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ABSTRACT

In recent years, Generative Adversarial Networks (GANs)
have drawn a lot of attentions for learning the underlying dis-
tribution of data in various applications. Despite their wide
applicability, training GANSs is notoriously difficult. This diffi-
culty is due to the min-max nature of the resulting optimization
problem and the lack of proper tools of solving general (non-
convex, non-concave) min-max optimization problems. In this
paper, we try to alleviate this problem by proposing a new gen-
erative network that relies on the use of random discriminators
instead of adversarial design. This design helps us to avoid the
min-max formulation and leads to an optimization problem
that is stable and could be solved efficiently. The performance
of the proposed method is evaluated using handwritten digits
(MNIST) and Fashion products (Fashion-MNIST) data sets.
While the resulting images are not as sharp as adversarial
training, the use of random discriminator leads to a much
faster algorithm as compared to the adversarial counterpart.
This observation, at the minimum, illustrates the potential of
the random discriminator approach for warm-start in training
GANES.

Index Terms— Generative Adversarial Networks, Deep
Neural Network, Randomized Learning, Non-convex Min-
Max Optimization

1. INTRODUCTION

Generative Adversarial Networks (GANs) [[1]] have been rel-
atively successful in learning underlying distribution of data,
especially in application such as image generation. GANs
aims to find the mapping that matches a known distribution
to the underlying distribution of the data. The way they per-
form this task is by projecting the inputs to a higher dimension
using Neural Networks [2[] and then minimizing the distance
between the mapped distribution and the unknown distribu-
tion in the projected space. To find the optimal network, [1]
proposed using Jensen-Shannon divergence [3]] for measur-
ing the distance between projected distribution and the data
distribution. Later on, [4] generalized the idea by using the
f-divergence as the measure. [5]] and [|6] proposed using least
square and absolute deviation as the measure.

The most recent works proposed using Wasserstein dis-
tance and Maximum Mean Discrepancy (MMD) as the dis-
tance measure [[7-9]]. Unlike Jensen-Shannon divergence, the
recent measures are continuous and almost everywhere differ-
entiable. The common thread between all these approaches
is that the problem is usually formulated as a game between
two agents, i.e. generator and discriminator. Generator’s role
is to generate samples as close as possible to real data and
discriminator is responsible for distinguishing between real
data and the generated samples. The result is a non-convex
min-max game which is difficult to solve. The learning pro-
cess, which should solve the resulting non-convex min-max
game, is hard to tackle, due to many factors such as using
discontinuous [7]] or non-smooth [2]] measure. In addition to
these factors, the fact that all of these models try to learn the
mapping transformation adversarially makes the training unsta-
ble. Adding regularization or starting from a good initial point
is one approach to overcome these problems [2]]. However, for
most problems finding a good initial point might be as hard as
solving the problem itself.

Randomization has shown promising improvement in ma-
chine learning algorithms [[10,|11]]. As the result, to prevent
over-mentioned issues, we propose learning underlying dis-
tribution of data not through adversarial player but through
a random projection. This random projection not only de-
creases the computation time by removing the optimization
steps needed for most of the discriminator’s role, but also leads
to a more stable optimization problem. The proposed method
has the state of the art performance for simple datasets such as
MNIST and Fashion-MNIST.

2. PROBLEM FORMULATION

Let 2 € R be a random variable with distribution P, repre-
senting the real data; and z be a random variable representing
a known distribution such as standard Gaussian. Our goal is to
find a function or a neural network G(-) such that G(z) has a
similar distribution to the real data distribution P,.. Therefore,
our objective is to solve the following optimization problem

min dist(Pg(z), Pr), (D

where Pg.) is the distribution of G(z) and dist(-, -) is a dis-
tance measure between the two distributions.
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A natural question to ask is about what distance metric to
use. The original paper of Goodfellow [1]] suggests the use of
Jensen—Shannon divergence. However, as mentioned in [7]],
this divergence is not continuous. Therefore, [2,[/] suggest
to use the optimal transport distance. In what follows, we
first review this distance and then discuss our methodology for

solving (T)).

3. OPTIMAL TRANSPORT DISTANCE

Let p and ¢ be two discrete distributions taking m different val-
ues/states. Thus the distributions p and ¢ can be represented by
m-dimensional vectors (p1,...,Pm) and (g1, ..., ¢m) . The
optimal transport distance is defined as the minimum amount
of work needs to be done for transporting distribution p to g
(and vice versa). Let m; ; be the amount of mass moved from
state 7 to state j; and c;; represent the per-unit cost of this
move. Then the optimal transport distance between the two
distributions p and ¢ is defined as [12]]:

m m
dist(p, ¢) = min g g CijTij
>0 -
i=1 j=1

m

st Y mj=p,Vi=1...m (2
j=1

m
Zﬂ-ij = 4y, ijl,...,m,
=1

where the constrains guarantee that the mapping 7 is a valid
transport. In practice, a popular approach is to solve the dual
problem. It is not hard to see that the dual of the optimization
problem (2)) can be written as

m m
dist(p,¢) = max Y vipi + > Ajg
ad i=1 j=1 3
S.t. /\j + v < Cij, VZ,] =1,...,m.

When c is a proper distance, this dual variable should
satisfy A = —~ [12]]. In practice, since the dimension m is
large and estimating p and ¢ accurately is not possible, we
parameterize the dual variable with a neural network and solve
the dual optimization problem by training two neural networks
simultaneously [7]. However, this approach leads to a non-
convex min-max optimization problem. Unlike special cases
such as convex-concave set-up [13]], there is no algorithm to
date in the literature which can find even an e-stationary point
in the general non-convex setting; see [[14] and the references
therein. Therefore, training generative adversarial networks
(GANSs) can become notoriously difficult in practice and may
require significant tuning of training parameters. A natural
solution is to not parameterize the dual function and instead
solve (2) or (3) directly which leads to a convex reformulation.
However, as mentioned earlier, since the dimension m is large,
approximating p and q is statistically not possible. Moreover,
the distance in the original feature domain may not reflect the

actual distance between the distributions. Thus, we suggest an
alternative formulation in the next section.

4. TRAINING IN DIFFERENT FEATURE DOMAIN

In many applications, the closeness of samples in the original
feature domain does not reflect the actual similarity between
the samples. For example, two images of the same object may
have a large difference when the distance is computed in the
pixel domain. Therefore, other mappings of the features, such
as features obtained by Convolutional Neural Network (CNN)
may be used to extract meaningful features from samples [[15].

LetD = {D1, Do, ..., Dg} be acollection of meaningful
features we are interested in. In other words, each function
D € D is a mapping from our original feature domain to the
domain of interest, i.e., Di(-) : R — R Vk =1,... K.
Then, instead of solving (T)), one might be interested in solving
the following optimization problem

K
mén ZwkdiSt(PDk(G(z))>PDk(z))a @
k=1
where Pp, ((»)) represents the distribution of the random
variable Dy, (G(2)); Pp, (x) is the distribution of Dy (z); and
wy, is a weight coefficient indicating the importance of the k-th
feature Dy,.
In the general setting, we may have uncountable number
of mappings Dy. Thus, by defining a measure on the set D,
we can generalize (4)) to the following optimization problem

m(}n Ep |dist (PD(G(Z))7PD(I)) . ®)

Remark 1. We use the notation D since the function D plays
the role of a discriminator in the Generative Adversarial Learn-
ing (GANs) context.

Plugging (@) in the equation (3] leads to the optimization
problem

max

pi pi
Jmax, > %Phey + 2 AiPh
m(%n Ep =1 5=l ,

S.t. Aj + Yi S Cij, V’L,]
(6)
where C = {(A\,7)| Ai +7; < ciy, Vi, j}-

Unfortunately, in practice, we do not have access to the
actual values of the distributions Pp ;) and Pp(g(.)). How-
ever, we can estimate them using a batch of generated and real
samples. The following simple lemma motivates the use of a
natural surrogate function.

Lemma 1. Let p and q be two discrete distributions with
p = (p1,--,pm) and ¢ = (q1,-..,qm). Let x € R™



and y € R™ be the corresponding one-hot encoded ran-
dom variables, i.e., P(x = e;) = p;,¥i = 1,...,m and
Py =e;) = q;,Vi=1,...,m, where e, is the i-th standard
basis. Assume further that dist(p, q) is the optimal transport
distance between p and q defined in (2)). Let p™ and " be the
natural unbiased estimator of p and q based on n i.i.d. sam-
ples. In other words, p" = L 3" wyand ¢" = L 377 ye,
where xy and yo, £ = 1,...,n, are i.i.d samples obtained from
distributions p and q, respectively. Then,

E [dist(p" ', ¢" )] < E[dist(p", ¢")].

Moreover,
lim dist(p™,¢"™) = dist(p, q), almost surely.
n—oo

Proof. The proof is similar to the standard proof in sample av-
erage approximation method; see [[16} Proposition 5.6]. Notice
that,

[dlSt( ~n—+1 (jn-l—l)]

a PN g An—H
U S ERS
-k +1 + An+1’/\
Lﬂ?ﬁc (") + (4 )
1
e e+ o)

1 B n+1 n+1
=~ E| max WY o+ AN e
n(n+1)  |(Ayec = ; tz; ;

1 _n+1
< — max (7, ZTe) + (A, ¢
n(n+1) Py (>\W)€C<,y ; I+ ;y>
1 n+1 1
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(n+1) ; n (Av)ec ; ;

= E[dist(p", §")]-

The proof of the almost sure convergence follows directly
from the facts that lim,, ., p" = p, lim,, o ¢" = ¢, and the
continuity of the distance function. O

The above lemma suggests a natural upper-bound for the
objective function in (6). More precisely, instead of solving
(6), we can solve

max > iPben + D _AiPhe
min =1 J=1 , (7
G
S.t. )‘j + Yi S Cij, VZ,]

where pp(g(z)) and ]ADD(QC) are the unbiased estimators of
Pp(g(z)) and Pp(,) based on our i.i.d samples. Moreover,

the expectation is taken with respect to both, the function D
as well as the batch of samples which is drawn for estimating
the distributions. As we will see later, in practice it is easier to
use the primal form for solving the inner problem in (7), i.e.,

m m
i e
min ZZ 97

min
min E
G m m
st Y miy = Phaay: DT = Py Virj
j= =1

To show the dependence of ¢;; to G, let us assume that our
generator G is generating the output h(w, z) from the input
z. Here w represents the weights of the network needed to
be learned. Moreover, in practice, the value of ]5117 G(2)) is
estimated by taking the average over all batch of data. Hence,
by duplicating variables if necessary, we can re-write the above
optimization problem as

min Y Y |ID(h(w, z)) = D(x;) |
min E, . p - i=1j=1
st wl=1 7f1=1
3)

Here, n is the batch size and we ignored the entries of PD(G(Z))
and PD(I) that are zero. Notice that to obtain an algorithm with
convergence guarantee for solving this optimization problem,
one can properly regularize the inner optimization problem
to obtain unbiased estimates of the gradient of the objective
function [2}{14]]. However, in this work, due to practical consid-
erations, we suggest to approximately solve the inner problem
and use the approximate solution for solving (8).

Solving the inner-problem approximately. In order to solve
the inner problem in (8), we need to solve

mln ZZHD w, 2;)) — D(x;)||mi;
i=1 j=1 9
| - 1
st. wl=—, 7ll==

n n
Notice that this problem is the classical optimal assignment

problem which can be solved using Hungarian method [17]],
Auction algorithm [18]], or many other methods proposed in
the literature. Based on our observations, even the greedy
method of assigning each column to the lowest unassigned
row worked in our numerical experiments. The benefit of the
greedy method is that it can be performed almost linearly in
m by the use of a proper hash function.

Algorithm (1| summarizes our proposed Generative Net-
works using Random Discriminator (GN-RD) algorithm for

solving (8).

Remark 2. The training approach in Algorithm[I|relies on two
neural networks: the generative and the discriminator. Hence,
Algorithm[I|can be viewed as a GANs training approach where



Algorithm 1: Generative Networks using Random Dis-
criminator (GN-RD)
Input : wy : Initialization for generator’s parameter, « :
Learning rate, n : Batch size, Ny;,-: Maximum
iteration number

1 fort=1: Ny do

2 Sample an i.i.d. batch of real data (z1,...,z,)

3 Sample an i.i.d. batch of noise (21, ..., 2,)

4 Create a random discriminator neural network D

with random weights

5 Solve (@) by finding the optimal assignment value
between real data and generated sample

6 Update generator’s parameter,

W1 = wy — V4, G(wy)

7 end
Output : G(wy;

max)

we use a random discriminator at each iteration of updating
the generator.

Remark 3. The recent works [19,20] have similarities in
terms of learning generative models through min-min formu-
lation instead of min-max formulation. However, unlike their
method, 1) our algorithm is based on mapping images via
randomly generated discriminators; 2) In our analysis, we
establish that this formulation leads to an upper-bound of the
distance measure; 3) our algorithm is based on the use of op-
timal assignment, while the works [19,120] suggests a greedy
matching, which is more difficult to understand and analyze.

5. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed
GN-RD algorithm for learning generative networks to create
samples from MNIST [21] and Fashion-MNIST [22] datasets.
As mentioned previously, the proposed algorithm does not re-
quire any optimization on the discriminator network and only
needs randomly generated discriminator to learn the underly-
ing distribution of the datd'}

5.1. Learning handwritten digits and fashion products

In this section, we use GN-RD for generating samples from
handwritten digits and Fashion-MNIST datasets. Each of these
datasets contains 50K training samples.

Architecture of the Neural Networks: The generator’s Neu-
ral Network consists of two fully connected layer with 1024
and 6272 neurons. The output of the second fully connected
layer is followed by two deconvolutional layers to generate the
final 28 x 28 image.

LAll the experiments have been run on a machine with single GeForce
GTX 1050 Ti GPU.

The discriminator neural network has two convolution
layers each followed by a max pool. The size of the both
convolutional layers are 64. The last layer has been flatten
to create the output. The design of both neural networks is
summarized below:

* Generator: [FC(100, 1024), Leaky ReLU(a = 0.2),
FC(1024, 6272), Leaky ReLU(a = 0.2), DECONV(64,
kernel size = 4, stride = 2), Leaky ReL.U(alpha = 0.2),
DECONV(1, kernel size = 4, stride = 2), Sigmoid].

* Discriminator: [CONV (64, filter size = 5, stride = 1),
Leaky ReLLU(alpha = 0.2), Max Pool (kernel size = 2,
stride = 2), COVN(64, filter size = 5, stride = 1), Max
Pool (kernel size = 2, stride = 2), Flatting].

We have used originally proposed adversarial discriminator
for Wasserstein GAN (WGAN) [[7]], Wasserstein GAN with
gradient penalty (WGAN-GP) [8] [|and Cramér GAN [23]f]

As mentioned in Algorithm [I] it is important to notice that
unlike benchmark methods, the proposed method only opti-
mizes the generator’s parameters. However, at each iteration,
weights in the convolutional layers of the discriminator are
randomly generated from normal distribution.

Hyper parameters: We have used Adam with step size 0.001
and 51 = 0.5 and B = 0.9 as the optimizer for our generator.
The batch size is set to 100.

Fig[T]shows the result of the generated digits and the cor-
responding inception score [24] using different benchmark
methods. As seen from the figure, the proposed GN-RD is
able to quickly learn the underlying distribution of the data
and generate promising samples.

Fig. [2 shows the result of using the proposed method
for generating samples from fashion MNIST dataset. The
sample is generated only after 600 iterations (~ 10 minutes )
of the proposed method which shows that the GN-RD quickly
converges and generates promising samples.

6. CONCLUSION

Generative Adversarial Networks (GANSs) have been able to
learn the underlying distribution of the data and generate sam-
ples from it. Training GANs is notoriously unstable due to
their non-convex min-max formulation. In this work, we pro-
pose the use of randomized discriminator to avoid facing the
complexity of solving non-convex min-max problems. Eval-
uating the performance of the proposed method on real data
set of MNIST and Fashion-MNIST shows the ability of the
proposed method in generating promising samples without
adversarial learning.

2For WGAN and WGAN-GP implementation visit https://github.
com/igul222/improved_wgan_training

JFor Cramér GAN implementation visit https://github.com/
jiamings/cramer—gan


https://github.com/igul222/improved_wgan_training
https://github.com/igul222/improved_wgan_training
https://github.com/jiamings/cramer-gan
https://github.com/jiamings/cramer-gan
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Fig. 1. Generating hand-written digits using MNIST dataset

(a) Orlglnal Data

Fig. 2. Generating fashion products using Fashion-MNIST dataset

Acknowledgement

The authors would like to thank Mohammad Norouzi for his
insightful feedback.

(1]

(2]

7. REFERENCES

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio, “Generative adversarial nets,” in Advances in neural
information processing systems, 2014, pp. 2672-2680.

M. Sanjabi, J. Ba, M. Razaviyayn, and J. D. Lee, “On
the convergence and robustness of training gans with
regularized optimal transport,” in Advances in Neural
Information Processing Systems, 2018, pp. 7091-7101.

[3] J. Lin, “Divergence measures based on the shannon en-
tropy,” IEEE Transactions on Information theory, vol. 37,
no. 1, pp. 145-151, 1991.

[4] S. Nowozin, B. Cseke, and R. Tomioka, “f-gan: Training
generative neural samplers using variational divergence
minimization,” in Advances in neural information pro-
cessing systems, 2016, pp. 271-279.

[5] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and
S. Paul Smolley, “Least squares generative adversarial
networks,” in Proceedings of the IEEE International Con-
ference on Computer Vision, 2017, pp. 2794-2802.

[6] J. Zhao, M. Mathieu, and Y. LeCun, “Energy-
based generative adversarial network,” arXiv preprint
arXiv:1609.03126, 2016.



(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

M. Arjovsky, S. Chintala, and L. Bottou, ‘“Wasserstein
gan,” arXiv preprint arXiv:1701.07875, 2017.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. C. Courville, “Improved training of wasserstein gans,”
in Advances in Neural Information Processing Systems,

2017, pp. 5767-5777.

M. Binkowski, D. J. Sutherland, M. Arbel, and
A. Gretton, “Demystifying mmd gans,” arXiv preprint
arXiv:1801.01401, 2018.

B. Barazandeh and M. Razaviyayn, “On the behavior
of the expectation-maximization algorithm for mixture
models,” in 2018 IEEE Global Conference on Signal and
Information Processing (GlobalSIP). 1EEE, 2018, pp.
61-65.

Y. Sun, A. Gilbert, and A. Tewari, “Random relu features:
Universality, approximation, and composition,” arXiv
preprint arXiv:1810.04374, 2018.

C. Villani, “Optimal transport—old and new, volume 338
of a series of comprehensive studies in mathematics,’
2009.

A. Juditsky and A. Nemirovski, “Solving variational in-
equalities with monotone operators on domains given
by linear minimization oracles,” Mathematical Program-
ming, vol. 156, no. 1-2, pp. 221-256, 2016.

M. Nouiehed, M. Sanjabi, J. D. Lee, and M. Raza-
viyayn, “Solving a class of non-convex min-max games
using iterative first order methods,” arXiv preprint
arXiv:1902.08297, 2019.

introduction to
arXiv preprint

K. O’Shea and R. Nash, “An
convolutional neural networks,”
arXiv:1511.08458, 2015.

A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lec-
tures on stochastic programming: modeling and theory.
SIAM, 20009.

H. W. Kuhn, “The hungarian method for the assignment
problem,” Naval research logistics quarterly, vol. 2, no.
1-2, pp. 83-97, 1955.

D. P. Bertsekas, “The auction algorithm: A distributed
relaxation method for the assignment problem,” Annals
of operations research, vol. 14, no. 1, pp. 105-123, 1988.

K. Li and J. Malik, “On the implicit assumptions of gans,”
arXiv preprint arXiv:1811.12402, 2018.

K.Li and J.Malik, “Implicit maximum likelihood estima-
tion,” arXiv preprint arXiv:1809.09087, 2018.

(21]

(22]

(23]

[24]

Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten
digit database, 1998, URL http://www. research. att.
com/” yann/ocr/mnist, 1998.

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms,” arXiv preprint arXiv:1708.07747, 2017.

M. G. Bellemare, 1. Danihelka, W. Dabney, S. Mohamed,
B. Lakshminarayanan, S. Hoyer, and R. Munos, “The
cramer distance as a solution to biased wasserstein gradi-
ents,” arXiv preprint arXiv:1705.10743, 2017.

S. Barratt and R. Sharma, “A note on the inception score,”
arXiv preprint arXiv:1801.01973, 2018.



	1  Introduction
	2  Problem Formulation
	3  Optimal Transport Distance 
	4  Training in different feature domain
	5  Numerical Experiments
	5.1  Learning handwritten digits and fashion products

	6  Conclusion
	7  References

