators and then
discuss the evaluation results.

A. Evaluation Metrics

We use precision, recall and F1-score to measure our
sentiment model’s performance in distinguishing faults from
non-faulty log messages [2]. We define: (i) True Positive
(TP) is the number of correctly detected faulty log events,
(ii) False Positive (FP) is the number of incorrectly detected
faulty log events, (iii) False Negative (FN) is the number of
incorrectly detected non-faulty log events. The recall is the
ratio of correctly detected faulty log events (TP) to the number
of true faulty log events (TP+FN):

Recall =
TP

TP + FN
(10)

The precision is the ratio of correctly detected faulty log
events (TP) to the number of all identified faulty log events
(TP+FP):

Precision =
TP

TP + FP
(11)

As we need an overall measure for more detection accuracy,
we used the F1-score, which is a balanced harmonic average
of recall and precision, as shown below:

F1-score = 2 ∗ recall ∗ precision
recall + precision

(12)

B. Evaluation of Error Detection

1) Learning Sentiment Lexicon for the IBM Blue Gene
system: We use the SGDLR technique to automatically con-
struct the sentiment lexicon based on the IBM Blue Gene
system’s RAS log message templates. We used 3k RAS log
message templates as our dataset, whose labels are automati-
cally inferred from the severity level field contained in a RAS
log file. The RAS events are classified into two categories:
faulty messages and non-faulty messages. The former include
warnings, failures, and fatal levels, and the latter indicate
informational messages to show the system software’s progress
or correction of errors.

We employ k-fold cross-validation with over-sampling
methods to address the imbalance within RAS dataset. Af-
ter the NLP text preprocessing phase, we adopt the Term
Frequency-Inverse Document Frequency (TF–IDF) to trans-
form terms (features) of RAS templates from text format to
numerical vectors. The SGDLR algorithm with L1 regulariza-
tion and default parameters are then employed to learn the
sentiment lexicon items of the IBM Blue Gene systems by
training RAS log template feature vector with their associated
labels and obtaining the dense weights vector W (sentiment
scores for lexicon items). Our model obtains around ∼932
discriminative features associated with their sentiment scores.
Figure 1 shows ∼60 lexicon items associated with their
sentiment intensity scores learned automatically. It is clearly
observed that the learned sentiment lexicon of Blue Gene
systems consists of the system developers’ negative sentiments
that show the systems’ issues and the positive sentiments
indicating that the system problems have been corrected or
the system components work as expected. Moreover, the Blue
Gene lexicon contains more negative sentiments than posi-
tive and neutral sentiments, demonstrating that the abnormal
system issues are generally paid more attentions in the logs.
The Blue Gene lexicon contains ∼664 negative sentiments,
whereas there are ∼268 positive ones.

2) Mira Error Detection Performance: After the Blue
Gene lexicon’s items are generated from the previous phase,
we evaluate its efficacy by detecting error messages using
the entire year 2017 of the Mira RAS logs. The year-2017
RAS log contains 16.5 million messages. We first filter out
the duplicated messages by using the open source toolkit -
LogAider [16] based on the spatial or temporal correlations.
The total number of messages is thus significantly reduced
from 16, 772, 894 to 2, 380, 211. Then, we preprocess the
log messages’ content by the NLP techniques. After that,
we classify all events based on their severity attributes into
two categories - faulty and non-faulty - in order to obtain
the ground truth for evaluating our error detection method.
Our error detection sentiment-based approach takes the filtered
2, 380, 211 messages each of which is assigned a sentimental
polarity score, and detects the faulty messages based on com-
paring the associated scores with detection threshold ϕ. Figure
2 presents the evaluation results about error detection accuracy
based on the RAS log of year 2017 with different lexicon
absolute threshold µ values(i.e., the number of sentiment lexi-
con items) with detection threshold ϕ = 0. Experiments show
that our machine learning-based sentiment lexicon achieved
excellent error detection accuracy for the RAS log data of the
year 2017, 99%, 99%, 99% of recall, precision, and f1-score,
respectively, at lexicon absolute threshold µ = 0, 1, or 2, and
detection threshold ϕ = 0.

In order to assess the effectiveness of our detection method-
ology under different conditions, we evaluate our sentiment
lexicon approach with different values of µ and ϕ, which also
aims at exploring the best threshold values with respect to
high true positives and true negatives. We observe that a small
change to the lexicon absolute threshold µ (i.e., the number
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Fig. 2. Detection with different lexicon absolute threshold µ, with ϕ = 0

of sentiment lexicon items) and detection threshold ϕ may
have a significant impact on the detection result. In general,
the detection accuracy increases as the former threshold value
decreases, meaning that using fewer lexicon items affects the
detection accuracy. Moreover, the same detection accuracy is
reached when only ∼ 58 sentiment items are used (i.e., µ=2),
and when using all the 932 features of our learned lexicon.
This result verifies the fact that developers often use only a
few sentiment words to log system issues and operations, as
opposed to similar NLP sentiment analysis tasks that contain
a high number of sentiment words.

We achieve a good error detection for the latter threshold
value as the ϕ is chosen within the range between 0 and
−0.8; this means the developers use high-intensity sentiments
to log the system issues (see Figure 3). Moreover, we observe
that our model’s misclassifications occur due to two reasons:
the first is the developer’s classification of some logs with
the incorrect severity. For example, the severity level is INFO
for the ‘nd receiver link error’ message and is ERROR
for the ‘correctable ecc error threshold’ message in
the RAS log. However, our model correctly classifies the
former as faulty since this is what is reflected through
the feature error, and classifies the latter as non-faulty,
since it shows the ‘ecc error threshold’ is corrected.
The second reason is that system developers tend to log
some system events with unstructured text embedded with
mixed negative and positive sentiments. For instance, the log
message ‘recoverable error message failed ecc parity

error drill down error recoverable overable

error cache parity error’ contains several negative
and positive sentiments. Therefore, our model solves not only
the problem of labeling the systems’ logs with no severity
levels but also fixes the misclassified severity levels within
systems containing this feature.

3) Comparing Our Sentiment Lexicon with Machine Learn-
ing Techniques: To demonstrate our approach’s effectiveness

and generality on cross-systems, we evaluate and compare our
sentiment lexicon’s performance with those of machine learn-
ing classification algorithms, including Random Forest (RT),
Extreme Gradient Boosting (XGBoost), Multinomial Naive
Bayes (Multinomial NB), and K Nearest Neighbor (KNN), to
detect three different large-scale systems’ errors. We used the
same data that we employed to extract our sentiment lexicon
to train the four machine learning models and evaluate those
models’ performance versus our sentiment lexicon model’s
performance on logs of three large-scale systems: RAS log
messages of Mira 2020 (i.e., the first six months of 2020 Mira
RAS logs), and all distinctive log messages from Ranger and
Lonestar4 as shown in Table II.

As presented in Table III and Figure 4, the results reveal
that using our lexicon achieves an average f1-score of 96%
in error detection in the three large systems’ log messages,
whereas the best machine learning model (Random Forest)
obtains only 68%. The other ML models KNN, XGBoost, and
Multinomial NB achieve an average f1-score of 66%, 64%,
and 58%, respectively. On the Mira 2020 RAS logs (see Figure
5), our lexicon scores an f-score 98%, and all ML models
achieve f-scores ( 96%) because the training runs on RAS
message templates. As illustrated in Figure 6 and Figure 7,
only our lexicon achieves significant scores in detecting error
messages of Ranger and Lonestar4 logs, despite them being
different HPC systems from different companies with different
logging methodologies. Our lexicon succeeds in detecting the
majority of errors in Ranger and Lonestar4 logs, with an f-
score of 94% and 95%, recall of 94% and 95%, and precision
of 94% and 95%, respectively. RN, KNN, XGBoost, and
Multinomial NB models achieved, respectively, an f1-score
of 51%, 46%, 44%, and 36% on Ranger Logs, and 57%,
55%, 51%, and 41% on Lonestar4 Logs. The main limitations
of detection accuracy on target systems for four machine
learning techniques are as follows: KNN does not work well
because the log messages are imbalanced and contain many
outliers, and RF and XGBoost are prone to overfitting, where
Multinomial NB assumes the logs’ features are independent,
despite this not being the case.

These results demonstrate the reusable sentiment lexicon’s
benefits of deploying it as an unsupervised log analysis
approach on different (target) systems. The key reason our
solution outperforms other ML methods is that it successfully
extracts developers’ sentiment features hidden in labeled log
messages from one source system (i.e., IBM Blue Gene)
and transfers these features with their weights as lexicon
items to detect errors in the target systems with unlabelled
log messages( i.e., Ranger and Lonestar4. This verified the
fact that developers of different systems really adopt similar
sentiment features in their logging methodology. Thus, we can
utilize a few system logs with severity levels to automatically
extract their sentiment features and label the logs of other
target systems with non-labeled logs. These promising results
motivate us to collect more logs from different systems and
generate a general sentiment lexicon using our technique to
detect hardware and software issues in our future work.
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Fig. 3. Mira error detection performance with different detection threshold ϕ, with µ = 0

TABLE III
SCORES (RECALL, PRECISION, AND F1-SCORE) OF OUR LEXICON AND ML MODELS ON THREE SYSTEMS(MIRA, RANGER, AND LONESTAR 4)

Blue Gene Mira Ranger Lonestar4 Average of 3 Systems
Technique Recall Precision F1-score Recall Precision F1-score Recall Precision F1-score Recall Precision F1-score

Random Forest 96% 96% 96% 55% 74% 51% 57% 78% 57% 69% 83% 68%
XGBoost 96% 96% 96% 50% 74% 44% 52% 78% 51% 66% 83% 64%

Multinomial NB 96% 96% 96% 45% 71% 36% 45% 75% 41% 62% 81% 58%
KNN 96% 96% 96% 50% 66% 46% 54% 71% 55% 67% 78% 66%

Large-Scale System Lexicon 98% 98% 98% 94% 94% 94% 95% 95% 95% 96% 96% 96%

Fig. 4. The average of detection performance of our lexicon and ML models
on all three systems

C. Evaluation of Erroneous Component Identification

We evaluate our approach of identifying erroneous com-
ponents such as compute nodes (denoted Rxx-Mx-Nxx), I/O
nodes (denoted Qxx-Ix-Jxx) and link modules (denoted Qxx-
Ix-Uxx), based on Mira’s RAS logs. We present the evaluation
results based on one-day period (27-March-2017) due to
space limit and massive components involved. We employ
our sentiment lexicon learned in Section IV and detection
sentiment score ϕ=0 to associate each component with 24
sentiment scores for the 24 hours, based on the hourly log

Fig. 5. Detection performance of our lexicon and ML models on 2020 Mira
RAS logs

messages regarding these components. Each score is composed
of positive and negative scores, which are then summed up to
produce the overall sentiment scores. Thus, each component
is attached with a total of 72 sentiment scores (24 positives +
24 negatives + 24 overall scores).

Figure 8 demonstrates the states of some components in
Mira. The gray color indicates ‘working as expected by log-
ging informational messages or logging nothing‘; the red color
indicates that the component is experiencing some abnormal
events that affect its productivity; and the green color indicates
that the issues have been corrected, or silent errors have been
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Fig. 6. Detection performance of our lexicon and ML models on Ranger logs

Fig. 7. Detection performance of our lexicon and ML models on Lonestar4
logs

fixed.
We observe that majority of Mira components experienced

no any issues (e.g., Q2H-I0-U02, Q2H-I0-U03, and Q2H-I0-
U04). Negative sentiment scores were attached to a few com-
ponents (e.g., Q2H-I0-J01, Q2H-I0-J02, Q2H-I5-J00, Q2H-I5-
J01, and R2B-M0-N00) for consecutive hours, which validates
the high accuracy of our algorithm because each of them
crashed due to one or two fatal events according to the
RAS log. Moreover, some components (e.g., the node R2B-
M0-N15) exhibit high negative scores for long consecutive
hours since it was suffering from recurrent abnormal events.
Some components such as R2B-M0-N00, exhibit positive
sentiment scores in later hours (i.e., the 14th and 15th), as
some correction events were triggered. Our technique can
assist the Mira system’s administrator to isolate these faulty
components until the problems are fixed, since there are 152
fatal events occurring in that day, and our model highlights all
the components that triggered them.

Furthermore, as shown in Figure 9 from sentiment scores
attached to Q2H-I4-J00 ∼ Q2H-I4-J05, we first observe that

components are associated with similar sentiment scores for a
consecutive or recurrent time windows. This can be explained
by the fact that components generate the same logs over those
time windows to convey that they are still facing the same
issues. Second, we also observe that neighboring components
are assigned with similar sentiments scores within similar
time windows, indicating that large-scale system components
that exhibit similar behaviors generate similar logs. Based
on our research, one important take-away is that the issues
encountered by similar components may result in the same
sentiments, and thus similar sentiment scores. So, our tech-
nique can be employed as a sufficient tool to assist Mira’s
administrators to identify faulty components through their
normalized sentiment scores ranging from -100 (extremely
negative) to +100 (extremely positive) for more systematic
diagnosis.

VIII. RELATED WORK

Log parsing is a crucial phase in log analysis which filters
out and processes the large quantities of large-scale systems’
message logs; different parsers have been developed (e.g.
[12], [18]–[20]) and many have been evaluated on different
benchmark logs’ datasets in [21]. Moreover, various tools and
much research have been dedicated to diagnosing the root
causes of failures such as [22]–[24].

Due to the importance of the log analysis, plenty of error
detection or prediction methods are proposed. Das et al. [25]
and Frank et al. and [26], for example, performed the studies in
the failure prediction research for HPC failures recently. Rao
et al. [27] developed a method to identify faults in large-scale
distributed systems by filtering noisy error logs. [28] shown
that a non-uniform distribution of log words across nodes is
useful for error detection, as is the encoding of word position.
Gainaru et al. [29] modelled the normal and faulty behaviour
of large-scale HPC systems, which would also be very helpful
in the HPC system failure prediction/detection. Berrocal et al.
[30] proposed an effective approach for fault detection based
on the Void Search (VS) algorithm, which is used primarily
in astrophysics for finding areas of space that have a very low
density of galaxies. The log entropy technique has also been
employed for error detection within patterns in [31] and [32],
since log entropy measures the changes in the frequency of log
events to capture the system’s behavior. Our approach differs
from all the above methods, as we adopt stochastic gradient
descent logistic regression to construct a sentiment lexicon (i.e.
features with valance scores) automatically, and detect errors
based on sentiment scores.

Sentiment lexicon based analysis has been widely studied
for years. Regarding the domain of sentiment lexicon being
applied to human languages, Hutto et al. [17] built the VADER
sentiment lexicon manually by multiple independent experts or
crowdsourcing, which is particularly attuned to sentiments ex-
pressed in social media. By contrast, we construct a sentiment
lexicon automatically to detect developers’ sentiments hidden
in system log messages. The Pointwise Mutual Information
technique and SVM model learned on a distant supervised
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Fig. 8. Illustration of The Erroneous Component Identification on Mira

Fig. 9. Mira Erroneous Component Identification Results (Q2H-I3-J00∼Q2H-I4-J05)

corpora were employed by [33] and [34], to build sentiment
lexicons for English language. Also, logistic regression com-
bined with other techniques are used to extract a lexicon for
Portuguese language and stock market domains by [35] and
[36] respectively. In contrast, we used SGDLR to construct a
sentiment lexicon for error detection & erroneous component
identification in large-scale systems.

There are also some existing works leveraging sentiment
related techniques for log analysis. Allen et al. [37] is the
first research group that utilized a sentiment lexicon through a
pre-built library called IBM Watson API to analyze software
logs and assign sentiment scores for log data. Yadwad et
al. [38] applied machine learning and time series models
(e.g., PCA, Naı̈ve Bayes, logistic regression, and CNN) on
combined data of the social tweets, mails and logs for service
outage detection and predication. Based on the context and
content attention model, Studiawan et al. [39] employed a
deep learning technique to identify aspect terms and the
corresponding sentiments to extract events of interest from
log files in the forensic timeline. By comparison, our work
is the first attempt in the domain of a large-scale system.
Furthermore, our domain-specific sentiment lexicon items are
extracted automatically with the use of a machine learning-
based technique, since a feature’s sentiment is affected by the
domain in which it is used. Allen et al. [40] also proposed a
method based on using at least keyword and synonym match-
ing percentage analysis criteria to classify log messages’ levels
in applications code. In contrast, our model was designed to
detect faulty components and errors of large-scale systems
based on AI technique.

IX. CONCLUSION

In this paper, we have proposed a novel sentiment analysis
based approach that can effectively build a reusable sentiment
lexicon over the large-scale system logs, based on which
errors could be detected and erroneous components could be
identified. To the best of our knowledge, this is the first attempt
to analyze the large-scale system reliability by exploring the
system developers’ sentiments hidden in the logs. Using logs
from three HPC systems of different vendors, we compared
our solution to a broad range of state-of-the-art ML techniques.
Our results showed that: (1) The learnt sentiment lexicon
does consist of system developers’ sentiments accurately, (2)
Our technique successfully extracted developers’ sentiment
features with their weights from the source system (i.e., IBM
Blue Gene) to automatically construct lexicon items which
can be used to detect the errors in the target systems with
unlabelled log messages ( i.e., Ranger and Lonestar4), with the
average f -score being up to 96%, (3) Our solution is able to
identify the erroneous components accurately. This may allow
for preventive measures to be taken.
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