Manuscript version: Author's Accepted Manuscript The version presented in WRAP is the author's accepted manuscript and may differ from the published version or Version of Record. #### **Persistent WRAP URL:** http://wrap.warwick.ac.uk/151241 #### How to cite: Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it. # **Copyright and reuse:** The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available. Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. # **Publisher's statement:** Please refer to the repository item page, publisher's statement section, for further information. For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. # Sentiment Analysis based Error Detection for Large-Scale Systems *Regular paper Abstract-Today's large-scale systems such as High Performance Computing (HPC) Systems are designed/utilized towards exascale computing, inevitably decreasing its reliability due to the increasing design complexity. HPC systems conduct extensive logging of their execution behaviour. In this paper, we leverage the inherent meaning behind the log messages and propose a novel sentiment analysis-based approach for the error detection in large-scale systems, by automatically mining the sentiments in the log messages. Our contributions are four-fold. (1) We develop a machine learning (ML) based approach to automatically build a sentiment lexicon, based on the system log message templates. (2) Using the sentiment lexicon, we develop an algorithm to detect system errors. (3) We develop an algorithm to identify the nodes and components with erroneous behaviors, based on sentiment polarity scores. (4) We evaluate our solution vs. other state-of-the-art ML algorithms based on three representative supercomputers' system logs. Experiments show that our error detection algorithm can identify error messages with an average f-score of 96%, while the best ML model (Random Forest) obtains only 68%. To the best of our knowledge, this is the first work leveraging the sentiments embedded in log entries of large-scale systems for system health analysis. Index Terms—Sentiment analysis lexicon, large-scale systems, Stochastic Gradient Descent, logistic regression, error detection ## I. INTRODUCTION Failure log analysis in large-scale computer systems, such as supercomputers, has attracted more and more researchers from academia and industry in order to improve the system reliability. These systems, composed of sophisticated hardware and software, often fail due to their scale and design complexity. The components of these systems, such as OS and parallel file systems, generally generate masses of valuable log messages that are critical for system administrators to assess the state of the system [1]. These message or event logs are considered the first source about the system's health state for administrators, because it contains rich information about normal behavior (i.e., informational messages) or abnormal behavior (i.e., error messages) of various system components. Failure-directed analysis, such as error detection, using these system logs has been extensively studied for years. In [2], the authors performed error detection in supercomputers by combining entropy, mutual information, and PCA approaches. In general, techniques have focused on capturing anomalies in system logs, e.g., these recent works were based on anomaly detection techniques [3]–[5]). Recently, techniques based on natural language processing (NLP) and artificial intelligence (AI) have been applied towards failure log analysis of these systems [6]–[8]. In this paper, we explore a novel perspective on the problem of failure log analysis. In general, the log messages often encapsulate the sentiment of system developers, which pertains to the perceived health of the system. For example, if a typical log entry states a timeout issue on a particular node, this message implies the fact that there is something wrong with the network level. That is, such a message indicates that the system developer has a negative sentiment about the current network status. The question is can we leverage these sentiments to develop a *sentiment analysis-based* technique for failure log analysis? Our answer is yes. Specifically, we propose two novel algorithms for detecting error messages and faulty nodes and components in these systems. Sentiment analysis, which is a text classification technique that combines NLP and AI, is based on assignment of weighted sentiment scores to the text entities within a word, phrase, sentence, or document. One class of approaches for sentiment analysis makes use of a sentiment lexicon where the focus is on developing specific list of words that carry cues of affection or sentiment, instead of using every word as a feature [9]. However, the development process of the sentiment lexicon has some weaknesses: (i) it is often configured manually, which is tedious and inaccurate to users; (ii) it tends to be domain-specific for efficiency reasons. We address these two respective problems as follows: (i) we develop a machine-learning approach that exploit the log sentiments to develop a sentiment lexicon to support the detection of errors in large systems¹ and identifying the erroneous components or nodes and (ii) based on the observation that such HPC systems often share similar components such as OS, a lexicon for one system (i.e., source system) can be reused for another (i.e., target system). The fundamental principle of our design is that the sentiment intensity scores can accurately represent the system state, among which the system developers generally use very similar concepts or terms to record the events/messages across different systems. In fact, the system developers often use negative sentiments to log serious problems such as errors and failures, neutral sentiments to highlight informational messages indicating the system works as expected, and posi- ¹A system fault refers to a potential event that may adversely affect the system execution. tive sentiments to mark the system faults/problems that have been fixed. Typically, the sentiment of a log message can be classified into three classes (polarity of a sentiment): (i) negative, to indicate a problem in the system, (ii) positive, to indicate that a problem has been fixed and (iii) neutral, which are merely informational. However, to detect errors, sentiment polarity is not adequate. Thus, a sentiment intensity score keeps track of the strength of a sentiment, e.g., the features 'failed' and 'unexpected' are associated with higher negative scores than the features 'slow' and 'monitor', while the features 'recovered' and 'successfully' are assigned higher positive scores than 'normal' and 'valid' states. This potentially allows us to exploit system logs (source) that are labelled with severity levels (e.g., Blue Gene systems) and extract their sentiment features to label the logs of other systems (target) that are unlabelled, automatically as an unsupervised approach. We make four main research contributions: - We develop a machine learning-based method using stochastic gradient descent logistic regression, to automatically construct a reusable sentiment lexicon for such systems. - 2) We develop an algorithm for error detection based on the sentiment intensity score of log messages. - 3) We develop an algorithm to discover system components (e.g., nodes) which show erroneous behaviors based on sentiment polarity scores of messages logged by those components during a specific time period. - We perform the evaluation using the system logs of three large systems: (i) Blue Gene/Q Mira, (ii) Ranger and (iii) Lonestar4 which were built by three different vendors -IBM, Sun, and Dell respectively. Also, we compare our sentiment lexicon's performance with machine learning classification algorithms, including Random Forest (RT), Extreme Gradient Boosting (XGBoost), Multinomial Naive Bayes (Multinomial NB), and K-Nearest Neighbor (KNN). Experiments show that our sentiment-based solution can efficiently detect error messages based on their associated sentiment scores, with an average fscore of 96%, whereas the best machine learning model (Random Forest) obtains only 68%. Our technique identifies error messages with an f-score of about 98% for Blue Gene/Q Mira system. Using the sentiment lexicon items extracted based solely on the Blue Gene systems logs, a majority of errors in Ranger and Lonestar4 logs can be successfully detected, with f-scores of about 94%, and 95%, respectively. This effectively shows that our technique can generate reusable lexicon for such systems, enabling the automated labelling of any systems' logs. The remainder of this paper is organized as follows: Section II presents the background for the system/fault model & log data, and Section III formulates the research problem. Sections IV~VI present the main steps of our approach. Section VII shows the results of our evaluation performed on the logs of three large systems. Section VIII discusses related work, and we conclude the paper in Section IX. ## II. SYSTEM/FAULT MODEL AND LOG DATA In this section, we describe the
targeted system model, fault model, the supercomputers studied in our work as well as their system logs used in our experiments. #### A. System Model We present a generic system model of HPC cluster systems. A cluster system consists of a set of nodes N_1, \ldots, N_m to execute a set of jobs J_1, \ldots, J_n over a set of production timeslots T_1, \ldots, T_p . To support these activities, components such as a resource scheduler and a set of software components, such as a file system and an operating system, are needed. The nodes and production slots on the HPC system are allocated to a job by the resource scheduler. Data, as input or output, may be transferred to and from the file system by each node or job. As the software components execute, they output log messages and resource usage data which may be written to containers. #### B. Fault Model We assume that various discrete fault models may be considered, depending on the abstraction level. One may consider faults occurring at the node level, the file system level, or an aggregate cluster level. When a fault occurs, the resulting error leads to the output of an error message in the system log file. If the error is not adequately handled, a failure can occur which will also be logged. We assume that faults can occur in any component at any level within the HPC system. We now describe the production clusters along with their logs used in our research, which is the fundamental information of our following sections (problem formulation, methodology, etc.). ## C. Blue Gene/Q Mira Cluster and RAS Logs The Argonne National Laboratory Mira supercomputer used to be one of the most powerful supercomputers in the world, and its comprehensive system logs (including RAS log, job scheduling log, I/O behavior log, etc.) have been released to the public to promote the understanding of extreme-scale systems. Mira was ranked as the 3rd place in the top 500 list [10]. Mira consists of 48 racks, each containing two midplanes. Every midplane has 32 compute nodes, each being facilitated with 16 active cores on a PowerPC A2 1600 MHz processor and a total of 16G DDR3 memory. As such, the entire Mira system has a total of 786,432 cores and 786,432 GB of memory. The Mira system's storage capacity reaches up to 35PB with 384 I/O nodes, and adopts a 2GB/s chip-to-chiplink 5D torus network, with each node containing 10 links with 2 Gb/s bandwidth. Mira's job-scheduling log involves 32.44 billion core-hours, about 1,300 users, and about 630 projects throughout its whole 5-year service [11], which creates an outstanding use-case for a resilience study. In the Mira cluster with diverse system logs, the Reliability, Availability, and Serviceability (RAS) log is our focus. The TABLE I DESCRIPTION OF THE KEY FIELDS IN RAS LOGS | Field | Description | | | | | | | | | | |------------|---|--|--|--|--|--|--|--|--|--| | MSG ID | Unique identifier of RAS event | | | | | | | | | | | SEVERITY | Severity level of the message (FATAL, WARN, or INFO) | | | | | | | | | | | EVENT TIME | Time stamp of the event (e.g, 2015-04-03-17.30.26.691211) | | | | | | | | | | | LOCATION | Particular occurrence location (e.g., midplane, node board) | | | | | | | | | | | MESSAGE | Detailed description of the event (e.g., Health Check detected an abnormal status flag set for the IO board at location Q2H-IO. The status flag is for OPTICS.) | | | | | | | | | | event in the RAS log is identified by one of three severity levels (INFO, WARN, or FATAL). Although one message in the RAS log consists of 14 fields, we focus only on a few of them related to the system reliability (illustrated in Table I), such as MESSAGE, MSG_ID, LOCATION, SEVERITY, and EVENT_TIME, as suggested by [12]. # D. Ranger and Lonestar4 Clusters and System Logs Here, we describe the Ranger and Lonestar4 cluster systems operated by the Texas Advanced Computing Center (TACC) [13]. Ranger was a Linux-based high-performance computing (HPC) system that consisted of 4,048 nodes. It was operated from 2007 to 2013. A high-speed Infiniband network provided communication among all the nodes. A job scheduler provided job scheduling and resource management services. The Lustre file system provided high-speed file access to the users of Ranger. The Ranger cluster is the first HPC system at a United States academic institution that deployed Rationalized message logs [14]. Lonestar4 was a Linux-based HPC system that consisted of 1,888 nodes. It was operated from 2009 to 2015. As was described in the description of Ranger, a high-speed Infiniband network provided communication between all the nodes on Lonestar4, a job scheduler provided job scheduling and resource management services, and the Lustre file system provided high-speed data I/O. Next, we give an example of a system log: ``` Apr 4 15:58:38 012324 mds5 kernel: LustreError: 138-a: work-MDT0000: A client on nid .*.* .5@02ib was evicted due to a lock blocking callback to .*.*.5@02ib timed out: rc ``` The fields in the system log are: (i) time-stamp (Apr 4 15:58:38), (ii) job number (012324), (iii) node number (mds5), (iv) system software component (kernel) and (v) message (A client on nid ...). The message is a client eviction due to a lock blocking callback. We focus on the message field, as this will allow for the classification of the log as faulty or non-faulty. Logs of Ranger and Lonestar4 are missing the severity attribute information. We collected 2 months worth of system logs on Ranger and 2 months worth of system logs on Lonestar4. We removed all the repeated messages to obtain a set of unique messages. A summary of TABLE II SUMMARY OF SYSTEM LOGS COLLECTED ON RANGER AND LONESTAR4 | Ranger | | | | | | | | | |---------------|-----------------|------------------------|--|--|--|--|--|--| | Month | No. of messages | No. of unique messages | | | | | | | | June 2011 | 10,021,516 | 1,513 | | | | | | | | July 2011 | 64,822,682 | 1,676 | | | | | | | | Lonestar4 | | | | | | | | | | Month | No. of messages | No. of unique messages | | | | | | | | February 2013 | 8,993,154 | 2,804 | | | | | | | | March 2013 | 12,267,629 | 2,576 | | | | | | | the system logs collected on Ranger and Lonestar4 is given in Table II. In the Ranger system logs, we identified: (i) 1,513 unique messages in June 2011 and (ii) 1,676 unique messages in July 2011. In the Lonestar4 system logs, we identified: (i) 2,804 unique messages in February 2013 and (ii) 2,576 unique messages in March 2013. #### III. PROBLEM FORMULATION We formulate our research problem based on the three aforementioned supercomputers, including Blue Gene/Q Mira (involving 49K nodes with a total of 786K cores), TACC Ranger (involving 4K nodes) and Lonestar4 (about 2K nodes with up to 63K cores), which were built by three different vendors - IBM, Sun, and Dell respectively. Without loss of generality, the general system model for a large-scale system (e.g. IBM Blue Gene) contains a set N of nodes, a queue of J jobs, a set T of production times, a job scheduler JS, and various software components such as a file system. The scheduler JS allocates the J jobs to the N nodes to execute during time period T. Further, the components write message logs in to a central writing container [13]. The problem that our approach addresses can be formulated as follows: Assume (i) a set of log messages is generated by a large-scale system, (ii) these log messages have different severity levels, and (iii) the message templates comprise system developers' sentiments (either negative, neutral, or positive), our objective is to develop an efficient approach that is able to: - 1) Automatically construct a reusable sentiment lexicon intended for large-scale systems. - 2) Using the lexicon, identify system faults. - 3) Using the lexicon, as an unsupervised approach to detect faults of other systems (target) that are missing the severity attribute information. - Using the lexicon, identify the erroneous nodes and components to assist precaution (e.g., avoid node crash), thereby preventing job failures. # IV. LEXICON CONSTRUCTION USING STOCHASTIC GRADIENT DESCENT LOGISTIC REGRESSION In this section, we describe a machine learning based model (namely **SGDLRSL**) that allows for the automatic construction of sentiment lexicons to detect errors in large-scale systems via the stochastic gradient descent logistic Fig. 1. \sim 60 of IBM Gene systems lexicon' items associated with their sentiment intensity scores regression technique. A sentiment lexicon is a dictionary that consists of features (N-gram) associated with their sentiment polarity values, and these sentiment scores are estimated based on a model trained on a sample of log message templates. Stochastic gradient descent logistic regression was employed since it is a discriminative model which assigns high weights (sentiment scores) to the significant log message features that can distinguish error messages from non-error messages. To generate a sentiment lexicon for a large-scale system, our model requires four components: - M input/label pairs of log message templates (x^i, y^i) where each input log message template x^i is represented by a vector of f^j features $[f^1, ..., f^j]$. - the sigmoid (logistic) function to compute the estimated class $\bar{y} = \sigma(w.x + b)$ for each log message template. - the cross-entropy loss function for features weights (i.e.,coefficients) learning through minimizing error on training log messages. - the stochastic gradient descent algorithm for optimizing the cross-entropy loss function and updating weights. The SGDLRSL model performs two main phases to learn sentiment lexicon items (features and their weights). ## A. Phase I. Log Message Template Preprocessing In the first phase, we use M representative training log message
templates (x^i,y^i) that are labelled as either [-1,1] faulty or non-faulty messages where the numbers of erroneous and non-erroneous messages are balanced. We can use severity levels as log message template labels for those large-scale systems with this feature in their log data. The following preprocessing steps are conducted on the dataset with log message templates: - Divide log message templates into tokens such as strings, variables, and punctuation. - Remove all alphanumeric words, punctuation, stop words, variables that are not strings from log messages and use other NLP methods to clean text, such as lowercasing all texts, etc. #### B. Phase II. Sentiment Lexicon Learning We present the sentiment lecicon learning pseudo-code in Algorithm 1. Basically, the stochastic gradient descent logistic regression (SGDLR) technique obtains sentiment scores (a vector of weights) of lexicon elements by learning from the log message templates training set. Each weight w^j (used later as a sentiment score) is a real number $(\in \mathbb{R})$ and is linked with one of the log message features f^j . The weight w^j signifies how important the log message feature is to classifying a faulty log message from a non-faulty log message. Without loss of generality, we assume that a high positive weight indicates a message with a **normal state or correctable error**, and a very negative weight implies that the message is a **failure or non-correctable error**. This machine learning technique automatically computes the scores of lexicon items as follows: # **Algorithm 1:** SGDLR to construct a sentiment lexicon for large-scale systems ``` Input: M log message templates (x, y), Logistic regression h(),Loss function L(), learning rate \eta, regularization parameter \lambda Output: Log features f with their weights W initial W, b, \eta \leftarrow 0.01, \lambda; for each (x) \in M do Tokenization 2) Removal of alphanumeric words, variables, etc. Convert into TF-IDF representation format via Formula (1). end repeat for (x,y) \in M randomly do 1) Compute \bar{y} \leftarrow \frac{1}{1 + e^- \theta^T x} 2) Compute the loss by Formula (5). 3) Compute the gradient g \leftarrow \eta \nabla L(h(x;\theta), y) 4) Update weights and bias \theta_{t+1} \leftarrow \theta_t - \eta \nabla L(h(x;\theta), y) end until SGD Converged; return (f, W) ``` Step 1. We employ the Term Frequency-Inverse Document Frequency (TF-IDF) representation technique [15] to extract n-gram features f^j from log message templates x^i and convert these features to numerical vectors $\in R^{|L|}$, where lexicon L is a set of n-gram features. The TF-IDF value of each feature is calculated by multiplying two metrics: Term Frequency $tf(f^j, x^i)$ and Inverse Document Frequency $idf(m_{f^j}, M)$ as follows: $$tfidf(f^j, x^i, M) = tf(f^j, x^i) \times idf(m_{f^j}, M)$$ (1) In TF-IDF, TF measures how frequently a feature f^j occurs in a log message template x^i and is defined as follows $$tf_{(f^j,x^i)} = \frac{n_{f^j,x^i}}{\sum_k n_{f^k,x^i}}$$ (2) where n_{f^j,x^i} is the total number of feature f^j occurrences in a log message template x^i divided by the total number of features $\sum_k n_{f^k,x^i}$ in that message template. The **IDF** $idf(f^j,M)$ measures how important a feature f^j is in all message templates M by taking the logarithm of the ratio of the total number of log message templates M to the total number of log message templates $m_{f^j} \leq M$ containing the feature f^j plus 1, to prevent dividing by zero, as follows: $$idf(m_{f^j}, M) = \log\left(\frac{M}{m_{f^j} + 1}\right) \tag{3}$$ We refer the readers to read [15] for more details. **Step 2.** We use SGDLR to train our model on log message features to extract the dense weights vector W as follows: 1) Compute the estimated class $\bar{y} = \sigma(w.x+b)$ for each log message template via the following logistic regression function: $$h(x) = \frac{1}{1 + e^- \theta^T x} \tag{4}$$ where θ includes two types of parameters: features' weights W and bias b (we neglect this parameter). 2) Then, we use the cross-entropy function and L1 regularization (Formula (5)) to compute the loss $L(\bar{y}, y)$ in order to measure how close \bar{y} is to the actual label y. $$L(\bar{y}, y) = -[yloq\bar{y} + (1 - y)loq(1 - \bar{y})] + \lambda |w|$$ (5) The weights W of log message features and bias b are learned from labelled log messages training set through a loss function that must be minimized to make \bar{y} for each log message as close as possible to the actual output y. L1 regularization (i.e., Lasso Regression) $\lambda |w|$ where parameter $\lambda>0$ is added to the cost function to prevent the overfitting problem and improving model generalization by penalizing weights. 3) Minimize the loss function in our model via the stochastic gradient descent technique (Formula (6)) to obtain the optimal weights W of log message features. $$\theta_{t+1} = \theta_t - \eta \nabla L(f(x; \theta), y) \tag{6}$$ Stochastic gradient descent is a technique which is used to minimize the loss function by calculating its gradient after each mini-batch of log messages and updating the vector's parameters values θ (weights W and bias b). Since the loss function for logistic regression is convex, the SGD will reach the minimum of a lost function. **Step 3.** The dense weight vector W is used as the sentiment scores with their associated log message features f as our lexicon items. For systematic observation, we normalize sentiment scores by dividing them by a uniform coefficient. ## V. SENTIMENT POLARITY-BASED ERROR DETECTION In this section, we present a novel error message detection algorithm, i.e., log message labelling algorithm, exploiting the sentiment lexicon, which is constructed using stochastic gradient descent logistic regression. We present the approach in Algorithm 2. # **Algorithm 2:** Error detection algorithm based on sentiment lexicon The algorithm includes three phases, which are described as follows. - 1) Phase I: Log Parsing: This phase is similar to the log message preprocessing phase presented in Section IV, where the opensource toolkit LogAider [16] and NLP techniques are employed to preprocess and clean the system logs. For example, all duplicated events with spatial or temporal correlations are filtered out by LogAider. - 2) Phase II: Log Message Sentiment Scores Assignment: In this phase, each log message x_i is associated with a sentimental polarity score using an assignment method similar to NLP's lexicon techniques (e.g., Vader [17]), in which the lexicon learned from the SGDLRSL model is used to assign each log message a sentiment score made up of three different scores: positive, negative, and the overall log sentiment score, as follows: $$x_{i \mathbf{posScore}} = \frac{\sum_{i} w_{i}}{\sum_{i} f_{i}}; \quad w_{i} > \mathbf{0}$$ (7) $$x_{i \text{negScore}} = \frac{\sum_{i} w_{i}}{\sum_{i} f_{i}}; \quad w_{i} < \mathbf{0}$$ (8) $$x_{i\text{SentiScore}} = x_{i\text{posScore}} + x_{i\text{negScore}}$$ (9) In general, the faulty messages contain the system developers' negative sentiments expressing concern about unexpected system operations, unusual situations, serious problems, failed services, and corruption. Consequently, the $x_{i negScore}$ is calculated by summing the negative valence scores $w_i < 0$ for each feature f_i of a log message that matches the sentiment lexicon features divided by their total number; the intensity of this score lies between 0 (neutral) and -1 (extremely negative). Moreover, log messages are generally embedded with more negative sentiments than positive or neutral ones, as the system developers tend to be more interested in abnormal systems' events. On the other hand, non-faulty messages include neutral sentiments indicating normal system behaviors and progress of system software (e.g., service started or stopped); positive sentiments indicate the system issues that are resolved (e.g., corrected errors, recovered failures). Therefore, the $x_{iposScore}$ is calculated by summing the positive valence scores $w_i > 0$ for each feature f_i of a log message that matches the sentiment lexicon features divided by their total number; the intensity of this score lies between 0 (neutral) and +1 (extremely positive). The $x_{iSentiScore}$ is the overall log polarity score that combines The $x_{i_{negScore}}$ and $x_{i_{posScore}}$. In other words, by summing the valence scores (i.e., whether it is positive or negative) for each feature f_i of a log message that matches the sentiment lexicon features divided by their total number. This score lies between -1 (extremely negative) and +1 (extremely positive). 3) Phase III: Detection Phase: Once system log messages are associated with sentiment polarity scores, the $x_{i\mathbf{SentiScore}}$, detection threshold φ , and absolute lexicon threshold μ are used to detect whether these messages are faulty or non-faulty. A log message is classified as faulty when $x_{i\mathbf{SentiScore}} < \varphi$ and as non-faulty otherwise. We can refine the φ threshold until we achieve an optimal value which results in a satisfied classification. Furthermore, the absolute lexicon threshold μ can be adjusted until satisfactory classification accuracy with fewer lexicon features is achieved. # VI. ERRONEOUS COMPONENT IDENTIFICATION BASED ON SENTIMENT POLARITY SCORES We can use our learned sentiment lexicon to calculate the sentiment polarity scores of the log messages for a certain time window t over some period (e.g., one hour time window over one day) for identifying the problematic components (e.g., nodes). The idea is that based on the sentiment scores, the system administrators can forecast which components may have erroneous behaviors, such that the jobs involved can be reassigned to other backup resources, and the problematic components would be temporally isolated until their
problems are fixed. Specifically, the components' sentiment scores are anticipated to be neutral when they work as expected by logging informational messages or logging nothing. The negative scores are anticipated to associate with some components experiencing errors, especially when these abnormal states last for multiple consecutive time windows. However, when the components' issues have been resolved and they start to log the recovery and correction messages, their sentiment scores are expected to be increased or set to positive, indicating that they have been recovered well. Our approach is composed of our sentiment lexicon that was learned in the previous section IV, system's components $(C_i, ..., C_k)$, log messages $(x_1, ..., x_n)$, time window t, where the system developers define the start time t_S and end time t_E , and a detection sentiment score φ . The phase of erroneous component identification is similar to that of detecting error message logs; however, the components' associated sentiment scores are calculated within a certain time window specified by the systems' administrators. We present the pseudo-code of erroneous component identification algorithm based on a specific window time $[t_s, t_e]$ in Algorithm 3. **Algorithm 3:** Erroneous component identification in large-scale system based on sentiment scores ``` Input: Components (C_i, ..., C_k), Unlabelled messages logs (x_1, \dots, x_n), Sentiment Lexicon Items(f_i, w_i), detection threshold \varphi , Start time t_S \leftarrow t_s , End time t_E \leftarrow t_e Output: C_{i posScore}, C_{i negScore}, C_{i SentiScore}, C_{i State} initial \varphi \leftarrow \varphi, C_{i \text{Logs}} \leftarrow Parsing messages logs (x_1, \dots, x_n) i = 1 \text{ to } k \text{ do} for j = 1 to n do C_{i \text{Logs}} \leftarrow \text{Concatenate } (x_j, x_{j+1}) \; ; x_j \in C_i \; \&\& \; t_s \geq 0 end end for i = 1 to k do \frac{\sum_{i} w_i}{\sum_{i} f_i}; w_i < \mathbf{0} C_{i \text{negScore}} \leftarrow \frac{\sum_{i} f_{i}}{\sum_{i} f_{i}}; \quad w_{i} < \mathbf{0} C_{i \text{SentiScore}} \leftarrow C_{i \text{posScore}} + C_{i \text{negScore}} if C_{iSentiScore} < \varphi then C_{i\mathbf{State}} \leftarrow \text{Erroneous}; C_{i\mathbf{State}} \leftarrow \text{non-Erroneous}; end end ``` - 1) Phase I: Component's Log Parsing: Unlike the log parsing phase in the error detection phase, the component's log messages should not be filtered out, in order to keep the spatial and temporal information. Moreover, in this phase, the system administrator are allowed to specify the time window in which the component logs are grouped together. Our model aims to assign sentiment polarity scores based on what each component logs about its health in a specific time. - 2) Phase II: Component Sentiment Scores Assignment: In this phase, the system's components are associated with sentimental polarity scores using an assignment method similar to that used in the second phase of error detection presented previously. In particular, all negative features and positive features indicating error correction learned from the SGDLRSL model are used to assign each component a sentiment score for a specified time window. It is composed of three scores: positive, negative, and overall sentiment score (denoted as $C_{iposScore}$, $C_{inegScore}$, and $C_{isentiScore}$, respectively), whose calculations are similar to those of the phase II in the error detection (see Formula (7), (8) and (9)). - 3) Phase III: The Erroneous Component Identification: Once the system components are associated with sentiment polarity scores, the $C_{i\mathbf{SentiScore}}$ and detection threshold φ , are used to detect whether these components are erroneous or not. A component is classified as erroneous when it is attached with $C_{i\mathbf{SentiScore}} < \varphi$ for consecutive time windows and as non-erroneous otherwise. This model can be plugged into each system's components to generate sentiment scores over the time windows customized by administrators time windows. It works as an assistant tool that continuously alerts the administrator of erroneous components within negative scores and positive scores as the components' issues are corrected. # VII. EXPERIMENTAL EVALUATION We perform the evaluation by automatically generating a sentiment lexicon from IBM Blue Gene systems' distinctive log message templates: BlueGene/L log templates(2007), BlueGene/P Intrepid log templates(2012), and BlueGene/Q MIRA log templates. Specifically, we carefully evaluate the viability of our error detection sentiment-based approach for three systems - Mira (year 2017&2020), Ranger, and Lonestar4, respectively. We will release the data and code used in our experiments after the acceptance of the paper. In the following, we first describe our evaluation indicators and then discuss the evaluation results. #### A. Evaluation Metrics We use precision, recall and F1-score to measure our sentiment model's performance in distinguishing faults from non-faulty log messages [2]. We define: (i) True Positive (TP) is the number of correctly detected faulty log events, (ii) False Positive (FP) is the number of incorrectly detected faulty log events, (iii) False Negative (FN) is the number of incorrectly detected non-faulty log events. The recall is the ratio of correctly detected faulty log events (TP) to the number of true faulty log events (TP+FN): $$Recall = \frac{TP}{TP + FN} \tag{10}$$ The precision is the ratio of correctly detected faulty log events (TP) to the number of all identified faulty log events (TP+FP): $$Precision = \frac{TP}{TP + FP} \tag{11}$$ As we need an overall measure for more detection accuracy, we used the F1-score, which is a balanced harmonic average of recall and precision, as shown below: $$F1\text{-}score = 2 * \frac{recall * precision}{recall + precision}$$ (12) # B. Evaluation of Error Detection 1) Learning Sentiment Lexicon for the IBM Blue Gene system: We use the SGDLR technique to automatically construct the sentiment lexicon based on the IBM Blue Gene system's RAS log message templates. We used 3k RAS log message templates as our dataset, whose labels are automatically inferred from the severity level field contained in a RAS log file. The RAS events are classified into two categories: faulty messages and non-faulty messages. The former include warnings, failures, and fatal levels, and the latter indicate informational messages to show the system software's progress or correction of errors. We employ k-fold cross-validation with over-sampling methods to address the imbalance within RAS dataset. After the NLP text preprocessing phase, we adopt the Term Frequency-Inverse Document Frequency (TF-IDF) to transform terms (features) of RAS templates from text format to numerical vectors. The SGDLR algorithm with L1 regularization and default parameters are then employed to learn the sentiment lexicon items of the IBM Blue Gene systems by training RAS log template feature vector with their associated labels and obtaining the dense weights vector W (sentiment scores for lexicon items). Our model obtains around \sim 932 discriminative features associated with their sentiment scores. Figure 1 shows ~60 lexicon items associated with their sentiment intensity scores learned automatically. It is clearly observed that the learned sentiment lexicon of Blue Gene systems consists of the system developers' negative sentiments that show the systems' issues and the positive sentiments indicating that the system problems have been corrected or the system components work as expected. Moreover, the Blue Gene lexicon contains more negative sentiments than positive and neutral sentiments, demonstrating that the abnormal system issues are generally paid more attentions in the logs. The Blue Gene lexicon contains \sim 664 negative sentiments, whereas there are \sim 268 positive ones. 2) Mira Error Detection Performance: After the Blue Gene lexicon's items are generated from the previous phase, we evaluate its efficacy by detecting error messages using the entire year 2017 of the Mira RAS logs. The year-2017 RAS log contains 16.5 million messages. We first filter out the duplicated messages by using the open source toolkit -LogAider [16] based on the spatial or temporal correlations. The total number of messages is thus significantly reduced from 16, 772, 894 to 2, 380, 211. Then, we preprocess the log messages' content by the NLP techniques. After that, we classify all events based on their severity attributes into two categories - faulty and non-faulty - in order to obtain the ground truth for evaluating our error detection method. Our error detection sentiment-based approach takes the filtered 2, 380, 211 messages each of which is assigned a sentimental polarity score, and detects the faulty messages based on comparing the associated scores with detection threshold φ . Figure 2 presents the evaluation results about error detection accuracy based on the RAS log of year 2017 with different lexicon absolute threshold μ values(i.e., the number of sentiment lexicon items) with detection threshold $\varphi = 0$. Experiments show that our machine learning-based sentiment lexicon achieved excellent error detection accuracy for the RAS log data of the year 2017, 99%, 99%, 99% of recall, precision, and f1-score, respectively, at lexicon absolute threshold $\mu = 0$, 1, or 2, and detection threshold $\varphi = 0$. In order to assess the effectiveness of our detection methodology under different conditions, we evaluate our sentiment lexicon approach with different values of μ and φ , which also aims at exploring the best threshold values with respect to high true positives and true negatives. We observe that a small change to the lexicon absolute threshold μ (i.e., the number Fig. 2. Detection with different lexicon absolute threshold μ , with $\varphi = 0$ of
sentiment lexicon items) and detection threshold φ may have a significant impact on the detection result. In general, the detection accuracy increases as the former threshold value decreases, meaning that using fewer lexicon items affects the detection accuracy. Moreover, the same detection accuracy is reached when only \sim 58 sentiment items are used (i.e., μ =2), and when using all the 932 features of our learned lexicon. This result verifies the fact that developers often use only a few sentiment words to log system issues and operations, as opposed to similar NLP sentiment analysis tasks that contain a high number of sentiment words. We achieve a good error detection for the latter threshold value as the φ is chosen within the range between 0 and -0.8; this means the developers use high-intensity sentiments to log the system issues (see Figure 3). Moreover, we observe that our model's misclassifications occur due to two reasons: the first is the developer's classification of some logs with the incorrect severity. For example, the severity level is INFO for the 'nd receiver link error' message and is ERROR for the 'correctable ecc error threshold' message in the RAS log. However, our model correctly classifies the former as faulty since this is what is reflected through the feature error, and classifies the latter as non-faulty, since it shows the 'ecc error threshold' is corrected. The second reason is that system developers tend to log some system events with unstructured text embedded with mixed negative and positive sentiments. For instance, the log message 'recoverable error message failed ecc parity error drill down error recoverable overable error cache parity error' contains several negative and positive sentiments. Therefore, our model solves not only the problem of labeling the systems' logs with no severity levels but also fixes the misclassified severity levels within systems containing this feature. 3) Comparing Our Sentiment Lexicon with Machine Learning Techniques: To demonstrate our approach's effectiveness and generality on cross-systems, we evaluate and compare our sentiment lexicon's performance with those of machine learning classification algorithms, including Random Forest (RT), Extreme Gradient Boosting (XGBoost), Multinomial Naive Bayes (Multinomial NB), and K Nearest Neighbor (KNN), to detect three different large-scale systems' errors. We used the same data that we employed to extract our sentiment lexicon to train the four machine learning models and evaluate those models' performance versus our sentiment lexicon model's performance on logs of three large-scale systems: RAS log messages of Mira 2020 (i.e., the first six months of 2020 Mira RAS logs), and all distinctive log messages from Ranger and Lonestar4 as shown in Table II. As presented in Table III and Figure 4, the results reveal that using our lexicon achieves an average f1-score of 96% in error detection in the three large systems' log messages, whereas the best machine learning model (Random Forest) obtains only 68%. The other ML models KNN, XGBoost, and Multinomial NB achieve an average f1-score of 66%, 64%, and 58%, respectively. On the Mira 2020 RAS logs (see Figure 5), our lexicon scores an f-score 98%, and all ML models achieve f-scores (96%) because the training runs on RAS message templates. As illustrated in Figure 6 and Figure 7, only our lexicon achieves significant scores in detecting error messages of Ranger and Lonestar4 logs, despite them being different HPC systems from different companies with different logging methodologies. Our lexicon succeeds in detecting the majority of errors in Ranger and Lonestar4 logs, with an fscore of 94% and 95%, recall of 94% and 95%, and precision of 94% and 95%, respectively. RN, KNN, XGBoost, and Multinomial NB models achieved, respectively, an f1-score of 51%, 46%, 44%, and 36% on Ranger Logs, and 57%, 55%, 51%, and 41% on Lonestar4 Logs. The main limitations of detection accuracy on target systems for four machine learning techniques are as follows: KNN does not work well because the log messages are imbalanced and contain many outliers, and RF and XGBoost are prone to overfitting, where Multinomial NB assumes the logs' features are independent, despite this not being the case. These results demonstrate the reusable sentiment lexicon's benefits of deploying it as an unsupervised log analysis approach on different (target) systems. The key reason our solution outperforms other ML methods is that it successfully extracts developers' sentiment features hidden in labeled log messages from one source system (i.e., IBM Blue Gene) and transfers these features with their weights as lexicon items to detect errors in the target systems with unlabelled log messages (i.e., Ranger and Lonestar4. This verified the fact that developers of different systems really adopt similar sentiment features in their logging methodology. Thus, we can utilize a few system logs with severity levels to automatically extract their sentiment features and label the logs of other target systems with non-labeled logs. These promising results motivate us to collect more logs from different systems and generate a general sentiment lexicon using our technique to detect hardware and software issues in our future work. Fig. 3. Mira error detection performance with different detection threshold φ , with $\mu = 0$ TABLE III SCORES (RECALL, PRECISION, AND F1-SCORE) OF OUR LEXICON AND ML MODELS ON THREE SYSTEMS(MIRA, RANGER, AND LONESTAR 4) | | Blue Gene Mira | | | Ranger | | Lonestar4 | | | Average of 3 Systems | | | | |----------------------------|----------------|-----------|----------|--------|-----------|-----------|--------|-----------|----------------------|--------|-----------|----------| | Technique | Recall | Precision | F1-score | | Random Forest | 96% | 96% | 96% | 55% | 74% | 51% | 57% | 78% | 57% | 69% | 83% | 68% | | XGBoost | 96% | 96% | 96% | 50% | 74% | 44% | 52% | 78% | 51% | 66% | 83% | 64% | | Multinomial NB | 96% | 96% | 96% | 45% | 71% | 36% | 45% | 75% | 41% | 62% | 81% | 58% | | KNN | 96% | 96% | 96% | 50% | 66% | 46% | 54% | 71% | 55% | 67% | 78% | 66% | | Large-Scale System Lexicon | 98% | 98% | 98% | 94% | 94% | 94% | 95% | 95% | 95% | 96% | 96% | 96% | Fig. 5. Detection performance of our lexicon and ML models on 2020 Mira RAS logs ## C. Evaluation of Erroneous Component Identification We evaluate our approach of identifying erroneous components such as compute nodes (denoted Rxx-Mx-Nxx), I/O nodes (denoted Qxx-Ix-Jxx) and link modules (denoted Qxx-Ix-Uxx), based on Mira's RAS logs. We present the evaluation results based on one-day period (27-March-2017) due to space limit and massive components involved. We employ our sentiment lexicon learned in Section IV and detection sentiment scores φ =0 to associate each component with 24 sentiment scores for the 24 hours, based on the hourly log messages regarding these components. Each score is composed of positive and negative scores, which are then summed up to produce the overall sentiment scores. Thus, each component is attached with a total of 72 sentiment scores (24 positives + 24 negatives + 24 overall scores). Figure 8 demonstrates the states of some components in Mira. The gray color indicates 'working as expected by logging informational messages or logging nothing'; the red color indicates that the component is experiencing some abnormal events that affect its productivity; and the green color indicates that the issues have been corrected, or silent errors have been Fig. 6. Detection performance of our lexicon and ML models on Ranger logs Fig. 7. Detection performance of our lexicon and ML models on Lonestar4 logs fixed. We observe that majority of Mira components experienced no any issues (e.g., Q2H-I0-U02, Q2H-I0-U03, and Q2H-I0-U04). Negative sentiment scores were attached to a few components (e.g., Q2H-I0-J01, Q2H-I0-J02, Q2H-I5-J00, Q2H-I5-J01, and R2B-M0-N00) for consecutive hours, which validates the high accuracy of our algorithm because each of them crashed due to one or two fatal events according to the RAS log. Moreover, some components (e.g., the node R2B-M0-N15) exhibit high negative scores for long consecutive hours since it was suffering from recurrent abnormal events. Some components such as R2B-M0-N00, exhibit positive sentiment scores in later hours (i.e., the 14th and 15th), as some correction events were triggered. Our technique can assist the Mira system's administrator to isolate these faulty components until the problems are fixed, since there are 152 fatal events occurring in that day, and our model highlights all the components that triggered them. Furthermore, as shown in Figure 9 from sentiment scores attached to Q2H-I4-J00 \sim Q2H-I4-J05, we first observe that components are associated with similar sentiment scores for a consecutive or recurrent time windows. This can be explained by the fact that components generate the same logs over those time windows to convey that they are still facing the same issues. Second, we also observe that neighboring components are assigned with similar sentiments scores within similar time windows, indicating that large-scale system components that exhibit similar behaviors generate similar logs. Based on our research, one important take-away is that the issues encountered by similar components may result in the same sentiments, and thus similar sentiment scores. So, our technique can be employed as a sufficient tool to assist Mira's administrators to identify faulty components through their normalized sentiment scores ranging from -100 (extremely negative) to +100 (extremely positive) for more systematic diagnosis. #### VIII. RELATED WORK Log parsing is a crucial phase in log analysis which filters out and processes the large quantities of large-scale systems' message logs; different parsers have been developed (e.g. [12],
[18]–[20]) and many have been evaluated on different benchmark logs' datasets in [21]. Moreover, various tools and much research have been dedicated to diagnosing the root causes of failures such as [22]–[24]. Due to the importance of the log analysis, plenty of error detection or prediction methods are proposed. Das et al. [25] and Frank et al. and [26], for example, performed the studies in the failure prediction research for HPC failures recently. Rao et al. [27] developed a method to identify faults in large-scale distributed systems by filtering noisy error logs. [28] shown that a non-uniform distribution of log words across nodes is useful for error detection, as is the encoding of word position. Gainaru et al. [29] modelled the normal and faulty behaviour of large-scale HPC systems, which would also be very helpful in the HPC system failure prediction/detection. Berrocal et al. [30] proposed an effective approach for fault detection based on the Void Search (VS) algorithm, which is used primarily in astrophysics for finding areas of space that have a very low density of galaxies. The log entropy technique has also been employed for error detection within patterns in [31] and [32], since log entropy measures the changes in the frequency of log events to capture the system's behavior. Our approach differs from all the above methods, as we adopt stochastic gradient descent logistic regression to construct a sentiment lexicon (i.e. features with valance scores) automatically, and detect errors based on sentiment scores. Sentiment lexicon based analysis has been widely studied for years. Regarding the domain of sentiment lexicon being applied to human languages, Hutto et al. [17] built the VADER sentiment lexicon manually by multiple independent experts or crowdsourcing, which is particularly attuned to sentiments expressed in social media. By contrast, we construct a sentiment lexicon automatically to detect developers' sentiments hidden in system log messages. The Pointwise Mutual Information technique and SVM model learned on a distant supervised 0.00% | 79:60% | 0.00% | 0.00% | 0.00% | 0.00% 02H-I3-J00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 68.30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 02H-I3-J01 0.00% 0.00% 0.00% | -51,20% | 0.00% | -51.20% | 0.00% Q2H-I3-J02 0.00% 0.00% 0.00% 0.00% -51.30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Q2H-I3-J03 0.00% 0.00% 0.00% 0.00% 02H-I3-J04 0.00% 0.00% 0.00% 0.00% | 79.60% | 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% | 68.30% | 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Q2H-I3-J05 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 02H-I3-J06 0.00% 0.00% 0.00% 0.00% -51.20% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Q2H-I3-J07 0.00% Q2H-I3-U02 0.00% Q2H-I3-U03 0.00% Q2H-I3-U04 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Q2H-I3-U05 0.00% Q2H-14-J00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 02H-I4-I01 0.00% 0.00% 0.00% 0.00% -50.80% | -51.30% | 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 51 30% 0 00% 0.00% 0.00% 0.00% 0.00% | -50.70% | -53.00% | 0.00% 0.00% 0.00% 0.00% 02H-I4-J02 0.00% 0.00% 0.00% 49.70% 53.00% 0.00% 0.00% 0.00% 0.00% -50.90% -51.30% 0.00% 0.00% 0.00% 0.00% 0.00% -51.30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Q2H-I4-J03 0.00% 0.00% 0.00% 0.00% -50.90% -51.30% - 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 51 30% 0 00% 0.00% 0.00% 0.00% 0.00% | -50.40% | -52.90% | 0.00% 0.00% 0.00% 0.00% 0.00% | 50.40% | 56.10% | 0.00% Q2H-I4-J04 0.00% 0.00% 0.00% 0.00% | 50.90% | 51.30% | 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% | 51.30% | 0.00% | 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -51:30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Fig. 9. Mira Erroneous Component Identification Results (Q2H-I3-J00~Q2H-I4-J05) corpora were employed by [33] and [34], to build sentiment lexicons for English language. Also, logistic regression combined with other techniques are used to extract a lexicon for Portuguese language and stock market domains by [35] and [36] respectively. In contrast, we used SGDLR to construct a sentiment lexicon for error detection & erroneous component identification in large-scale systems. There are also some existing works leveraging sentiment related techniques for log analysis. Allen et al. [37] is the first research group that utilized a sentiment lexicon through a pre-built library called IBM Watson API to analyze software logs and assign sentiment scores for log data. Yadwad et al. [38] applied machine learning and time series models (e.g., PCA, Naïve Bayes, logistic regression, and CNN) on combined data of the social tweets, mails and logs for service outage detection and predication. Based on the context and content attention model, Studiawan et al. [39] employed a deep learning technique to identify aspect terms and the corresponding sentiments to extract events of interest from log files in the forensic timeline. By comparison, our work is the first attempt in the domain of a large-scale system. Furthermore, our domain-specific sentiment lexicon items are extracted automatically with the use of a machine learningbased technique, since a feature's sentiment is affected by the domain in which it is used. Allen et al. [40] also proposed a method based on using at least keyword and synonym matching percentage analysis criteria to classify log messages' levels in applications code. In contrast, our model was designed to detect faulty components and errors of large-scale systems based on AI technique. #### IX. CONCLUSION In this paper, we have proposed a novel sentiment analysis based approach that can effectively build a reusable sentiment lexicon over the large-scale system logs, based on which errors could be detected and erroneous components could be identified. To the best of our knowledge, this is the *first* attempt to analyze the large-scale system reliability by exploring the system developers' sentiments hidden in the logs. Using logs from three HPC systems of different vendors, we compared our solution to a broad range of state-of-the-art ML techniques. Our results showed that: (1) The learnt sentiment lexicon does consist of system developers' sentiments accurately, (2) Our technique successfully extracted developers' sentiment features with their weights from the source system (i.e., IBM Blue Gene) to automatically construct lexicon items which can be used to detect the errors in the target systems with unlabelled log messages (i.e., Ranger and Lonestar4), with the average f-score being up to 96%, (3) Our solution is able to identify the erroneous components accurately. This may allow for preventive measures to be taken. #### REFERENCES - [1] E. Chuah, A. Jhumka, S. Alt, J. J. Villalobos, J. Fryman, W. Barth, and M. Parashar, "Using resource use data and system logs for hpc system error propagation and recovery diagnosis," in 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). IEEE, 2019, pp. 458–467. - [2] N. Gurumdimma, A. Jhumka, M. Liakata, E. Chuah, and J. Browne, "Crude: Combining resource usage data and error logs for accurate error detection in large-scale distributed systems," in 2016 IEEE 35th Symposium on Reliable Distributed Systems (SRDS). IEEE, 2016, pp. 51–60. - [3] A. Borghesi, A. Libri, L. Benini, and A. Bartolini, "Online anomaly detection in hpc systems," in 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). IEEE, 2019, pp. 229–233. - [4] S. He, J. Zhu, P. He, and M. R. Lyu, "Experience report: System log analysis for anomaly detection," in 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE). IEEE, 2016, pp. 207–218. - [5] S. Bursic, V. Cuculo, and A. D'Amelio, "Anomaly detection from log files using unsupervised deep learning," in *International Symposium on Formal Methods*. Springer, 2019, pp. 200–207. - [6] C. Xiao, J. Huang, and W. Wu, "Detecting anomalies in cluster system using hybrid deep learning model," in *International Symposium on Parallel Architectures, Algorithms and Programming*. Springer, 2019, pp. 393–404. - [7] M. Du, F. Li, G. Zheng, and V. Srikumar, "Deeplog: Anomaly detection and diagnosis from system logs through deep learning," in *Proceedings* of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017, pp. 1285–1298. - [8] A. Dwaraki, S. Kumary, and T. Wolf, "Automated event identification from system logs using natural language processing," in 2020 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2020, pp. 209–215. - [9] D. Jurafsky and J. H. Martin, "Speech and language processing," Chapter A: Hidden Markov Models (Draft of October 2, 2019). Retrieved October, vol. 19, p. 2019, 2019. - [10] Top500, https://www.top500.org/, 2012, online. - [11] S. Di, H. Guo, E. Pershey, M. Snir, and F. Cappello, "Characterizing and understanding hpc job failures over the 2k-day life of ibm bluegene/q system," in
2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2019, pp. 473–484. - [12] S. Di, R. Gupta, M. Snir, E. Pershey, and F. Cappello, "Logaider: A tool for mining potential correlations of hpc log events," in 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE, 2017, pp. 442–451. - [13] E. Chuah, A. Jhumka, J. C. Browne, B. Barth, and S. Narasimhamurthy, "Insights into the diagnosis of system failures from cluster message logs," in 2015 11th European Dependable Computing Conference (EDCC). IEEE, 2015, pp. 225–232. - [14] J. L. Hammond, T. Minyard, and J. Browne, "End-to-end framework for fault management for open source clusters: Ranger," in *Proceedings of* the 2010 TeraGrid Conference, 2010, pp. 1–6. - [15] S. Robertson, "Understanding inverse document frequency: on theoretical arguments for idf," *Journal of documentation*, 2004. - [16] S. Di, R. Gupta, M. Snir, E. Pershey, and F. Cappello, "Logaider: A tool for mining potential correlations of hpc log events," in 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2017, pp. 442–451. - [17] C. J. Hutto and E. Gilbert, "Vader: A parsimonious rule-based model for sentiment analysis of social media text," in *Eighth international AAAI* conference on weblogs and social media, 2014. - [18] M. Du and F. Li, "Spell: Streaming parsing of system event logs," in 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 2016, pp. 859–864. - [19] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, "Drain: An online log parsing approach with fixed depth tree," in 2017 IEEE International Conference on Web Services (ICWS). IEEE, 2017, pp. 33–40. - [20] S. Messaoudi, A. Panichella, D. Bianculli, L. Briand, and R. Sasnauskas, "A search-based approach for accurate identification of log message formats," in 2018 IEEE/ACM 26th International Conference on Program Comprehension (ICPC). IEEE, 2018, pp. 167–16710. - [21] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, "Tools and benchmarks for automated log parsing," in 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 2019, pp. 121–130. - [22] E. Chuah, A. Jhumka, S. Alt, D. Balouek-Thomert, J. C. Browne, and M. Parashar, "Towards comprehensive dependability-driven resource use and message log-analysis for hpc systems diagnosis," *Journal of Parallel* and Distributed Computing, vol. 132, pp. 95–112, 2019. - [23] A. Das and F. Mueller, "Holistic root cause analysis of node failures in production hpc," SC Poster Session, 2018. - [24] E. Chuah, A. Jhumka, S. Alt, T. Damoulas, N. Gurumdimma, M.-C. Sawley, W. L. Barth, T. Minyard, and J. C. Browne, "Enabling dependability-driven resource use and message log-analysis for cluster - system diagnosis," in 2017 IEEE 24th International Conference on High Performance Computing (HiPC). IEEE, 2017, pp. 317–327. - [25] A. Das, F. Mueller, C. Siegel, and A. Vishnu, "Desh: deep learning for system health prediction of lead times to failure in hpc," in *Proceedings* of the 27th International Symposium on High-Performance Parallel and Distributed Computing, 2018, pp. 40–51. - [26] A. Frank, D. Yang, A. Brinkmann, M. Schulz, and T. Süss, "Reducing false node failure predictions in hpc," in 2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC). IEEE, 2019, pp. 323–332. - [27] X. Rao, H. Wang, D. Shi, Z. Chen, H. Cai, Q. Zhou, and T. Sun, "Identifying faults in large-scale distributed systems by filtering noisy error logs," in 2011 IEEE/IFIP 41st International Conference on Dependable Systems and Networks Workshops (DSN-W). IEEE, 2011, pp. 140–145. - [28] J. Stearley and A. J. Oliner, "Bad words: Finding faults in spirit's syslogs," in 2008 Eighth IEEE International Symposium on Cluster Computing and the Grid (CCGRID). IEEE, 2008, pp. 765–770. - [29] A. Gainaru, F. Cappello, and W. Kramer, "Taming of the shrew: Modeling the normal and faulty behaviour of large-scale hpc systems," in 2012 IEEE 26th International Parallel and Distributed Processing Symposium. IEEE, 2012, pp. 1168–1179. - [30] E. Berrocal, L. Yu, S. Wallace, M. E. Papka, and Z. Lan, "Exploring void search for fault detection on extreme scale systems," in 2014 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2014, pp. 1–9. - [31] N. Gurumdimma, A. Jhumka, M. Liakata, E. Chuah, and J. Browne, "Towards detecting patterns in failure logs of large-scale distributed systems," in 2015 IEEE International Parallel and Distributed Processing Symposium Workshop. IEEE, 2015, pp. 1052–1061. - [32] A. J. Oliner, A. Aiken, and J. Stearley, "Alert detection in system logs," in 2008 Eighth IEEE International Conference on Data Mining. IEEE, 2008, pp. 959–964. - [33] S. M. Mohammad, S. Kiritchenko, and X. Zhu, "Nrc-canada: Building the state-of-the-art in sentiment analysis of tweets," arXiv preprint arXiv:1308.6242, 2013. - [34] A. Severyn and A. Moschitti, "On the automatic learning of sentiment lexicons," in *Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, 2015, pp. 1397–1402. - [35] K. Bhargava and R. Katarya, "An improved lexicon using logistic regression for sentiment analysis," in 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN). IEEE, 2017, pp. 332–337. - [36] R. A. Lage, "Sentiment lexicon generation with continuous polarities for portuguese using logistic regressions and semantic modifiers," Ph.D. dissertation, Universidade Federal do Rio de Janeiro, 2016. - [37] C. O. Allen, K. B. Haverlock, and M. D. Whitley, "Sentiment analysis of data logs," Jan. 3 2017, uS Patent 9,536,200. - [38] S. A. Yadwad and V. V. Kumari, "Predicting service outages using tweets," in *International Journal of Recent Technology and Engineering* (IJRTE), 2020. - [39] H. Studiawan, F. Sohel, and C. Payne, "Sentiment analysis in a forensic timeline with deep learning," *IEEE Access*, vol. 8, pp. 60664–60675, 2020. - [40] C. O. Allen, A. R. Freed, S. N. Gerard, and D. B. Miller, "Applying consistent log levels to application log messages," Jun. 11 2019, uS Patent 10,318,405.