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ABSTRACT

Stochastic network influences complicate graph filter design
by producing uncertainty in network iteration matrix eigen-
values, the points at which the graph filter response is defined.
While joint statistics for the eigenvalues typically elude anal-
ysis, predictable spectral asymptotics can emerge for large
scale networks. Previously published works successfully an-
alyze large-scale networks described by undirected graphs
and directed graphs with transpose-symmetric distributions,
focusing on consensus acceleration filter design for time-
invariant networks as an application. This work expands
upon these results by enabling analysis of certain large-scale
directed networks described by transpose-asymmetric distri-
butions. Specifically, efficiently computable spectral density
approximations are possible for transpose-asymmetric perco-
lation network models with node-transitive symmetry group
and normal mean matrix. Numerical simulations support the
derived approximations and application to consensus filters.

Index Terms— graph signal processing, random graph,
random matrix, spectral statistics, stochastic canonical equa-
tions, filter design, distributed average consensus

1. INTRODUCTION

In order to handle modern data sources with relationships
described by an underlying network structure [1], graph sig-
nal processing techniques have been developed to analyze
data supported by the nodes of a graph [2]. In graph signal
processing, the shift operator W is defined by some matrix
that respects the graph structure, such as the adjacency ma-
trix [3] or Laplacian matrix [2]. Shift-invariant filters arise as
polynomials p (W ) in this shift matrix, with filter response
defined at the eigenvalues {λi(W )} of W [4]. Therefore, for
scenarios described by random graphs, the associated shift
matrix and its eigenvalues become random as they depend on
the graph structure, significantly complicating filter design
problems. However, for networks with many nodes emer-
gent predictability can arise from the large-scale nature of the
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problem that can be turned to advantage. This phenomenon
comes in the form of limiting theorems from random matrix
theory. Although the joint distribution of these eigenvalues
is typically not tractable, the empirical distribution built from
the random eigenvalues of the random matrix sometimes has a
deterministic limit as the size of the matrix grows for suitable
models [5]. The Wigner semicircular law [6], the Marchenko-
Pastur law [7], and the Girko circular law [8] represent three
well-known examples of such limiting behavior for large-
scale random matrices. Such deterministic approximations
to the true empirical spectral distribution can provide useful
information for graph filter design problems. For example,
consider distributed average consensus, the task of iteratively
averaging all node data through only local network commu-
nications [9], which finds use in several applications [10–13].
Graph filters applied at each node can accelerate consensus
convergence [14–20], which can benefit from asymptotic
spectral information for suitable random networks [21–26].

This paper focuses on computing deterministic approxi-
mations to the empirical spectral distribution of matrices that
respect the structure of large-scale random directed networks,
information that is useful for graph filter design optimiza-
tion problems on random topologies when the distribution is
known. The work in this paper accommodates random net-
work models where the link directions have different proba-
bilities, leading to random matrix models that have different
distribution from their transposes. In contrast, [26] has a sim-
ilar purpose but focuses more closely on the filter design as-
pects and only examines directed networks in which both link
directions have identical distribution. Under the less restric-
tive conditions of this paper, additional analysis is necessary.

Section 2 introduces a theorem by Girko [8] useful for
describing the spectral asymptotics of random non-Hermitian
matrices that arise from large-scale random directed networks
with statistically independent links. The section then pro-
ceeds to discuss practical numerical computation of an ap-
proximation to the empirical spectral distribution for random
matrix distributions that are not transpose-symmetric. Finally,
it applies the observations to an example class of matrices
with non-transpose-symmetric distribution. Section 3 demon-
strates through numerical simulations both the approximation
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of the empirical spectral distribution through these methods
and the application of this approximation to the consensus fil-
ter design optimization derived in [26] for the case of directed
networks with non-symmetric link probabilities. Finally, Sec-
tion 4 provides concluding analysis.

2. DIRECTED NETWORKS:
NON-SYMMETRIC DISTRIBUTIONS

The empirical spectral distribution and empirical spec-
tral density for a non-Hermitian matrix ΞN with eigenvalues
λi (ΞN ) are respectively given by the following functions.

FΞN
(x,y)=

1

N

i=N∑
i=1

χ(x≤Re{λi(ΞN )},y≤Im{λi(ΞN )}) (1)

fΞN
(x,y)=

1

N

i=N∑
i=1

δ(x−Re{λi(ΞN )},y−Im{λi(ΞN )}) (2)

While these functions inherit the randomness of the eigenval-
ues of ΞN , their limiting behavior can sometimes be analyzed
for useful information. The following theorem of Girko [8]
allows analysis of random non-Hermitian matrices with in-
dependent entries. Because the theorem accommodates non-
identically distributed entries, it can be used to describe the
adjacency matrices of random directed percolation networks
with independent links.

Theorem 1 (Girko’s K25 Equation, abr. [8]) Let ΞN be a
family of complex-valuedN×N random matrices with inde-
pendent entries that satisfy several regularity conditions. (See
Theorem 25.1 of [8] for the full list.) Let ΞN have expecta-
tion BN = E [ΞN ] and centralization HN = ΞN − BN with
entry variance σ2

N,ij = E[| (HN )ij |2]. Then

lim
β→0+

lim
N→∞

∥∥∥FΞN
(x, y)− F̂ΞN ,β (x, y)

∥∥∥ = 0 (3)

almost surely, where

∂2F̂ΞN ,β(t,s)

∂x∂y
=

{
− 1

4π

∫∞
β

(
∂2

∂t2+ ∂2

∂s2

)
mN (u,t,s)du (t,s)/∈G

0 (t,s)∈G
(4)

(with the region G defined below) and

mN (u,t,s)= 1
N tr

[(
C1(u,s,t)+...

(BN−(t+is)I)C2(u,s,t)
−1

(BN−(t+is)I)
∗
)−1
] (5)

for u > 0. The matrices C1 (u, s, t) and C2 (u, s, t) are diag-
onal matrices with entries that satisfy the system of equations

(C1)kk(u,s,t) = u+
j=N∑
j=1

σ2
N,kj

[(
C2(u,s,t)+...

(BN−(t+si)I)
∗
C1(u,s,t)

−1
(BN−(t+si)I)

)−1
]
jj

(6)

(C2)``(u,s,t) = 1+
j=N∑
j=1

σ2
N,j`

[(
C1(u,s,t)+...

(BN−(t+si)I)C2(u,s,t)
−1

(BN−(t+si)I)
∗
)−1
]
jj

(7)

for k, ` = 1, . . . N . There exists a unique solution to this
system of equations among real positive analytic functions in
u > 0. The region G is given by

G =

{
(t,s)

∣∣∣∣∣limsup
β→0+

limsup
N→∞

∣∣∣∣ ∂∂βmN (β,t,s)

∣∣∣∣ <∞
}
. (8)

Because the solution is unique, it can be found through an it-
erative fixed point search. Random networks with adjacency
matrices satisfying the conditions of Theorem 1 but with no
additional special properties can always be analyzed through
brute force. However, this can be quite impractical as this
would involve iterating on 2N variables and doing numerous
matrix inversions for very large N for each required value of
(u, t, s). The most helpful property for computation is that the
distribution have a symmetry group (with respect to node per-
mutations) that acts transitively on the node. That is, for every
pair of nodes there is a permutation taking the first to the sec-
ond that preserves the network distribution. Intuitively, this
means there are no statistically distinguishable nodes in the
random network distribution. In practical terms, this implies
thatC1, C2 are scalar matrices, the variance matrix has all row
and column sums equal, and the system of equations (6)-(7)
can be rewritten in the following form (with z=t+si ) by ap-
plying the trace function to each half of (6)-(7).

c1=u+

(
1

N

k=N∑
k=1

σ2
N,kj

)
r=N∑
r=1

(c2+1/c1λr
(
(BN−zI)

∗
(BN−zI)

)
)
−1 (9)

c2=1+

(
1

N

`=N∑
`=1

σ2
N,j`

)
r=N∑
r=1

(c1+1/c2λr
(
(BN−zI)(BN−zI)

∗))−1 (10)

For the general case of random matrices that have differ-
ent distribution than their transpose, this can still be a com-
putationally difficult numerical problem because it requires
computing the eigenvalues of (BN−zI)(BN−zI)

∗ , a prob-
lem which scales severely with N , for each required z=t+
is. However, with random matrix distributions for which the
mean BN is a normal matrix, BN − zI is normal so these
eigenvalues are [27]

λr((BN−zI)(BN−zI)∗)) = |λr(BN )−z|2. (11)

Therefore, the number of eigenvalue computations can be re-
duced to one for normal BN . Hence, distributions for which
the mean matrix is normal can be solved with no more com-
putational burden than in the symmetric mean case (actually
a subcase of normal matrices), which was examined in [26].

Remark (Numerical Integration Steps) Solving for the
density fΞN ,β from the mN (u, t, s) function via (4) requires
numerical integration with respect to u from a small value
(β = 10−6 used in simulations) to a large upper limit (102

used in simulations). Furthermore, the integration occurs in a
region (compliment of G) where ∂

∂umN (u, t, s) approaches
infinite magnitude for small u. Therefore, logarithmically
spaced integration interval endpoints are recommended.

Example (Asymmetric Stochastic Block Model) For the
consensus application simulation in Section 3, a spectral den-



Fig. 1: Expected empirical spectral
density for the cyclic (non-symmetric)
SBM with M = 5 populations de-
scribed in Sec. 3 (1000 trials). The
contour shows the boundary of Λκ,τ .

Fig. 2: Approximate density com-
puted via Girko’s eq. as described in
Sec. 2 for iteration matrix model from
Fig. 1. The contour shows the bound-
ary of Λκ,τ derived from f̂WN ,β .

Fig. 3: Consensus convergence rates
(log scale, per degree) for network
model from Fig. 1 for several filters of
degrees d = 1, . . . , 6. Results aver-
aged over 1000 Monte-Carlo trials.

(a) Proposed Filter (d = 3) (b) Ex. Optimal Filter (d = 3) (c) Proposed Filter (d = 3) (d) Ex. Optimal Filter (d = 3)

Fig. 4: Filter response magnitudes (log scale, per degree) for each filter type plotted in Fig. 3 (trivial filter, mean matrix SDP,
proposed filter based on approx. density, and an example filter designed with known eigenvalues) are shown for degree d = 3.
Locations of zeros are marked (white circles), and the boundary of the region Λκ,τ is shown (black contour). Note that E [W ]
has K = 6 distinct eigs., so results are not shown for the mean matrix SDP method at d = 6 as K − 1 < 6.

sity approximation is required for a transpose-asymmetric
stochastic block model network with iteration matrix W =
I−αL̂R where L̂R is the directed, row-normalized Laplacian.
Under suitable conditions, this can be accomplished by

f̂WN ,β(x, y) = 1
α2 f̂ΞN ,β (x−1

α + 1, yα) (12)

where ΞN = 1
γAN and γ is the expected row sum. In a

directed stochastic block models with N = MS nodes di-
vided among M populations of S nodes each, a node in pop-
ulation i forms a links to each nodes in population j inde-
pendently with probability Θij depending on the two popu-
lations. If the M × M matrix Θ is a normal matrix that is
invariant under equal row and column permutations that act
transitively on the populations, then the mean adjacency ma-
trixBN = Θ⊗1S×S−Θ11I is normal by Kronecker product
of normal matrices. In Section 3 this is applied to a stochastic
block model with an inter-population structure described by a
directed cycle.

3. DIRECTED NETWORKS: CONSENSUS FILTER
APPLICATION AND NUMERICAL SIMULATIONS

An application that benefits from good spectral density
approximations, consensus acceleration filters apply a filter
to the consensus state at each node to achieve faster conver-
gence. Several example consensus filter design methods using
this can be found in [14–20]. One such approach periodically
applies a filter to the consensus state every d iterations, where
d is the filter degree. Examples that formulate optimization

problems for filter design using the spectral asymptotics of
large-scale random graphs include [21–26].

In particular, [26] uses Girko’s K25 method for directed
random network models with transpose-symmetry. It then
proposes the following optimization problem for non-time-
varying random networks to approximately optimize the con-
vergence rate 1

d ln ρ (p(W )− J`). Here W is the consensus
iteration matrix, ` is the left eigenvector of W corresponding
to eigenvalue λ = 1, J` = 1`>/`>1 is the `-weighted av-
erage consensus transform, ρ is the spectral radius, and poly-
nomial p describes the filter coefficients {ak}k=d

k=1. Sample
points ΛS are chosen within the identified filtering regions
Λκ,τ derived from the approximate spectral density fWN ,β

(small values of β, κ, τ). The filter response is minimized at
these points through the following QCLP.

min
a∈Rd+1,ε

ε s.t. 1>a=1

a>Q(λi)a<ε for all λi∈ΛS

ΛS⊆Λκ,τ=
{
|λ−1|>κ

∣∣∣f̂WN ,β(Re{λ},Im{λ})>τ
} (13)

where Q (λi) is the real, positive semidefinite matrix

Q (λi) =
1

2

(
V (λi)

∗
V (λi) + V

(
λi
)∗
V
(
λi
))

(14)

V (λi) =
[
λ0
i , . . . , λ

d
i

]
. (15)

This section displays numerical simulation results demon-
strating approximate spectral densities found for consen-
sus iteration matrices (row-normalized directed Laplacian
weights W = I − αL̂R used) of transpose-asymmetric di-
rected network models via the computational simplifications



Fig. 5: Expected empirical spectral
density for the cyclic (non-symmetric)
SBM with M = 8 populations de-
scribed in Sec. 3 (1000 trials). The
contour shows the boundary of Λκ,τ .

Fig. 6: Approximate density com-
puted via Girko’s eq. as described in
Sec. 2 for iteration matrix model from
Fig. 5. The contour shows the bound-
ary of Λκ,τ derived from f̂WN ,β .

Fig. 7: Consensus convergence rates
(log scale, per degree) for network
model from Fig. 5 for several filters of
degrees d = 1, . . . , 6. Results aver-
aged over 1000 Monte-Carlo trials.

(a) Proposed Filter (d = 6) (b) Ex. Optimal Filter (d = 6) (c) Proposed Filter (d = 6) (d) Ex. Optimal Filter (d = 6)

Fig. 8: Filter response magnitudes (log scale, per degree) for each filter type plotted in Fig. 7 (trivial filter, mean matrix SDP,
proposed filter based on approx. density, and an example filter designed with known eigenvalues) are shown for degree d = 6.
Locations of zeros are marked (white circles), and the boundary of the region Λκ,τ is shown (black contour).

justified by Section 2. The simulations also design consensus
filters and evaluate their comparative performances.

For a stochastic block model with M = 5 populations
of size M = 200 arranged in a cycle and link probability
Θii = .05 within the populations and Θij = .03 for j ≡
i + 1(mod N) to the next population, numerical simulations
are shown. Figure 1 shows the expected empirical spectral
distribution of the consensus iteration matrix (α = 1) simu-
lated over 1000 Monte-Carlo trials. Figure 2 shows the de-
terministic approximation derived via Girko’s K25 equation.
Figure 3 compares the convergence rate per iteration of the
filtered consensus process for the trivial filter (red), the filter
with response optimized at the mean iteration matrix eigen-
values (black, mean SDP method from [16]), the filter de-
signed according to the introduced optimization (blue), and
the filter designed after the network is drawn from the dis-
tribution (green). Vertical histograms show the distribution
of the trials for each filter type. However, the spreads of the
trial result distributions are small due to the limiting spectral
behavior. Figure 4 shows filter response plots for the vari-
ous filter types. Similarly, for a stochastic block model with
S = 8 populations each of size M = 200 and the same link
probabilities as before, Figures 5-8 show analogous results.

Note that the proposed filter design performs nearly as
well as the filter designed with pre-knowledge of the eigen-
values, although the existence of underperforming outliers is
also observed. Also note that this simulation demonstrates
that knowing the eigenvalues of the mean iteration matrix is
insufficient for filter design for these types of networks. The
notion of spread provided by the Girko approximation to the
spectral density addresses this.

4. CONCLUSION

This paper examined the spectral asymptotics of large-
scale, random, non-symmetric matrix models, extending
previous results to analyze models with distribution different
from the distribution of their transpose. Girko’s K25 stochas-
tic canonical equation method provides a valuable tool to
analyze such matrices when they arise from a directed perco-
lation model. Under the condition that the large-scale random
network model has a symmetry group that is transitive with
respect to action on the nodes and the mean adjacency ma-
trix is a normal matrix, spectral density approximation via
Girko’s equations can be handled at no greater computation
cost than is incurred for large-scale directed network models
with equal link probability in each direction.

Therefore, if a large-scale random directed network dis-
tribution satisfies the properties, the described method can
be applied, for instance, to spectral density approximation
for the associated consensus iteration matrices. The result-
ing deterministic approximate spectral density can then be
used to inform consensus filter design optimization problems
for convergence acceleration. Included results from numer-
ical simulations demonstrate good approximation quality
for the empirical spectral distribution of large-scale random
networks with link model transpose-asymmetry and also
strongly support application of these approximate densities
to consensus acceleration filter design via the method in-
troduced in [26]. Continuing research efforts on this topic
include analysis of filter design methods for time-varying
random networks directed and analysis of network models
with correlations among the directed link random variables.
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