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ABSTRACT

Convolutional neural networks (CNNs) are being applied to an in-

creasing number of problems and fields due to their superior perfor-

mance in classification and regression tasks. Since two of the key

operations that CNNs implement are convolution and pooling, this

type of networks is implicitly designed to act on data described by

regular structures such as images. Motivated by the recent interest

in processing signals defined in irregular domains, we advocate a

CNN architecture that operates on signals supported on graphs. The

proposed design replaces the classical convolution not with a node-

invariant graph filter (GF), which is the natural generalization of con-

volution to graph domains, but with a node-varying GF. This filter

extracts different local features without increasing the output dimen-

sion of each layer and, as a result, bypasses the need for a pooling

stage while involving only local operations. A second contribution

is to replace the node-varying GF with a hybrid node-varying GF,

which is a new type of GF introduced in this paper. While the alter-

native architecture can still be run locally without requiring a pooling

stage, the number of trainable parameters is smaller and can be ren-

dered independent of the data dimension. Tests are run on a synthetic

source localization problem and on the 20NEWS dataset.

Index Terms— Convolutional neural networks, network data,

graph signal processing, node-varying graph filters.

1. INTRODUCTION

Convolutional neural networks (CNNs) have shown remarkable per-

formance in a wide array of inference and reconstruction tasks [1],

in fields as diverse as pattern recognition, computer vision and

medicine [2–4]. The objective of CNNs is to find a computationally

feasible architecture capable of reproducing the behavior of a cer-

tain unknown function. Typically, CNNs consist of a succession of

layers, each of which performs three simple operations – usually on

the output of the previous layer – and feed the result into the next

layer. These three operations are: 1) convolution, 2) application

of a nonlinearity, and 3) pooling or downsampling. Because the

classical convolution and downsampling operations are defined for

regular (grid-based) domains, CNNs have been applied to act on

data modeled by such a regular structure, like time or images.

However, an accurate description of modern datasets such as

those in social networks or genetics [5, 6] calls for more general

irregular structures. A framework that has been gaining traction to

tackle these problems is that of graph signal processing (GSP) [7–9].

GSP postulates that data can be modeled as a collection of values as-

sociated with the nodes of a graph, whose edges describe pairwise

relationships between the data. By exploiting the interplay between

the data and the graph, traditional signal processing concepts such
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as the Fourier transform, sampling and filtering have been gener-

alized under the GSP framework to operate on a broader array of

datasets [10–12].

Motivated by the success of CNNs and the need to deal with

irregular domains, recent efforts have been made to extend CNNs

to work with data (signals) defined on manifolds and graphs [13].

Since in the GSP literature the notion of convolution is generalized

to that of node-invariant graph filters (GFs) –matrix polynomials of

the graph Laplacian–, existing CNN works operating on graph sig-

nals have replaced classical convolutions with such node-invariant

GFs [14]. Nonetheless, how to generalize pooling remains elusive.

Attempts using hierarchical multilayer clustering algorithms have

been made [15], but clustering is usually a computationally inten-

sive operation [16].

This paper proposes a new architecture for CNNs operating on

graph signals upon replacing convolutions with node-varying GFs,

which are more flexible local graph-signal operators described in

[17]. This not only introduces additional degrees of freedom, but

also avoids the pooling stage and, as a result, the need to compute

a cluster for each of the layers disappears. A second architecture is

also proposed, that replaces convolutions with a hybrid node-varying

GF, a new graph-signal operator introduced in this paper that can be

viewed as an intermediate design between node-varying and classi-

cal GFs. Our node-varying GF based architectures are able to extract

different local features at varying resolutions, do not increase the di-

mension of the output of each layer, and can be implemented using

only local exchanges.

Paper outline: Sec. 2 reviews traditional CNNs and GSP and intro-

duces the definition of node-varying and node-invariant GFs. Sec. 3

presents the new local graph CNN architectures using node-varying

GFs. Sec. 4 runs tests on a synthetic source localization problem and

on the 20NEWS dataset.

2. PRELIMINARIES: CNN AND GSP

Let x ∈ X be the input data or signal, defined on a field X , and let

y ∈ Y be the output data, defined on a field Y . Let f : X → Y be

a function such that y = f(x). Generically, the objective of CNNs

is to design a function f̂ : X → Y such that a problem-dependent

loss function L(y, f̂(x)) is minimized. Standard choices for such

a loss are the cross-entropy (for classification) or the mean square

error (for regression). The function f̂ is built from a concatenation

of L layers f̂ = fL ◦ · · · ◦ f2 ◦ f1 where each layer is a function

fℓ : Xℓ−1 → Xℓ, ℓ = 1, . . . , L with X0 = X and XL = Y .

Each one of these layers is computed from three basic operations

xℓ = fℓ(xℓ−1) = Pℓ{ρℓ(Aℓ(xℓ−1))}, where Aℓ : Xℓ−1 → X ′
ℓ

is a linear function, ρℓ : X ′
ℓ → X ′

ℓ is a nonlinear function, and

Pℓ : X
′
ℓ → Xℓ is the pooling operator, and where x0 = x and xL =

ŷ = f̂(x) is the estimated output after L layers. It is noted that this

220978-1-5386-4410-2/18/$31.00 ©2018 IEEE DSW 2018
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architecture is computationally straightforward since it is comprised

of simple operations, and it is also amenable to be efficiently trained

by means of a back-propagation algorithm [18].

In a CNN, the first operation of each layer is a convolution with

a filter Aℓ(xℓ−1) = aℓ ∗ xℓ−1. Filter aℓ has small support so that it

acts as a computationally efficient local feature extractor by relating

only a few nearby values of the signal. In order to extract several

different features within the same region, a collection of Fℓ filters

{aℓ,k}
Fℓ

k=1
is used, resulting in a Fℓ-times increase in the dimension

of the output. To illustrate this with an example, consider that x =
x0 is an image of size 16 × 16, X = X0 = R

16×16 and that, in

the first layer, {a1,1, . . . ,a1,4} is a collection of F1 = 4 filters of

support 2 × 2 pixels. Then, X ′
1 = R

16×16×4 and A1 : R16×16 →
R

16×16×4 with A1(x) = {a1,1 ∗ x, . . . ,a1,4 ∗ x}.

The second operation is to apply a (pointwise) nonlinear func-

tion ρℓ(·) to the output of the linear step to yield ρℓ(Aℓ(xℓ−1)) ∈
X ′

ℓ . The objective behind applying these nonlinearities at each layer

is to create a structure flexible enough to reproduce general nonlinear

behaviors. Typical choices for ρℓ include rectified linear units (Re-

LUs) max{0, x} and the absolute value |x| [19]. Continuing with

the previous example, now that the output of the convolution layer is

A1(x0) ∈ R
16×16×4, we apply a ReLU so that ρℓ : R16×16×4 →

R
16×16×4 with [ρℓ(A1x0)]i,j,k = max(0, [A1(x0)]i,j,k) for i, j =

1, . . . , 16 and k = 1, . . . , 4.

The third operation is pooling, whose objective is twofold; i)

given that each convolution operation increases the number of fea-

tures, pooling keeps the output dimension under control; and ii)

since it is desirable to analyze the data at different resolution levels,

pooling reduces the distance between datapoints that were originally

far away (with the reduction being more significant as more layers

are added). It is noted that a better way to aggregate data in non-

bandlimited signals is to do max-pooling or average-pooling instead

of traditional downsampling [19]. Returning to the ongoing exam-

ple, assume that we consider max-pooling of size 2. Then, P1 :
R

16×16×4 → R
8×8×4 so that X ′

1 = R
16×16×4 and X1 = R

8×8×4

and where each element of x1 is obtained from computing the max-

imum value of ρ1(A1(x0)) within pixel masks of size 2× 2.

As already explained, those three operations are subsequently

repeated by concatenating layers. The idea is to change the represen-

tation of the data by progressively trading samples for features [20].

The target representation should be more useful for the specific task

at hand as measured by the loss function L. The last step is typically

a readout layer implementing a (linear) map from XL−1 to Y .

Remark: Albeit fairly typical, modifications to the described CNN

architecture have been developed. These range from using outputs

of different layers as input to the next layer [21], to assuming that the

useful output is collected at every layer instead of the last one [2],

to adding fully-connected layers after reaching the all-feature vector

[22]. Also, avoiding the pooling stage has been discussed [23].

2.1. Graph signals and filters

In this paper, we consider each datapoint in the dataset to be mod-

eled as a graph signal. To be specific, let G = (V, E ,W) be a graph

with a node set V with cardinality N , a set of edges E ⊆ V ×V , and

a weight function W : E → R. A graph signal is then a mapping

x : V → R that assigns a real number to each node and can be con-

veniently represented as a vector x ∈ R
N , with element [x]k being

the signal value at node k. Modeling a dataset as a graph signal al-

lows for arbitrary pairwise relationships between the elements of the

datapoint (i.e. between the elements of the vector). This relation-

ship is brought to the fore by means of a graph shift operator (GSO)

S ∈ R
N×N which is the matrix that relates the signal with the un-

derlying graph support. More specifically, S is such that [S]ij 6= 0
only if (i, j) ∈ E or if i = j. This means that Sx is a local computa-

tion that can be carried out by operating only on the neighborhood.

Examples of GSOs are the adjacency matrix, the graph Laplacian

and their normalized counterparts [8, 9].

The GSO is the key to define the graph Fourier transform (GFT)

and the different types of GFs. Assuming first that S = VΛVH

is a normal matrix diagonalized by a unitary matrix V, the GFT of

a signal x is defined as x̃ = VHx. Moreover, node-invariant and

node-varying GFs are defined, respectively, as [17]

Hni :=
∑T−1

t=0
htS

t, Hnv :=
∑T−1

t=0
diag(ht)S

t, (1)

where T is the order of the filter, and {ht}
T−1

t=0
and {ht}

T−1

t=0
are

the filter coefficients. Furthermore, if ht ∈ R
N is set such that

[ht]k = ht for all k and t, then filter Hnv reduces to Hni.

Two interesting properties of the GFs in (1) are: i) they are lin-

ear operators that account for the structure of the graph via S, and ii)

since S is a local (one-hop) operator and the output of either Hnv or

Hni can be viewed as a linear combination of successive applications

of S to the input, it follows that Hnv or Hni are local operators as

well. The main difference is that while S takes into account informa-

tion within the one-hop neighborhood of the nodes, the operators in

(1) consider information that is within their T−1 neighborhood [17].

2.2. CNNs using node-invariant GFs

Recent efforts have been made towards extending CNNs to operate

on graph signals in the hope of carrying over their excellent perfor-

mance to a broader class of problems (see [13] for a general sur-

vey). The existing works typically set the GSO as the graph Lapla-

cian matrix and, more importantly, replace the classical convolutions

with node-invariant GFs [cf. Hni in (1)]. The main reason for this

is that node-invariant GFs allow for the generalization of the con-

volution theorem to graph signals in the sense that filtering in the

(node) domain implies multiplication in the frequency domain given

by the GFT. To see why this is the case, consider the graph sig-

nal y = Hnix, recall the eigendecomposition of the GSO S, and

note that since Hni is a matrix polynomial on S, its eigenvectors are

also V. With these considerations, after applying the GFT to the

input-output equation y = Hnix we have that ỹ = diag(h̃)x̃ with

diag(h̃) :=
∑T−1

t=0
htΛ

t being the filter’s frequency response.

Building on this interpretation, [14] designed the filter coeffi-

cients to be used at each layer in the spectral domain. To avoid the

(expensive) computation of eigendecompositions, a Chebyshev ap-

proximation which operates in the node domain using a low-order

node-invariant GF was adopted in [15]. While convolutions have

been replaced with node-invariant GFs and point-wise nonlineari-

ties with node-wise nonlinearities applied locally at each node of the

graph, there is no consensus on how pooling must be implemented.

The suggestion in [14] was to use multiscale hierarchical algorithms

to create a collection of related graphs with less and less nodes. In

that context, [15] adopted the Graclus algorithm [24] and suggested

an innovative pooling system by means of a binary tree partition. It

is noted that clustering is in itself an ill-posed problem and that there

exist several criteria for determining good clusters [25, 26]. More-

over, it is usually a computationally intensive operation [16, 27, 28].

3. CNN ARCHITECTURE USING NODE-VARYING GF

Starting from the CNN architecture described in Sec. 2, we propose

a new architecture for CNNs that at each layer ℓ: 1) replaces con-

volutions with node-varying GFs [cf.Hnv in (1)]; 2) applies a local
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node-wise nonlinearity; and 3) does not apply a pooling stage, thus

avoiding the computation of clusters for each of the layers.

To motivate the proposed design, recall that the idea in the con-

volution stage is to get several features per region and, for that, Fℓ

filters are employed. This naturally increases the dimension of the

signal by a factor of Fℓ and pooling becomes necessary to prevent a

geometric growth of the size of the data. That is, there is a trade-

off between the availability of multi-resolution features extracted

from the data and the size of the information passed onto the next

layer. Our proposed architecture tries to extract local features at

different locations of the graph without increasing dimensionality.

Being more specific, by adopting the node-varying GF in (1), each

node gains the ability to weight their local neighborhood differently,

and because nodes within a neighborhood weight differently their

respective neighborhoods, each of them acts as a different feature

within the region. Since the output of a node-varying GF is an-

other graph signal, then the dimensionality of the data at each layer is

not increased while local features are captured respectively by each

node. The data analysis at different resolutions comes naturally with

the adoption of this kind of filters and is adjusted by the length of

the filters on each layer. Concretely, by applying a filter of length

T1 each node gathers information of up to the T1 − 1 neighborhood;

then, in the following layer, when another filter of length T2 is ap-

plied, then nodes actually disseminate information up to the T2 − 1
neighborhood from the previous layer, so that the total information

processed goes up to the T1+T2−2 neighborhood. Therefore, as the

local graph CNN goes deeper, it gathers more global information.

3.1. CNN via hybrid node-varying GFs

A key aspect of any CNN architecture is the number of parameters

that need to be optimized in the training phase [21]. Based on this

criterion, it is observed that adopting a node-varying GF results in

a number of parameters proportional to the number of nodes, the

length of the filter at each layer and the number of layers
∑L

l=1
NTl.

This might be an undesirable characteristic of the architecture, espe-

cially for high-dimensional datasets. In order to overcome this, we

propose an alternative design where the convolution is replaced with

a hybrid node-varying GF.

To define this new type of GF, start by considering a tall binary

matrix CB ∈ {0, 1}N×B with exactly one non-zero entry per row.

Define now the reduced vector of filter coefficients as hB,t ∈ R
B .

Then a hybrid node-varying GF is a graph signal operator of the form

Hhv :=
∑T−1

t=0
diag(CBhB,t)S

t. (2)

Clearly the GF above is linear, accounts for the structure of the

graph, and can be implemented locally. The name “hybrid” is due

to the fact that i) if B = N and CB = I, then Hhv is equivalent to

Hnv; and ii) if B = 1, then Hhv reduces to Hni.

While basis expansion models other than ht = CBhB,t could

have been used, CB was selected to be binary to facilitate intuition

and keep implementation simple. In particular, the columns of CB

can be viewed as membership indicators that map nodes into dif-

ferent groups. With this interpretation, {[hB,t]b}
T−1

t=0
represents the

common filter coefficients that each node of the bth group will use.

This demonstrates that the selection of the method to group the nodes

offers a new degree of freedom for the design of (2) and the corre-

sponding CNN. Different from the multi-resolution clustering algo-

rithms associated with the pooling stage, this algorithm performs a

single grouping. In the simulations presented in the next section, the

grouping implicit in CB is carried out in two steps. First, we form

the set B = {v1, . . . , vB} containing the B nodes with the highest

degree (ties are broken uniformly at random) and set [CB]vb,b = 1

Algorithm 1 (Hybrid) Node-varying GF CNN.

Input: {x}: test dataset, {(x′,y′)}: train dataset

S: GSO, {T1, . . . , TL−1}: degrees of layer

B: number of nodes to select for weights

Output: {ŷ}: estimates

1: procedure NVGF CNN({x},{(x′,y′)},S,{T1, . . . , TL−1},B)

2: Create set B by selecting B nodes with highest degree

3: Compute CB ⊲ See (3)

4: Create the L− 1 layers:

5: for ℓ = 1 : L− 1 do

6: Create B filter taps {hB,0, . . . ,hB,Tℓ−1}

7: Obtain Hℓ =
∑Tℓ−1

t=0
diag(CBhB,t)S

t ⊲ See (2)

8: Apply non-linearity ρℓ(Hℓ ·)
9: end for

10: Create readout layer AL ·
11: Learn {hB,0, . . . ,hB,Tℓ−1

}L−1

ℓ=1
and AL from {(x′,y′)}

12: Obtain ŷ = f̂(x) using trained coefficients

13: end procedure

for all b = 1, ..., B. Second, for all the nodes that do not belong to

B we set the membership matrix as

[CB]ij = 1 if j ∈ argmaxb:vb∈B{W(i, vb)} , i /∈ B, (3)

where W(i, vb) is the edge weight. That is, for each of the nodes

not in B we copy the filter coefficients of the node in B that exer-

cises the largest influence. As before, ties are broken uniformly at

random. CNN schemes with region-dependent filters have been used

in the context of images using regular convolutions [29, 30]. The re-

gional features computed at each layer are kept separate and only the

last stages (involving fully connected layers) merge them. The use of

node-varying graph filters proposed in this paper, not only changes

the definition of the convolution, but also merges the regional fea-

tures at every layer.

CNN architecture: Adopting the hybrid node-varying GF for the first

stage of each layer of our CNN implies that the total number of pa-

rameters to be learned is
∑L

l=1
BTl, which is independent of N

and guarantees that the proposed architecture scales well for high-

dimensional data. Lower values of B will decrease the number of

training parameters, while limiting the ability of extracting features

of the filter. All in all, the architecture of the proposed CNN is given

by Algorithm 1. We observe that, except for the final readout layer,

all computations are carried out in a local fashion making the CNN

amenable to a distributed implementation. Finally, let us note that

while some problems inherently live in a constant-dimension sub-

manifold and make the choice of a constant B possible, some other

problems might have a lower dimension that still grows with N but

in a sublinear fashion. Therefore, while B might not be independent

of N , it could still be chosen as a sublinear function of N [31, 32].

4. NUMERICAL TESTS

In this section, we run tests on the proposed CNN architecture and

compare it with the one developed in [15]. In general, we observe

that our CNN achieves similar performance but with at least one

order of magnitude less of parameters. In the first testcase we con-

sider a synthetic dataset of a source localization problem in which

different diffused graph signals are processed to determine the sin-

gle node that originated them. In the second testcase we use the

20NEWS dataset and a word2vec embedding underlying graph to
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Fig. 1: Accuracy in the source localization problem. Results were averaged across 10 different realizations. For clarity of figures, error bars represent 1/4 of

the estimated variance. The number of parameters of each architecture is also shown. (a) As a function of the number of selected nodes k. Accuracy gets better

as more and more nodes are selected to extract features. (b) As a function of the length of the filter T . Accuracy improves when filters are longer. It is observed

that after length 8 for which 2 layers are able to obtain all the relevant information in the graph (15 nodes), accuracy does not improve substantially. (c) As a

function of the noise in the test set. The proposed architecture is fairly robust to noise since accuracy drops approximately 5% across 5 orders of magnitude.

Architecture Parameters Accuracy

FC[2500] 77, 515 72.6%
GC[5, 32] 7, 407 87.2%
GC[5, 32]-FC[100] 49, 807 84.3%
GL[10, 15]-GL[10, 15] 542 88.9%

Table 1: Source localization results for N = 15 nodes.

classify articles in one out of 20 different categories [33]. For both

problems, denote as GC[T, k] a graph CNN using Chebyshev poly-

nomial approximation of order T with k features; as FC[k] a fully

connected layer CNN with k hidden units; and as GL[T, k] the pro-

posed CNN where the degree-based hybrid node-varying GF is of

order T with B = k nodes selected. A ReLU nonlinearity is applied

at each layer and all architectures include a readout layer. We note

that the total parameter count includes this last readout layer as well

as bias parameters typically used before applying the ReLU nonlin-

earity. For the training stage in both problems, an ADAM optimizer

with learning rate 0.005 was employed [34], for 20 epochs and batch

size of 100.

Testcase 1: Source localization. Consider a connected Erdős-Rényi

(ER) graph with N nodes and edge probability pER = 0.4 and let

W denote its adjacency matrix. With δc representing a graph signal

taking the value 1 at node c and 0 elsewhere, the signal x = Wt
δc is

a diffused version of the sparse input δc for some unknown 0 ≤ t ≤
N − 1. The objective is to determine the source c that originated

the signal x irrespective of time t. To that end, we create a set of

Ntrain labeled training samples {(c′,x′)} where x′ = Wt
δc′ with

both c′ and t chosen at random. Then we create a test set with Ntest

samples in the same fashion, but we add i.i.d. zero-mean Gaussian

noise w with variance σ2

w, so that the signals to be classified are

Wt
δc+w. The goal is to use the training samples to design a CNN

that determines the source (node) c that originated the diffused.

For a graph with N = 15 nodes we test four architectures: (a)

FC[2500], (b) GC[5, 32], (c) GC[5, 32]-FC[100] and (d) GL[10, 15]-
GL[10, 15]. The GSO employed is the adjacency matrix S = W.

A dropout of 0.5 is included in the training phase. The test set is of

size Ntest = 200. Results are listed in Table 1. Note that these results

are obtained by averaging 10 different realizations of the problem.

We observe that the performance of our CNN is similar to that of

GC[5, 32] but with ten times less parameters.

Additionally, we run tests changing the values of several of the

parameters of the architecture. In Fig. 1a we observe the accuracy

obtained when varying the number of selected nodes. It is noted that

selecting less nodes implies that less features are extracted. This im-

pacts negatively the accuracy. Nonetheless, even an accuracy level of

80% is achieved with as few as 282 parameters, which is a better per-

Architecture Parameters Accuracy

GC[5, 32] 1, 920, 212 60.75%
GL[5, 1500] 67, 521 60.34%

Table 2: Results for classification on 20NEWS dataset on a word2vec

graph embedding of N = 3, 000 nodes.

formance than using a fully connected layer with 2500 hidden units

which requires 100 times more parameters. The dependence of the

accuracy on the length of the filter T can be observed in Fig. 1b. We

note a linear increase in accuracy that saturates around T = 8. This

is the length for which, when using two layers, the information cor-

responding to the whole graph can be aggregated. Finally, in Fig. 1c

we show the performance of all four architectures as a function of

the noise on the test set. We observe that both GC[5, 32] and the

proposed architecture achieve similar accuracies with a fairly robust

performance, since the accuracy dropped only 5% within a 5 order

magnitude change in the noise. Values shown are mean accuracies

obtained after averaging 10 realizations and the error bars represent

1/4 of the estimated variance from these realizations.

Testcase 2: 20NEWS dataset. Here we consider the classification

of articles in the 20NEWS dataset which consists of 18, 846 texts

(11, 314 of which are used for training and 7, 532 for testing) [33].

The graph signals are constructed as in [15]: each document x is

represented using a normalized bag-of-words model and the un-

derlying graph support is constructed using a 16-NN graph on the

word2vec embedding [35] considering the 3, 000 most common

words. The GSO adopted is the normalized Laplacian. No dropout

is used in the training phase. The architectures used are GC[5, 32]
and GL[5, 1500]. Accuracy results are listed in Table 2, demonstrat-

ing that both architectures achieve similar accuracies, but with our

CNN requiring 100 times less parameters.

5. CONCLUSIONS

A CNN architecture to operate on graph signals was proposed. The

convolution stage was replaced by a node-varying GF, and no pool-

ing stage was implemented. Extraction of different features was

achieved by the adoption of a node-varying GF and resolution levels

were adjusted via the length of the filter. The convolutional layers

of the resulting CNN could be implemented locally. To prevent the

number of parameters to grow with the size of the data, we proposed

a hybrid node-varying GF where nodes were grouped and the same

filter coefficients were used within a particular group. Results on the

20NEWS dataset showed a performance similar to that of existing

CNNs implementing node-invariant GFs but with 100 times less pa-

rameters to train. A synthetic source localization problem was used

to asses numerically the sensitivity of the estimation performance

with respect to the number of groups and the degree of the filter.
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