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Abstract—
As the size of supercomputers increases, the probability

of system failure grows substantially, posing an increasingly
significant challenge for scalability. It is important to provide
resilience for long running applications. Checkpoint-based fault
tolerance methods are effective approaches at dealing with faults.
With these methods, the state of the entire parallel application
is checkpointed to reliable storage. When a failure occurs, the
application is restarted from a recent checkpoint.

In previous work, we have demonstrated an efficient double
in-memory checkpoint and restart fault tolerance scheme, which
leverages Charm++’s parallel objects for checkpointing. In this
paper, we further optimize the scheme by eliminating several
bottlenecks caused by serialized communication. We extend the
in-memory checkpointing scheme to work on MPI communi-
cation layer, and demonstrate the performance on very large
scale supercomputers. For example, when running a million
atom molecular dynamics simulation on up to 64K cores of a
BlueGene/P machine, the checkpoint time was in milliseconds.
The restart times were measured to be less than 0.15 seconds on
64K cores.

I. INTRODUCTION

One concern of high performance computing for exascale
is the ability to tolerate faults. Even though today’s supercom-
puters are composed of reliable parts, the mean time between
failure (MTBF) still drops down as the number of processors
increases. Jaguar, the 3rd ranked supercomputer on top 500
today, had 2.33 average failures per day during the period from
August 2008 to February 2010. For today’s scientific simula-
tion running for many days, such failures are catastrophic. One
common solution to support fault tolerance are the disk-based
checkpoint/restart schemes. In these methods, applications
or HPC system checkpoint the state of the entire parallel
application needed for restart to a reliable medium, typically
a NFS fault free space. However, periodical checkpointing to
such slow storage can be expensive, for example, it could
consume up to 20% of the application time [1].

There are two main methods to start checkpointing: system
or application initiated checkpoint. System based checkpoint
may take 20 to 40 minutes to checkpointing for the best
machines on the top 500 list (2008) [2], [3]. Therefore,
system level checkpointing to the file system is clearly im-
practical at exascale. Application-level checkpointing can help
reducing checkpoint size, but is still challenging in terms
of the scalability at exascale, and places additional burden

on application programmer. A runtime-level checkpointing
scheme reduces the burden on the programmer, especially by
automating the protocol for triggering checkpoints, and carry-
ing out a recovery. In our previous work [4], [5], we explored
an in-memory checkpoint/restart scheme in a fault tolerant
CHARM++ [6] and Adaptive MPI [7] runtime systems. The
protocol does not rely on any reliable storage for checkpoints.
The restart protocol allows application to continue to run on
the surviving processors after a crash without a full stop. The
protocol uses local memory or disk for checkpoints, and can
leverage the high speed communication network to speed up
the checkpointing process.

The basic idea is to periodically create two checkpoints for
each pieces of application data encapsulated in CHARM++
objects. One checkpoint is stored in local storage (memory
or local disk), and the other is stored on a different node,
called a buddy node. On failure, the surviving nodes restores
their object data from the local checkpoints, whereas the
objects on a chosen spare node (to replace the failed one)
are restored using checkpoints stored at a buddy node. This
method is capable of tolerating all single failures, and most
multiple failures, if failed nodes are not buddy to each other.
Although this scheme does not provide an infallible method
of fault tolerance, it should be sufficient to apply to very large
machines as single failures are the most common failure in
today’s HPC system. For example, 95% of the failures on
TSUBAME are single failure.

The two checkpoints constitute a memory overhead for this
scheme, but (somewhat surprisingly) this is tolerable for a
large class of applications: those that have a smaller memory
footprint at checkpoint. These include molecular dynamics, N-
body codes, certain quantum chemistry (nanomaterials codes),
etc. For others, the scheme relies on future local storage (or
of course, a global file system as a fall back).

In this paper, we study the techniques required in the
double in-memory checkpoint and restart scheme for very
large scale. We examine the overheads of the implementation
that could potentially limit scalability, and further improve the
implementation by optimizing communication (especially the
collective communication).

One obstacle for demonstrating fault tolerance on MPI
applications is that the queueing system on supercomputers
kills the entire job when a process fails. To work around this



limitation, we developed a fault injection scheme that mimics
a failure of a process without actually killing it. This allows us
to demonstrate the fault tolerance scheme with MPI on very
large scale supercomputers.

The rest of this paper is organized as follows. Section II
describes the double in-memory checkpoint/restart protocol as
background. The technique we use to demonstrate it for MPI
applications and further optimization of the checkpoint/restart
scheme to exascale is presented in Section III. Performance
results of the optimized fault tolerance scheme on up to 64K
cores are provided in Section IV. We discuss some related
work in Section V, and finally, Section VI concludes the paper.

II. BACKGROUND

In this section, we summarize a design of a scalable in-
memory checkpoint-based fault tolerance scheme targeting
very large scale parallel applications. The supporting parallel
runtime systems are Charm++, a message driven runtime
system, and Adaptive MPI [7], an implementation of MPI on
top of Charm++. These fault tolerant runtimes take advantage
of the migratability objects and threads.

A. Runtime Support for Checkpoint/Restart
The fault tolerant runtime system supports checkpointing of

application data in two levels: fully automated checkpointing
or flexible user-controlled checkpointing by additional helper
functions.

Adaptive MPI [8] runs MPI “processes” in light-weight
threads, which are easier for checkpoint and restart to handle
compared to processes. Thread migration during restart would
raise the problem of pointer reference. Isomalloc [8], [9] is
used to solve this problem for fully automated checkpointing,
similar to the technique in the PM2 system [10]. Isomalloc
reserves a range of virtual address space for all the processors.
During checkpointing, virtual addresses of the MPI threads or
objects and the data associated with them are saved automati-
cally. A object or thread can then be restored on any processor
since the allocated data can be restored without changing its
address.

Another option is that users can write their own helper
functions to pack and unpack heap data for checkpointing and
restoring an object. This is sometimes useful in reducing the
size of data involved in checkpointing and restoring. Appli-
cation developers could use application specific knowledge to
pack only the live variables at the time of checkpointing, or
use a compiler to automate this [11]. This method reduces
the data amount to checkpoint, and so checkpointing becomes
faster.

B. Basic Double In-Memory Checkpoint/Restart Scheme
Checkpoint/restart scheme requires nodes to frequently save

their complete state to stable storage or the memory of
another node. The optimum time between checkpoints has
been analyzed elsewhere [12], [13].

The in-memory checkpointing scheme [4] introduced the
idea of diskless checkpointing that checkpoints data in mem-
ory. It uses a coordinated checkpoint strategy, which requires
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Fig. 2: In-Memory Single Checkpoint

applications to have a synchronization point where they could
start a global collective operation to checkpoint. In order to
handle one failure at a time, a common case scenario, one
checkpoint of the application state in the memory of a different
processor is not sufficient as illustrated in Figure 1. In this
scenario with 4 processors, each Charm++ object (represented
as a circle) checkpoints only one copy of its checkpoint
(represented as a triangle). When processor 2 crashes, the
checkpoints for object d and e in memory of that processor are
permanently lost, so we couldn’t recover from the checkpoint.
This suggests that at least two copies of the checkpoint at
different locations are needed. In particular, we adopted an
in-memory double-checkpointing scheme which can tolerate
at least one failure at a time.

Figure 2 illustrates an example of this scheme. The top
half of the figure shows the scenario before one processor
crashes. Each circle represents an object being checkpointed,
while each triangle and square represents its first and second
checkpoints. We call these two processors buddy processors
for the checkpointing object. Note that one of the two buddy
processors can be the same processor where the object resides.
This can help reduce the checkpointing overhead, since the



checkpointing is basically a local memory copy, which is much
faster than accessing memory of remote processors. Overall,
compared to the traditional on-disk checkpointing, in-memory
checkpointing scheme uses memory as storage in a distributed
way, taking advantage of the high speed interconnect, which
tends to be more efficient.

The restart procedure is initiated by a crash of a physical
processor. On clusters, the crash detector in the runtime system
detects the crash through broken pipe socket errors. When the
restart procedure is initiated, all surviving processors examine
the checkpoints in their memory and check for missing buddy
processors. A new processor is chosen (which can be either a
spare processor, or a running processor) to replace the crashed
processor and the latest checkpoint data is copied to that
processor to maintain the double checkpoints. One of the two
buddy processors is then responsible for restoring the corre-
sponding objects from its checkpoints in memory. At restart,
if the replacement processor is from a running processor, then
load imbalance may occur since that processor restores more
checkpoints. This can be fixed by a load balancing phase after
restart [4].

The bottom half of the Figure 2 illustrates a snapshot of the
objects and their checkpoints distributed on processors after
a recovery is complete. The lost checkpoints on the crashed
processor 2 are recovered to processor 3 and processor 0
respectively. Processor 3 is chosen to restore processor 2’s
objects(f,g) locally to avoid communication overhead, since
Processor 3 is processor 2’s original buddy processor.

Our protocol ensures the recovery from a single node failure
and we can recover from multiple concurrent failures if the
crashed processors are not buddies to each other.

III. OPTIMIZATIONS FOR SCALABILITY

In previous work [4], we have shown that the basic scheme
achieved good performance on clusters of more than a hundred
cores [4]. However, when we test this scheme on a Blue
Gene/P machine with tens of thousands of cores, we found
both the checkpointing and restarting time increases almost
linearly as the number of processors increases, as shown in
Figure 3 and 6, which is not scalable. Although the absolute
performance is still surprisingly good (for example, a restart on
a 64K processors only took less than 4 seconds), for exascale
systems, it might still be a problem when there are, for exam-
ple, millions of cores. This motivates the work in this paper
to further optimize the double in-memory checkpoint/restart
scheme for exascale machines.

A. Optimization Techniques

Stale message handling: Since the double in-memory
scheme restarts application on the fly without actually restart-
ing the parallel job, at the beginning of the restart phase, when
the application is restored to recent checkpoints, old messages
that are sent before checkpoints are restored are still in trans-
mission or buffered, and possibly mixed with system messages
due to the ongoing parallel restart. Even more complicated, it
is possible for the stale messages to be eventually delivered on

a node after checkpoints are restored. Therefore, it is critical
to discard all stale messages from the crash. To differentiate
the stale messages with the legal messages sent after crash,
an epoch number is used in our double in-memory checkpoint
scheme. However, fault detection and fault announcement to
all nodes occurs in parallel with the continuous execution
of the surviving nodes. When computation only depends on
neighboring cores, the computation on those cores may not
be affected and keep going even after a node is crashed
until the fault notification message finally arrives. During this
period of time, more “stale” messages may be generated from
those cores, which increases the burden of discarding these
stale messages. On very large scale machines, dealing with
stale messages system wide may be expensive, therefore, it
is critical to throttle the execution of the program as soon as
possible after a crash is detected to prevent propagation of
the stale messages. In the optimized scheme, we introduce
a new phase in restart which is dedicated to throttling the
stale messages. This phase starts immediately after a fault
is detected. All nodes enter a state in which they discard
all received messages until a quiescence is detected, which
means there are no stale messages. The quiescence detection
is an efficient tree-based algorithm that has the complexity of
O(logP ), where P is the number of nodes.

Optimizing small messages using streaming techniques:
During restart, many small bookkeeping messages are sent to
update the runtime system about the migratable objects. For
example, for each object restored, a small message containing
its new location is sent to its home processor. On very large
systems, these extremely large number of small messages
become a problem - it causes traffic jam and greatly slows
down the restart process. In the optimized version, we applied
a streaming optimization technique that combines small mes-
sages sent to the same destination processors into one bigger
message.

Optimizing collective communication: In the original
scheme, several barriers are needed during checkpoint and
restart to ensure the order of checkpoint/restart phases, for
example, the recovery of the array elements from checkpoints
happens only after removing all the stale object data in
memory of all processors. These barriers create a scalability
challenge. Although, efficient spanning tree-based reduction
implementation exist in CHARM++, it can not be easily used
in this case. This is because the implementation can not
handle the case when there is a crashed processor in the
tree and the inconsistent reduction sequence number caused
by the failure. Therefore, the original scheme implemented
a simple fault tolerant barrier based on point-to-point com-
munication synchronized by a central processor. This simple
implementation is sufficient for machines with hundreds of
nodes, however, clearly, it does not scale. To optimize the
fault tolerant barrier, we re-implemented it based on the re-
constructed spanning tree during restart. The new barrier
also ignores the reduction sequence number, which is only
needed when there are multiple concurrent reductions. During
checkpoint/restart, we only use barrier to separate different
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Fig. 4: LeanMD Checkpoint time after Optimization (Note: time in
milliseconds)

phases, there is no multiple concurrent reductions occurring.
We found the new optimized barrier significantly improves the
checkpoint/restart performance. For example, on 64K cores,
the restart time is dramatically reduced from 3.6s to 0.15s for
an 1-million atom system. The experiment result is detailed in
Section IV.

B. Fault Tolerance for MPI Application on Supercomputers

One obstacle for demonstrating fault tolerance on MPI
applications is that the job schedulers on supercomputers kill
the entire job when a process fails. To allow any of the fault
tolerance schemes to work with the job queueing systems, it
would require modification to the job scheduler to let a fault
tolerant job recover itself. However, such change to the job
scheduler is not feasible on today’s supercomputers. Instead,
we developed a scheme that mimics a failure of a process
without actually killing it.

This fault injection scheme is implemented as a DieNow()
function, which is inserted by the user at any place in their
program to trigger a failure, typically controlled by a random
number generator. When the DieNow() function is called by a
process, the process will be forced to hang and stop responding
to any communication as if it has died. The fault detection
scheme is implemented as a keep-alive protocol. Each MPI
process pings its buddy process periodically to inform its
buddy that it is still alive. If there is no response from a process
for a certain period of time, the buddy process will diagnose
that the process is dead, and announce the dead process’s rank
to all other processes. All processes collectively respond to the
“failure” and execute the restart protocol. A pool of some spare
MPI processes are created at the job startup time to be used for
restart. These processes do not initially run user application
code. During restart, one spare MPI process will be chosen to
replace the “failed” MPI rank to execute the user application.

Compared to the real scenario, the only difference in our
emulated fault injection scheme is that the dead process does
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not really go away. However, the rest of the fault tolerance
protocol is the same as it would happen in real scenario.
When a job scheduler is extended to allow a failed process,
our scheme can immediately take advantage of it to provide
true fault tolerance support to MPI applications.

IV. EXPERIMENTS

We evaluate the overhead of periodic checkpointing as well
as the performance of restarting applications after a failure.

Two applications are used in our experiments. One is
LeanMD, a molecular dynamics simulation program written
in CHARM++. As typical molecular dynamic simulation pro-
grams, this application has a medium memory footprint. The
other benchmark is Jacobi, a 7 point stencil MPI program
which uses 3D decomposition. It has a larger memory foot-
print.

The experiments are done on Intrepid at Argonne National
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Laboratory, and Kraken at the National Institute for Computa-
tional Science. Intrepid consists of 163, 840 cores, 80 terabytes
of RAM, with a peak performance of 557 teraflops. Kraken
has 9, 408 compute nodes and each node contains 12 cores,
16GB of memory, with a peak performance of 1.17 petaflops.

A. Checkpoint Time

Figure 3 shows the checkpoint time of LeanMD before op-
timization, on from 4K to 64K cores of Intrepid. Two different
size molecular systems are uses in the experiments, one with
125, 000 atoms, and the other with 1 million atoms. As can
be seen in the figure, although the checkpoint overhead is
relatively small because of our in-memory scheme, it increases
linearly as the the number of cores increases. This was largely
due to the necessity of using an inefficient collectives protocol
during recovery.

In comparison, Figure 4 illustrates the time to checkpoint
LeanMD after applying the optimizations described in Sec-
tion II. Instead of using a point-to-point implementation of
a fault-aware barrier, using the spanning tree-based barrier
reduces the time to checkpoint. The affect of the optimization
can be observed in Figure 4. We can see that the checkpoint
time remains almost flat when number of core increases from
4K to 64K for both molecular systems. In particular, the
checkpoint time on 64K cores for the 1 million molecular
system is only about 4.2 ms. In comparison, the simulation in
LeanMD would take tens of milliseconds per time-step.

The second benchmark is a Jacobi program written in MPI,
which has a larger memory print for checkpoint. In this exper-
iment, we keep the checkpoint size fixed as 90 megabytes per
core, and test the checkpoint time on Kraken supercomputer,
with varying number of cores from 2048 to 32, 768. Note
that as the number of cores doubles, the total amount of
checkpoint across the entire system also doubles. This Jacobi
MPI program runs on our fault tolerant MPI runtime, AMPI,
and uses isomalloc for fully automated checkpointing. The
result is illustrated in Figure 5. As we can see that although

the total checkpoint size doubles every time when the number
of cores doubles, the checkpoint time remains constant in
these tests, and is less than 0.6 second. This demonstrates
that our in-memory checkpoint scheme is highly efficient, and
can potentially scale to even larger systems.

B. Recovery Performance

We use LeanMD to evaluate the restart performance, with
the same two different size molecular systems. Restart is
performed on Kraken, using the fault injection techniques
described in Section III-B. The recovery time is measured
from the time a failure is detected to the point where the
application is recovered and ready to continue its execution
from the last checkpoint. The crashed processor is replaced
by a spared processor, and its state is restored from the
checkpoint on the crashed processor’s buddy during this period
of time. The results before the optimization and after are
shown in Figure 6 and 7 for comparison. Since several barriers
are involved in this process to ensure consistency until the
crashed processor is recovered. By using barrier based on
a transient spanning tree constructed during recovery, the
complexity of the recovery overhead is decreased from O(P )
to O(logP ). Before optimization (Figure 6), the restart time
increases almost linearly from 0.2 second on 4K cores to 3.6
second on 64K cores for both molecular systems, while after
optimization, the restart time is dramatically reduced, which
takes only 0.06 second on 4K cores up to 0.15 second on 64K
cores for the 1 million atom system. Overall, the restart process
of our in-memory fault tolerance scheme is very efficient,
partly due to the fault tolerance protocol which allows the
application to restart from the last checkpoint in the local
memory. It also benefits from the fact that the application can
restart without a full stop, so the job turn-around time and a
new job submission are avoided.

V. RELATED WORK

There are three main methods to checkpoint HPC applica-
tion: uncoordinated checkpointing, coordinated checkpointing



and communication-based checkpointing. In uncoordinated
checkpointing, each process independently saves its state.
The benefit is that a checkpoint can take place when it is
most convenient and thus doesn’t require synchronization to
initiate checkpointing. However, uncoordinated checkpointing
is susceptible to rollback propagation, the domino effect [14]
which could cause systems to rollback to the beginning of the
computation, resulting in the waste of a large amount of useful
work. Guermouche et al. [15] proposed an uncoordinated
checkpointing without domino effect with the help of logging
useful application messages, which is applicable to Send-
Deterministic MPI applications. Coordinated checkpointing
requires processes to coordinate their checkpoints in order
to form a consistent global state. Coordinated checkpointing
simplifies recovering from failures because it does not suffer
from rollback propagations. FTI [1] is a multi-level coordi-
nated checkpoint scheme using topology-aware RS encod-
ing with about 8% overhead. BLCR [16] implements kernel
level checkpointing and is widely used in applications with
production quality. In [17] Moody et al. proposed a multi-
level checkpoint and used a Markov probability model to
describe its performance. One drawback for those methods
is that the application couldn’t recover in the current run
just after the failure happens but would require the user to
rerun the application, reading the checkpoint form the disk.
Communication-induced checkpointing allows the processes
to take some of their checkpoints independently while pre-
venting the domino effect by forcing the processors to take
additional checkpoints based on protocol-related information
piggybacked on the application messages it receives from other
processors [18]. However it has scalability issues on large
numbers of processors.

VI. CONCLUSION AND FUTURE WORK

As the size of supercomputers increases, the probability
of system failure grows substantially, posing an increasingly
significant challenge for scalability. This paper presented sev-
eral optimization techniques to a scalable double in-memory
checkpoint/restart scheme to improve its scalability towards
exascale. We demonstrate its performance with a million
atom molecular dynamics simulation on up to 64K cores
of a BlueGene/P machine, and show a checkpoint time in
milliseconds. The restart times were measured to be less than
0.15 seconds on 64K cores.

In future, we plan to implement nonblocking checkpoint
in our scheme. For applications with large memory footprint
running on multicore machines, nonblocking checkpoint could
further overlap checkpoints with computation and thus reduce
the checkpoint overhead.
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