
LLNL-CONF-541631

ROSE::FTTransform - A
Source-to-Source Translation Framework
for Exascale Fault-Tolerance Research

J. Lidman, D. Quinlan, C. Liao, S. McKee

March 26, 2012

2nd International Workshop on Fault-Tolerance for HPC at
Extreme Scale (FTXS 2012)
Boston, MA, United States
June 25, 2012 through June 28, 2012



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



ROSE::FTTransform – A Source-to-Source
Translation Framework for Exascale Fault-Tolerance

Research
Jacob Lidman∗†, Daniel J. Quinlan∗, Chunhua Liao∗, Sally A. McKee†

∗Lawrence Livermore National Laboratory
Livermore, CA, USA

{lidman1, dquinlan, liao6}@llnl.gov

†Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden
{lidman, mckee}@chalmers.se

Abstract—Exascale computing systems will require sufficient
resilience to tolerate numerous types of hardware faults while
still assuring correct program execution. Such extreme-scale
machines are expected to be dominated by processors driven
at lower voltages (near the minimum 0.5 volts for current
transistors). At these voltage levels, the rate of transient errors
increases dramatically due to the sensitivity to transient and
geographically localized voltage drops on parts of the processor
chip. To achieve power efficiency, these processors are likely to
be streamlined and minimal, and thus they cannot be expected
to handle transient errors entirely in hardware. Here we present
an open, compiler-based framework to automate the armoring
of High Performance Computing (HPC) software to protect it
from these types of transient processor errors. We develop an
open infrastructure to support research work in this area, and
we define tools that, in the future, may provide more complete
automated and/or semi-automated solutions to support software
resiliency on future exascale architectures. Results demonstrate
that our approach is feasible, pragmatic in how it can be
separated from the software development process, and reasonably
efficient (0% to 30% overhead for the Jacobi iteration on
common hardware; and 20%, 40%, 26%, and 2% overhead for
a randomly selected subset of benchmarks from the Livermore
Loops [1]).

Index Terms—High Performance Computing, Redundancy,
Fault Tolerance, Exascale, Source-to-Source Compiler

I. INTRODUCTION

Future High Performance Computing (HPC) platforms must
perform correctly in the face of transient faults (i.e., soft
errors). These errors manifest themselves as bit-flips, and
they originate from either external sources (e.g., radiation
events) or internal sources (e.g., voltage drops, power supply
noise, or leakage). They are soft in the sense that they
do not permanently damage the device [2], [3]. Soft errors
have become a design issue in all segments of computing,

This work performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344. This work was funded by DOE ASCR. LLNL-CONF-
541631

largely because decreasing transistor feature sizes and lower
voltage levels increase their occurrence [2]. In the future,
these errors will become especially troublesome, particularly
for exascale systems comprising up to millions of commodity
cores [4]. To address this problem, architects have proposed
hardware enhancements (ranging from buses [5], to on-chip
memory [2], [5], pipelines [6], and functional units [5], [7]).
Unfortunately, introducing dedicated hardware requires both
time and effort, and this approach may not be feasible for
low-volume, emerging architectures.

Large-scale supercomputers have historically been built
entirely from commodity parts that are not designed for use
at such scales and that lack dedicated hardware support. In
this context, scalable software solutions emerge as attractive
(defensive) alternatives. Nonetheless, software approaches can
incur high performance overheads and should be introduced
with care. Furthermore, the fault-tolerant software itself can
potentially introduce new errors, since it adds to the existing
complexity of developing application software. These trade-
offs need to be carefully balanced, and thus we study the prob-
lem of automatically introducing fault tolerance in software
for hardware-induced faults. In contrast to other uses [8] of
the term “software fault tolerance”, we assume that the given
software is free from errors. This is generally referred to as
“software-implemented hardware fault tolerance” (SIHFT).

Our motivation is to simplify and to increase the efficiency
of introducing the necessary software constructs. To this end,
we implement a translator using the ROSE source-to-source
compiler infrastructure to detect and handle transient processor
errors [9], [10]. In addition, we specifically evaluate both
whether the compiler-based resiliency transformations make
sense and whether they can be implemented via a source-
to-source approach. If so, then this research area becomes
significantly more accessible to the entire HPC community.



ROSE::FTTransform 

Vendor 
Compiler 

Annotated 
source code 

Transformed 
source code 

Binary 
executable 

Fault Injection 
(Intel PIN) 

Fig. 1. Fault-Tolerance Research Using
ROSE::FTTransform

Controls Second-chance Final-wish

Attributes NUM-ITER – Max. number of iterations.
STM – Statement to be executed.

ALWAYS-EXEC – Always execute statement.

Pragma #pragma FT-SC(NUM-ITER) #pragma FT-FW(STM, ALWAYS-STM)

Semantics f o r ( i n t r I = 0 ; ; r I ++) {
y [ 0 . . . N−1] = . . .
Y = PICK RANDOM( y [ 0 ] , . . . , y [N−1])
i f (EQUALS( y [ 0 ] , . . . , y [N−1] ,Y) )
break

e l s e i f ( r I == NUM−ITER )
NEXT−POLICY

}

y [ 0 . . . N−1] = . . .
Y = PICK RANDOM( y [ 0 ] , . . . , y [N−1])
i f ( ! EQUALS( y [ 0 ] , . . . , y [N−1] ,Y) ) {
STM
(NEXT−POLICY )
} e l s e i f (ALWAYS−EXEC)

STM

Fig. 2. Semantics of Fault-Handling Policies

II. APPROACH

Figure 1 shows how we use a source-to-source translator
(ROSE::FTTransform) to support adding resilience to HPC
applications. In particular, ROSE::FTTransform is a tool to
insert both fault detection and fault handling mechanisms into
a given input source code. Our work has initially focused
on application kernels, but the approach can also be driven
via source code pragmas (shown in Figure 2), which enable
whole-application SIHFT. Ongoing work attempts to measure
the sensitivity to errors of HPC applications (to form a more
completely automated approach), but we report here only on
the support derived from user-directed specification of where
in an application to apply our transformations. A vendor
compiler generates executables from the transformed code.

Our ongoing work defines a framework to support such
compiler-based resiliency research. We have implemented a
flexible system supporting an extensible range of techniques
and policies to support software resiliency. We expect that a
full range of techniques will be required in practice; our work
to date represents only a piece of this. To simplify community
access to this work and to motivate collaborations with others,
our framework will be included in the next release of the open
source ROSE source-to-source compiler.

We have measured the overhead introduced by our current
resiliency transformations and have analyzed the complexity
of using a source-to-source approach in optimizing compilers.
Our focus has been specific to what we expect to see in future
exascale architectures. In all cases, we consider our approach
to be an alternative to a much more expensive check-point
restart system that may or may not be tractable at exascale.

A. Fault-Handling Policies

The semantics of fault-handling, illustrated in Figure 2,
define how a single statement is transformed into a seman-
tically equivalent, hardened version. This approach to fault
tolerance performs N redundant computations and checks
for inequalities among the N results. Results are saved into

Control

Second-chance Final-wishAdjudicator

Voter

• (Weighted) Mean voter
• Median voter
• Exact majority voter
• ...

Fig. 3. Structure of Fault-Handling Policies

N temporary variables (y[0] to y[N−1]). Of these, one is
randomly picked and returned in the variable Y as the result.
Both the temporary and the result variables are checked for
consistency by invoking EQUALS(y[0], ..., y[N−1], Y). If
the results are inconsistent the fault handler is invoked.

As shown in Figure 3, fault-handling policies can have a
hierarchical structure. Some of the policies serve merely as
control extensions to a possible next-level policy. This allows
more fault categories to be handled. An example of this is the
second-chance policy that handles transient faults of varying
duration, and if the fault remains after the specified number of
iterations, a secondary policy is invoked. The final-wish policy
allows an arbitrary statement to be executed before invoking a
secondary policy. For instance, the specified statement could
clean up possible side-effects. Terminal policies, on the other
hand, make the final decision on how to unify the results of
the redundant computations. This category includes the adju-
dicator policy that implements common voting strategies [11].
Currently, our framework includes a (weighted) mean voter, a
median voter, and an exact majority voter based on the MJRTY
algorithm [12].



B. Optimizer-Proof Source Code Redundancy

ROSE::FTTransform detects transient processor faults via
redundant execution of critical source code statements. How-
ever, naive duplication of source code does not work well with
back-end compilers that detect and remove redundant com-
putation via common subexpression elimination (CSE). We
therefore design a special source code translation to preserve
the redundant computation even when compiler optimizations
are enabled.

Figure 4 shows the original kernel (kernel1 () at line
2) of a Jacobi iteration on three points of a 1-D array.
Many N-modular redundancy systems can be implemented
by extending a double modular redundancy (DMR) system
in which additional N-2 redundancy is introduced only when
the baseline DMR reports issues. In the transformed code
(kernel2 () at line 11), instead of naively duplicating the
statement to be protected (line 18), we introduce a pointer (c2
at line 19) to access all array elements. The pointer is obtained
through an additional function argument of kernel2 () . The
pointer is assigned the correct value at the kernel’s call site,
before kernel2 () is invoked. From the point of view of a
compiler without interprocedural pointer analysis, the right-
hand expression of the duplicated statement (line 19) may
access totally different array elements from the right-hand
expression of the original statement. The redundant right-hand
side computation will thus survive CSE.

1 /∗ O r i g i n a l J a c o b i 1−D , 3−p o i n t s c o m p u t a t i o n k e r n e l ∗ /
2 void k e r n e l 1 ( )
3 {
4 i n t i ;
5 f o r ( i =1 ; i<SIZE−1; i = i +1)
6 {
7 d [ i ] = 0 .25∗ c [ i −1] + 0 .5∗ c [ i ] +0.25∗ c [ i + 1 ] ;
8 }
9 }

10 /∗ Trans formed k e r n e l w i t h r e d u n d a n t c o m p u t a t i o n ∗ /
11 void k e r n e l 2 ( double ∗c2 )
12 {
13 double B i n t r a [ 3 ] ;
14 i n t i ;
15 f o r ( i =1 ; i<SIZE−1; i = i +1)
16 {
17 /∗ B a s e l i n e do ub l e modular redundancy (DMR) ∗ /
18 B i n t r a [ 0 ] = 0 .25∗ c [ i −1]+0.5∗ c [ i ]+ 0 .25∗ c [ i + 1 ] ;
19 B i n t r a [ 1 ] = 0 .25∗ c2 [ i −1]+0.5∗ c2 [ i ]+ 0 .25∗ c2 [ i + 1 ] ;
20 d [ i ]= B i n t r a [ 0 ] ;
21 i f ( ! e q u a l ( B i n t r a [ 0 ] , B i n t r a [ 1 ] , d [ i ] )
22 {
23 /∗ A d d i t i o n a l N−2 redundancy and
24 f a u l t h a n d l i n g mechanism o m i t t e d here . . . ∗ /
25 }
26 }
27 }
28 . . .
29 /∗ c a l l s i t e do ing p o i n t e r d e c l a r a t i o n and a s s i g n m e n t ∗ /
30 double ∗c2 = c ;
31 k e r n e l 2 ( c2 ) ;

Fig. 4. Source Code Redundancy

C. Implementation

ROSE::FTTransform is built using the ROSE source-to-
source compiler infrastructure [9], [10], an open source in-
frastructure to build source-to-source program transformation

and analysis tools for large-scale Fortran 77/95/2003, C, C++,
OpenMP, and UPC applications. Internally, it generates a uni-
form abstract syntax tree (AST) as its intermediate represen-
tation (IR) for input codes. Sophisticated compiler analyses,
transformations, and optimizations are developed on top of the
AST and encapsulated as simple function calls that tool devel-
opers can readily leverage. ROSE is particularly well suited
for building custom tools for static analysis, program opti-
mization, arbitrary program transformations, domain-specific
optimizations, performance analysis, and cyber-security.

The translator is initialized by defining which fault-handler
configuration(s) will later be used. Each actual transformation
depends on a traversal function to retrieve applicable state-
ments. In particular, the right-hand expression of a statement
may have side effects (via function calls, for example) that
invalidate the legitimacy of redundant computation. Side effect
analysis becomes essential for detecting such situations. An
AST visitor function is used to collect statements following
“#pragma resiliency” nodes. AST transformation is then per-
formed to add fault detection and handling support for the
collected statements.

III. RESULTS

A. Experimental Environment

As test inputs, we choose a set of computation kernels that
include the Livermore Loops [1], Jacobi iteration, and some
specific stencils. Our test platform is Hopper, a Cray XE6
machine provided by the National Energy Research Scientific
Computing Center (NERSC). The node we use runs 64-bit
SUSE Linux Enterprise Server 11.1 on four quad-core AMD
Opteron processors and 129 GB main memory. Each of the
AMD processors has 64KB L1 data cache (with a 64-byte line
size), 512KB L2 cache, and 6MB L3 cache. The compiler we
use is GCC 4.3.4.

B. Effectiveness of Optimizer-Proof Code Redundancy

We use hardware counters to determine whether redundant
statements introduced for fault detection survive compiler
optimizations. We instrument the kernel in Figure 4 using
PAPI [13] to collect the number of floating point instruc-
tions (PAPI FP INS). Compared to the original version, the
reported number of floating point instructions is doubled for
the transformed kernel (for all optimization levels [O1 to O3]
of GCC 4.3.4), which means that the introduced redundant
computation successfully survived the GCC optimizations.

To check the necessity of our special transformation, we
tested two alternatives: 1) naive duplicating of source code;
and 2) burying naively duplicated statements in a new basic
block. In both cases, the reported number of floating point
instructions of the transformed code is the same as that of
the original kernel for all optimization levels. This means
that: 1) naive redundant computation could not even survive
optimization level O0, and 2) GCC uses global common
subexpression elimination (CSE) over each function entirely,
instead of just applying it locally within each basic block.



C. Overhead of Code Redundancy

To study the fixed overhead of duplicated execution intro-
duced by our fault-tolerance transformation (excluding over-
head from the incidental N-2 redundancy and fault-handling
mechanism), we use three versions of Jacobi iteration micro-
kernels: 1D with one point, 1D with three points, and 2D with
five points. The fixed overhead is calculated as (T trans −
T orig)/T orig, where T orig denotes the execution time
of the original kernel, and T trans denotes the execution
time of the transformed kernel with redundant computation
for fault detection (with the optional handling mechanism not
activated).

Theoretically, duplicated execution should have little impact
on the final execution time if the original execution suffers
many cache misses or bandwidth limits that leave room to hide
the cost of computation. Similarly, if the original execution is
already computation-bound, the duplicated execution cannot
enjoy this benefit. To prove this theory, we conduct experi-
ments varying factors directly related to memory latencies: 1)
using different sizes for the input data set, including larger
arrays that cannot fit in cache; 2) using different iteration
strides (one and eight) to access array element such that
accessing non-consecutive elements touches different cache
lines, causing more cache misses; and 3) using different
element sizes (single and double precision), where the larger
array elements demand more memory bandwidth.

1-D 1-Point 1-D 3-Point 2-D 5-Point
Iteration stride = 1

Array size: 1 million for 1-D, 4096x4096 for 2-D
float 17.33% 29.91% 30.19%
double 27.55% 22.27% 22.60%
Array size: 16 million for 1-D, 16Kx16K for 2-D
float 13.87% 25.58% 25.03%
double 17.43% 19.97% 17.37%

Iteration stride = 8
Array size: 1 million for 1-D, 4096x4096 for 2-D

float 8.36% 19.12% 25.39%
double 5.10% 6.33% 5.44%
Array size: 16 million for 1-D, 16Kx16K for 2-D
float 3.57% 10.30% 14.54%
double 0.05% 0.80% 1.59%

TABLE I
FIXED OVERHEAD OF OUR TRANSFORMATION, USING GCC -O3

Table I shows that the fixed overhead introduced by dupli-
cating execution of key kernel statements ranges from 0% to
30%. It is obvious that this overhead is heavily influenced by
the memory latencies of the original code: the more latency,
the better hidden the cost of the duplicated computation. The
minimum overhead is observed when the Jacobi iteration uses
a non-consecutive stride, a large data set, and a large element
size. Out of the three factors we explore, changing stride
dominates the impact on overhead.

Note that this study is a worst-case analysis based on
sequential execution of kernels, and thus only the uniprocessor
(single-threaded) memory access latency can be exploited to

hide duplicated computation. We expect that exascale com-
puting applications will provide more opportunities to hide
the overhead (e.g., latencies caused by multi-threading, data
movement across CPUs and GPUs, and MPI calls).

As additional data points, we apply the resiliency transfor-
mation to a few randomly selected benchmarks (#1, #4, #5,
and #11) from the Livermore Loops, for which we observe
overheads of 20%, 40%, 26%, and 2%, respectively. Ongoing
work is evaluating more of these benchmarks to generate more
data beyond the initial results presented here.

D. Fault Coverage

In evaluating the fault coverage of our approach we again
choose kernels #1, #4, #5, and #11 of the Livermore Loops
suite. For each kernel, we compare the original kernel to two
versions produced using the proposed framework.

• Mean – DMR with a possible extra computation and
mean voting is added.

• Exact – DMR with a possible extra computation and
exact majority voting is added.

We use the dynamic analysis Intel PIN infrastructure [14]
to inject faults into the execution and to measure how well
we have supported detection and correction of these faults
during execution. During an initial training run, the number
of dynamic instructions (within the application — we ignore
library functions) and the correct outputs are recorded. In
subsequent testing runs (in our case 500), we randomly choose
one dynamic instruction and one input register (among the
general-purpose and floating-point registers). We flip a random
bit in the input register and track the termination condition
or output of the program. Each run is categorized as correct
output, fail silent, access fault (invalid memory access), arith-
metic error (e.g., divide by zero), or invalid instruction (in the
current evaluation, the latter two categories were not applicable
to the mentioned kernels or the fault-injection configuration
used). This is similar to the approach used by Zhang et al [15].

Figure 5 illustrates the results of the evaluation. Although
the framework is able to improve fault coverage in the first
kernel, it makes only marginal improvements in the remaining
three. In kernel #4 the framework adds excessive redundancy
in some cases, without being able to correctly update the read
references to the new variable with the redundant values. This
causes subsequent calculations to use values that haven’t been
checked for faults, which increases the chance of propagating
a fault. Kernels #5 and #11 perform many more (array based)
memory accesses than calculations. Although this exposes
more opportunities to hide the overhead of redundant com-
putations, it also adds more single points of failures as a fault
in the array index could result in an access fault.

IV. RELATED WORK

Several semi-automated approaches to software fault toler-
ance have been proposed. The Master-Slave pattern [16] per-
forms requested functions in N-Version Programming (NVP).
Daniels et al. [17] extend this by including other patterns,
such as recovery blocks, as building blocks. The blocks can



Kernel (Version)

R
un

s 
in

 e
xe

cu
tio

n 
ca

te
go

ry
Fault coverage

 

 

1 
(N

or
m

al
)

1 
(M

ea
n)

1 
(E

xa
ct

)
4 

(N
or

m
al

)
4 

(M
ea

n)
4 

(E
xa

ct
)

5 
(N

or
m

al
)

5 
(M

ea
n)

5 
(E

xa
ct

)
11

 (N
or

m
al

)
11

 (M
ea

n)
11

 (E
xa

ct
)0

100

200

300

400

500

Correct output
Fail silent
Access faults

Fig. 5. Fault coverage evaluation of Livermore loops kernels #1, #4, #5 and
#11

be recursively combined, and different adjudicators allow
the programmer more flexibility in choosing a fault-handling
strategy. Although semi-automated approaches are useful in
implementing SIHFT, we believe that much of the required
information for implementing fault tolerance can be deduced
by analysis of the source code. Together with a fault-handling
specification, the compiler can produce a hardened and seman-
tically equivalent implementation.

Previous work on compiler solutions to fault tolerance
include control-flow checking [18], [19], algorithm-based fault
tolerance (ABFT) [20], heuristic rules [21], [22], asser-
tions [23], and process [24] and instruction duplication [25],
[26]. These methods range from specialized (efficient but
only applicable to certain parts/algorithms of the program)
to general (protecting whole programs but potentially com-
promising performance). A major obstacle to software-based
redundancy is its high overhead in terms of code size and exe-
cution time (Rebaudengo et al. [22] report code size increases
of 4.72 times and slowdowns of 4.56 times). Minimizing
overhead requires the consideration of and careful choice
among multiple methods. For example, Yu et al. [27] exploit
the inherent redundancy in programs and use boolean logic
to find outcome-tolerant branches, which can help reduce
the overhead. Our work provides source code annotations to
selectively harden critical portions of programs.

V. CONCLUSION AND FUTURE WORK

Our work uses the compiler to introduce redundant compu-
tations into source code in order to detect transient processor
faults and to recover from them. Two major concerns have
been explored. The first concern is the overhead introduced
by our approach. N-way replication of computation in a
computationally bound kernel multiplies the overhead by N,

but we have demonstrated that double modular redundancy
(e.g., N = 2) can be used as a first step to reduce the
overhead of larger N (N >= 3). The overhead is sensitive
to the input code and is tied directly to the extent to which
the original code is computationally bound. In the worst case
the overhead could reach 100%. In our tests, the overhead is
typically significantly less, since many kernels are memory-
intensive. Where the overhead is judged to be excessive, this
may drive compiler-based resiliency transformations to be used
selectively. In the future, compiler analyses can determine
where to apply redundancy.

The second concern is the impact of compiler optimizations
on the redundant computation introduced for fault detection.
Our work has shown that naively duplicated computation can-
not survive even the lowest level of optimization. Exploiting
the difficulty of interprocedural pointer analysis, we designed
a special transformation that avoids the negative impact of
compiler optimizations on the desired redundant computation.

Given that not all Single Event Upset (SEU) events [15],
[24] lead to a fault, we are currently looking into minimizing
the number of redundant computations by taking into account
the failure probability of the operation and its sensitivity to
input changes. Finally, introducing redundancy at the high-
level source may have the drawback that preserving the re-
dundant computation may require that compiler optimizations
be disabled or made more complicated, which could seriously
hamper the introduction of resiliency transformations. More
research is required to explore this subject.

REFERENCES

[1] LLNL, “Livermore loops benchmark,”
http://www.wikipedia.org/Livermore loops.

[2] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing the
effects of transient faults on a high-performance processor pipeline,”
in Proceedings of the 2004 International Conference on Dependable
Systems and Networks, ser. DSN ’04. Washington, DC, USA: IEEE
Computer Society, 2004.

[3] R. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies,” IEEE Transactions on Device and Materials Reliability,
vol. 5, no. 3, pp. 305–316, sept. 2005.

[4] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir, “To-
ward exascale resilience,” International Journal on High Performance
Computing Applications, vol. 23, pp. 374–388, November 2009.

[5] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa, K. Morita,
T. Muta, T. Motokurumada, S. Okada, H. Yamashita, Y. Satsukawa,
A. Konmoto, R. Yamashita, and H. Sugiyama, “A 1.3 ghz fifth generation
sparc64 microprocessor,” in IEEE International Solid-State Circuits
Conference (ISSCC), 2003. Digest of Technical Papers., vol. 1, Feb 2003,
pp. 246–491.

[6] T. Austin, “Diva: a reliable substrate for deep submicron microar-
chitecture design,” in International Symposium on Microarchitecture
(MICRO’99, 1999, pp. 196–207.

[7] J. Wakerly, “Partially self-checking circuits and their use in performing
logical operations,” IEEE Transactions on Computers, vol. C-23, no. 7,
pp. 658–666, july 1974.

[8] V. D. Florio and C. Blondia, “A survey of linguistic structures for
application-level fault tolerance,” ACM Comput. Surv., vol. 40, no. 2,
pp. 6:1–6:37, May 2008.

[9] D. Quinlan et al., “ROSE Compiler Infrastructure,”
http://www.rosecompiler.org/.

[10] D. Quinlan and C. Liao, “The ROSE Source-to-Source Compiler In-
frastructure,” in Cetus Users and Compiler Infrastructure Workshop, in
conjunction with PACT 2011, Galveston Island, Texas, USA, Oct. 2011.



[11] D. Blough and G. Sullivan, “A comparison of voting strategies for
fault-tolerant distributed systems,” in Symposium on Reliable Distributed
Systems, oct 1990, pp. 136 –145.

[12] R. S. Boyer and J. S. Moore, “Mjrty - a fast majority vote algorithm,”
in Automated Reasoning: Essays in Honor of Woody Bledsoe. Kluwer
Academic Publishers, 1991, pp. 105–117.

[13] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci, “A scalable
cross-platform infrastructure for application performance tuning using
hardware counters,” in Proceedings of the 2000 ACM/IEEE conference
on Supercomputing, November 2000.

[14] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in Programming
Language Design and Implementation, ser. PLDI ’05, 2005, pp. 190–
200.

[15] Y. Zhang, J. W. Lee, N. P. Johnson, and D. I. August, “Daft: decoupled
acyclic fault tolerance,” in International Conference on Parallel Archi-
tectures and Compilation Techniques, ser. PACT ’10. ACM, 2010, pp.
87–98.

[16] F. Buschmann, “Pattern languages of program design,” J. O. Coplien and
D. C. Schmidt, Eds., New York, NY, USA, 1995, ch. The Master-Slave
Pattern, pp. 133–142.

[17] F. Daniels, K. Kim, and M. Vouk, “The reliable hybrid pattern: a
generalized software fault tolerant design pattern,” in Pattern Languages
of Programming (PLoP), 1997, pp. 1–9.

[18] S. Yau and F.-C. Chen, “An approach to concurrent control flow
checking,” IEEE Transactions on Software Engineering, vol. SE-6, no. 2,
pp. 126 – 137, march 1980.

[19] N. Oh, P. Shirvani, and E. McCluskey, “Control-flow checking by
software signatures,” IEEE Transactions on Reliability, vol. 51, no. 1,
pp. 111 –122, mar 2002.

[20] K.-H. Huang and J. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Transactions on Computers, vol. C-33, no. 6,
pp. 518 –528, june 1984.

[21] A. Benso, S. Chiusano, P. Prinetto, and L. Tagliaferri, “A c/c++
source-to-source compiler for dependable applications,” in International
Conference on Dependable Systems and Networks (DSN), 2002., 2000,
pp. 71 –78.

[22] M. Rebaudengo, M. Reorda, M. Violante, and M. Torchiano, “A source-
to-source compiler for generating dependable software,” in First IEEE
International Workshop on Source Code Analysis and Manipulation,
2001., 2001, pp. 33 –42.

[23] M. Rela, H. Madeira, and J. Silva, “Experimental evaluation of the fail-
silent behaviour in programs with consistency checks,” in Proceedings
of Annual Symposium on Fault Tolerant Computing, 1996., jun 1996,
pp. 394 –403.

[24] A. Shye, J. Blomstedt, T. Moseley, V. Reddi, and D. Connors, “Plr:
A software approach to transient fault tolerance for multicore architec-
tures,” IEEE Transactions on Dependable and Secure Computing, vol. 6,
no. 2, pp. 135 –148, april-june 2009.

[25] N. Oh, P. Shirvani, and E. McCluskey, “Error detection by duplicated in-
structions in super-scalar processors,” IEEE Transactions on Reliability,
vol. 51, no. 1, pp. 63 –75, mar 2002.

[26] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August, “SWIFT:
software implemented fault tolerance,” in International Symposium on
Code Generation and Optimization (CGO), 2005., march 2005, pp. 243
– 254.

[27] J. Yu, M. J. Garzarán, and M. Snir, “Languages and compilers for
parallel computing,” V. Adve, M. J. Garzarán, and P. Petersen, Eds.
Berlin, Heidelberg: Springer-Verlag, 2008, ch. Techniques for Efficient
Software Checking, pp. 16–31.


