
HAL Id: hal-01591347
https://hal.science/hal-01591347

Submitted on 21 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analyzing Ambient Assisted Living Solutions: A
Research Perspective

Ashalatha Kunnappilly, Axel Legay, Tiziana Margaria, Cristina Seceleanu,
Bernhard Steffen, Louis-Marie Traonouez

To cite this version:
Ashalatha Kunnappilly, Axel Legay, Tiziana Margaria, Cristina Seceleanu, Bernhard Steffen, et al..
Analyzing Ambient Assisted Living Solutions: A Research Perspective. 12th International Conference
on Desig &Technology of Integrated Systems In Nanoscale Era (DTIS), Apr 2017, Palma de Mallorca,
Spain. pp.1 - 7, �10.1109/DTIS.2017.7930168�. �hal-01591347�

https://hal.science/hal-01591347
https://hal.archives-ouvertes.fr


Analyzing Ambient Assisted Living Solutions:
A Research Perspective

Ashalatha Kunnappilly
Mälardalen University, Västerås, Sweden

ashalatha.kunnappilly@mdh.se

Axel Legay
INRIA, Rennes, France

axel.legay@inria.fr

Tiziana Margaria
Univ. Limerick and Lero, Limerick, Ireland

tiziana.margaria@lero.ie

Cristina Seceleanu
Mälardalen University, Västerås, Sweden

cristina.seceleanu@mdh.se

Bernhard Steffen
TU Dortmund, Germany

steffen@cs.tu-dortmund.de

Louis-Marie Traonouez
INRIA, Rennes, France

Louis-marie.traonouez@inria.fr

Abstract—Typical AAL solutions rely on integrating capabil-
ities for health monitoring, fall detection, communication and
social inclusion, supervised physical exercises, vocal interfaces,
robotic platforms etc. Ensuring the safe function and quality
of service with respect to various extra-functional requirements
like timing and security of such AAL solutions is of highest
importance. To facilitate analysis, latest system development
platforms provide underlying infrastructures for model-driven
design (e.g., via the DIME tool), timing and resource-usage
specification (e.g., via the REMES tool), security features (e.g.,
by employing SECube), and statistical model-checking techniques
(e.g, via Plasma).

In this paper, we discuss the challenges associated with
analyzing complex AAL solutions, from relevant properties to
semantic interoperability issues raised by employing various
frameworks for modeling and analysis, and applicability to
evolving architectures. We take as examples two of the prominent
existing AAL architectures and our own prior experience.

I. INTRODUCTION

The worldwide trend towards an ageing demographic is
globally making the Ambient Assisted Living (AAL) do-
main a research focus. A worthy AAL solution should offer
many functions, e.g., health monitoring, fall detection, so-
cial inclusion and connectivity, physical exercise monitoring,
physiotherapy support, home monitoring, robotic platform
support etc. Apart from these functional attributes, many extra-
functional attributes like timeliness, security, resource usage,
reliability, etc. are equally important to ensure the success of
AAL solutions.

Modern AAL systems are increasingly complex, with many
modules that cater for different functionalities and should act
in a highly dynamic environment, at the core of IT Connected
Health platforms ??. A patchwork of partial solutions across
providers has been so far adopted mostly in projects, but
never really at a large scale, but the first workable solutions
are starting to emerge. Philips’ newly launched HealthSuite
platform, for example, is an open, cloud-based platform that
collects, compiles and analyzes clinical and other data from
a wide range of devices and sources, based on open APIs.
Its computational core, CareCatalyst1, enhances collaborative

1http://www.usa.philips.com/healthcare/innovation/about-health-
suite/carecatalyst

care between healthcare consumers and healthcare providers
by collecting and connecting data across the health ecosystem
including PHR, Consumer and Medical Devices, and EMRs.

Ensuring correctness, security, safety, and proper real-time
behavior of AAL systems is of utmost importance as they need
to tackle many critical scenarios that can even result in life loss
if mismanaged. For instance, fall incidents of elderly people
are critical indicators also of other conditions, and may even
lead to death if proper aid is not given within a prescribed
time and proper follow-up is not provided. In case of a fall
event, the AAL system should raise a fall alarm and inform
the care givers, potentially in an escalation chain, to guarantee
that adequate care will be given in due time.

In our research experience, architectures, development
frameworks, and tools play a significant role in the application
of our research to AAL projects. In this paper, we reconsider
our experience so far, including diverse prominent examples
of AAL architectures (Section II), system design and devel-
opment platforms (Section III), and analysis and verification
tools (Section IV). As we employ a wide variety of tools,
mostly in subsets according to our expertise, we observe that
their interoperability by syntactic and semantic compatibility
is essential for performing proper verification of critical func-
tionalities. In Section V we provide a conceptual sketch for the
integration of the design and analysis methods and tools, to
exploit synergies and complementarities. In this way, we wish
to provide a holistic and well-rounded design and analysis
platform that uses the tools listed in the following sections,
and ensures the needed syntactic and semantic compatibility.

II. AAL ARCHITECTURES FOR ANALYSIS

The many challenges associated with the analysis of AAL
solutions span the scope of model-driven design (MDD) (e.g.,
via the DIME [1] tool), timing and resource-usage specifica-
tion (e.g., via REMES language [2]), security features (e.g.,
using SECube [3]), and statistical model-checking techniques
(e.g, via Plasma [4]). To facilitate the discussion, we refer
to two concrete AAL architectures, a cloud-based one and
a service-oriented one, both sharing a set of functional and
extra-functional aspects (e.g., timing, resource-usage, security



Fig. 1. ESS-H: a cloud-based architecture

and privacy etc.) that need to be analyzed. Since the design
of adequate AAL architectures is based on user feedback,
an MDD approach that involves users in the design and
development loop would be extremely beneficial. However, the
different paradigms used in the two architectures may lead to
differences with respect to meeting quality requirements.

a) ESS-H: a cloud-based architecture: The ESS-H
(Embedded Sensor Systems for Health) architecture [?] is
shown in Fig. 1. Its major components are the collector and
user-interface unit, the gateway and switch server, and the
intelligent health server, the last two being cloud based. The
ESS-H is a centralized solution, as the intelligent control is
embedded within the intelligent health server that decides the
actions to take in a centralized manner.

b) FUSION: a service-oriented architecture: The dis-
tributed multi-agent-based system developed for supporting
people affected by the Alzheimer disease shown in Fig. 2 is
based on a Flexible User and Service-Oriented multi-ageNt
Architecture (FUSION@) [5], with agents based on delibera-
tive Belief-Desire-Intention (BDI) paradigm. Applications and
services communicate with the agent platform using the SOAP
protocol, and the inter-agent communication happens through
FIPA ACL. A distributed artificial intelligence (AI) unit is
implemented through Case-Based Reasoning and Case-Based
Planning techniques. The implementation framework is JADE.

A. Analysis and comparison

The design aspects that deserve consideration and proper
analysis for both architectures are as follows.

a) Resource usage: In the centralized ESS-H cloud-
based solution, the Decision Support System associated with
the cloud server takes the intelligent decisions. In contrast,
the service-oriented architecture foresees multiple agent sys-
tems, with all the agents collaborating to deliver the required
intelligent decisions. In both cases, resource-usage analysis

Fig. 2. FUSION: a service oriented MAS architecture for Alzheimer care

is relevant for the design and implementation stages. For
instance, in the distributed case each agent is basically a
processor with its own memory, so a feasibility analysis should
ensure that the required memory for each agent does not
exceed the provided one. Similarly, a proper load balancing
when distributing computing tasks among agents requires a
CPU usage analysis of each agent.

The communication protocol choice is a further crucial
dimension on which the success of any AAL system largely
depends. While the cloud-based AAL solution leaves space for
a flexible choice, for the distributed MAS-based architecture
the inter-agent communication protocol choice is restricted to
Agent Communication Languages (ACL), hence bandwidth
can become a constraint if large amounts of data need to be
transmitted between agents.

b) Security: Security properties, e.g., protecting sensi-
tive medical data or ensuring authorized access to data by
a third party, are essential extra-functional features for any
AAL solution. Since the information flow in the cloud-based
AAL solution is centralized, one can intuitively argue that it is
easier to encrypt and protect the data from unauthorized third
party attacks than in the agent-based solution: there, each agent
should incorporate a security aspect of its own in order to be
safe in cases of third party attacks.

c) Real-time properties: An AAL system should guar-
antee known real-time performance even in a highly dynamic
environment. Many functionalities, like the health parameters
variations, falls etc., need immediate assistance from care
givers. They are thus hard real-time, that is, the respective
deadlines and other timing constraints must be met. In the
distributed agent-based system, communication and synchro-
nization between the agents adds time overheads when taking
a decision after a critical event, therefore real-time property



Fig. 3. AAL noise and face recognition system: Top model (left), submodels
(right)

analysis is a must to still guarantee timely operation.
d) Fault tolerance and Reliability: Fault tolerance has

a strict connection with reliability that refers to how long the
system can deliver its desired functionality successfully. The
centralized cloud-based AAL architecture has a higher single
point of failure risk, hence essential units need to be replicated
in order to ensure reliability. The inherently distributed MAS
architecture should be less exposed to fault tolerance risks due
to the distribution of functionalities.

Modern AAL architectures are highly complex systems and
provide continuous multi-functionality support that is time and
quality critical. To design, represent, analyze, and then guar-
antee the various aspects of functions and quality of service
outlined above, we envision the use of a multitude of tools
specialized to support design and analysis for such properties.
This tool landscape however needs to work coherently, and be
semantically interoperable.

In the following section we present the design platform
that one could consider for developing AAL solutions with
the user-in-the-loop, to which various existing tools can be
added to achieve the analysis along the various dimensions
mentioned above.

III. DESIGN PLATFORMS: DESIGN AND ANALYSIS WITH
LIVING MODELS

In the modern connected world, agile and prototype-driven
design is rapidly emerging as the paradigm of choice for the
co-creation of applications and systems that really serve the
needs of the users and healthcare practitioners. In contrast
to the traditional software development process, collabora-
tive approaches that include AAL users and professionals
in the co-production of executable models do not start with
a lengthy analysis to produce textual specifications, distinct
and detached from the design and implementation. Agile
design platforms allow action-based design from inception,

involving the user/application expert continuously throughout
the whole systems’ life-cycle. Developing systems with the
eXtreme Model-Driven Development (XMDD) paradigm [6],
[7], for example, adopts a user-in-the-loop and expert-in-
the-loop model-driven philosophy that works by successively
enriching and refining a single artefact that is a rich multi-
aspect and multi-faceted formal and executable model, as in
the One-Thing Approach (OTA) [8].

Fig. 3 shows the service logic of a noise and face recognition
application for the AAL Smart Home showcased at the CeBIT
2009 and IFA 2009. This lightweight nighttime surveillance
system has been designed in collaboration with a residential
care home for dementia patients. In this design approach
application models are at the center of the design activity and
first class entities of the global system design process.

Domain specific libraries of models establish a design
language familiar to both IT and non-IT stakeholders, where
building blocks are (elementary) units of behavior rather than
software components. In this example, the top level model
handles emergencies by 1) analyzing and classifying the noises
that microphones capture in the surveilled rooms, detecting
anomalies, and 2) switching on a camera and notifying the
nurse in charge, in case of peril or inconclusive classification.
To recognize the people in the room, it 3) compares the image
to a database of known potential individuals (patients, staff,
family members) and sends an appropriate message or alarm
to the nurse in charge.

Systems are specified by model assembly. Here we use
orchestration in each model, hierarchy for behavioral refine-
ment, and configuration as composition techniques. The top
level model includes in this example three submodels, one for
the noise recognition, one for the face recognition, and one for
the situation profile handling and action matching (i.e., what
to do in which case).

Knowledge and requirements are expressed as properties,
via constraints formulated in an automatically verifiable fash-
ion. Actually, some of the constraints happen to be domain-
independent, and already taken care of at design time by
the jABC or more recently DIME [1] design environment.
Here, this covers both the functional correctness of each
model element (Action), but also the patterns of usage inside
processes and workflows, i.e., behavioral constraints expressed
in temporal logics (typically CTL and LTL) and verified by
model checking.

As our models are immediately executable, first in ani-
mation mode that proposes a walk through the system, then
with real code (for simulation or for implementation), they are
enactable from the very beginning. Hence the ”living models”
name [8] that distinguishes them from the usual software
design models, which are purely descriptive and illustrative,
and do not provide immediate feedback on their own. In most
cases, such models get refined in this style until the atomic
actions get implemented, in source code or reusing previous
assets like a database, components via an API, or services.
In this case, there is no inherent design/implementation gap
between the initial prototype and the final product: the finished



Sensor BoardMotion Planner Board

Social Force

Model

PLASMA‐lab

SMC Engine

Suggested

Motion

Global

Objectives

Sensor

Processing

Sensors

actual mo�on

plausible paths

current state

Fig. 4. Architecture of the DALi motion planner with Plasma Lab

running system is co-created incrementally along the design
process, and grows from the model through prototypes into
the fully implemented and running system.

To design the system behavior, we use domain-appropriate
design tools like DIME [1], a Cinco [9] product that is
adequate for the design of web-based applications, as most
AAL applications are. The XMDD design approach is how-
ever so far architecture-agnostic, and its property support is
geared towards workflow-style properties easily expressible
in Computation Tree Logic (CTL) for model checking with
the GEAR [10] game-based model checker for modal mu-
calculus, and in Linear Temporal Logic (LTL) for workflow
(i.e., subprocess) synthesis with the PROPHETS plugin [11].
Timing properties, resources, and stochastic behavior could
and should be added by a proper integration with REMES
IDE [12], an environment that provides automated support to
the resource-aware modeling and analysis in the REMES [2]
language, UPPAAL model checker [13], and Plasma tools [4].
Also, architecture-awareness might be a useful addition, es-
pecially in case of distribution, which often leads to feature
interaction problems. We have seen in the past how incre-
mental formalization [14] turned out beneficial in managing
interferences in telecommunication platforms[15]. We expect
the connected healthcare aspect of AAL to share many traits
with those applications, thus profiting from that experience in
evolution-friendly design.

IV. STATISTICAL MODEL CHECKING AND AAL

In the context of motion planning for assisted living [16],
[17], the Plasma Lab platform for Statistical Model checking
(SMC) was integrated with robotic devices in the DALi and
ACANTO EU projects. There, a novel online motion planning
application of SMC helps those with impaired ability to
negotiate complex crowded environments like shopping malls
and museums. While DALi is focused on helping a single
user reach a number of specific locations, ACANTO concerns
therapeutic activities of groups of users, where group cohesion,
social interaction, and exercise are the metrics of interest.

Fig. 5. Operation of the DALi motion planner

In the basic system architecture shown in Fig. 4, sensors
like fixed cameras and cameras on robotic devices locate fixed
and moving objects in the environment. A predictive stochastic
model of human motion (the “social force model”) constructed
from this information is used to generate plausible future
trajectories of all the detected moving agents, given initial
deviations from their current trajectories. After hypothesizing
different initial directions, Plasma Lab estimates the proba-
bility that future trajectories will satisfy path constraints and
objectives expressed in temporal logic. The best deviation is
suggested to the user.

In Fig.5, a user (the rectangle) walking to the next local
waypoint (green dot) in straight line (in red) would with
high probability collide with other pedestrians (circles), whose
position and velocity are indicated by vectors. By making a
deviation to the user’s trajectory (dashed red line), Plasma Lab
predicts that the pedestrians will avoid each other with high
probability (shaded areas).

The planner can include additional constraints like desired
zones for the pedestrian (e.g., “keep within 5 minutes walk
from a restroom”), undesired zones to avoid, and anomalies
like temporary obstacles over the path. The global planner
starts from a pre-calculated global plan that visits the user’s
objectives in an a priori optimal way, considering all things
known in advance, and calculates a local way point w as the
user’s point of greatest straight line progress along the global
plan within the sensor range.

Then, the motion planner assumes the user will follow
the global plan, but needs to temporarily deviate to avoid
collisions. A short term planning algorithm uses SMC to
suggest a deviation to the user’s direct path.

A. Plasma Lab: a Statistical Model Checking platform

SMC is based on the notion that sample runs of a stochastic
system are drawn according to the distribution defined by the
system, and can therefore be used to estimate the probability
measure on executions. The properties that we handle by such
approach include BLTL [18], a bounded version of LTL.

PLASMA is a compact, efficient and flexible SMC platform
that offers a series of SMC algorithms, including classical
SMC algorithms and specialized ones for rare events. Being
a platform, PLASMA is designed for API-based integration
of external simulators, input languages, and SMC algorithms.



This ability reduces the effort of integrating new algorithms
and allows us to create direct plugin interfaces with industry-
used specification tools, without using extra compilers, for
example with Simulink.

V. AN ENCOMPASSING SYNERGETIC APPROACH

As just described, many dimensions of analysis and verifi-
cation cooperate to ensure the high quality of AAL solutions.
At each level, the one or other platform, approach, or tool
offers means to express, check, or enforce some characteristics
of the system under design that are crucial to a high quality
AAL solution. Our proposal is to join forces and combine
the strengths of each approach into an integrated design
and verification platform with strong holistic description and
validation capabilities. For each dimension, we sketch the
possible synergies and how we envisage to achieve them.

a) Design and Functional Correctness: We can analyze
functional properties by model checking behavioral models
like, e.g., in DIME, and synthesize functionally correct sub-
models with PROPHETS. We use CTL and LTL, respectively,
directly on our behavioral models. At the metamodel level,
we can formulate correctness criteria in Cinco and ensure that
the tool generated from that Cinco model (e.g., DIME) will
automatically enforce model compliance to them.

Probabilistic properties can be covered via SMC through
Plasma Lab [4], most likely using it as a plugin to a design
environment like DIME or REMES. In fact, the PLASMA API
and plugin-based architecture makes it easy to add new simu-
lators, checkers, or algorithm components. This is compatible
with both the Cinco tool generation philosophy and the DIME
design environment: the PLASMA GUI is itself created using
the Cinco metamodeling environment [19].

Functionalities can also be mapped to REMES models,
achieving a design environment that coherently integrates at
the model level the different aspects to describe, and then
validates and tests the systems underlying the AAL solutions.

b) Security, Privacy, Confidentiality: Security is lay-
ered inside the activities, at the model level, and at the global
level including the run-time environment.

Equipping the system with security features via the security
Domain Specific Language and security processes [20] offered
by the SEcube security design platform [3] is an attractive
possibility, especially as SEcube is already integrated with
DIME. We can map also privacy and confidentiality to general
temporal logic properties once we have a role model (e.g. as
RBAC) [1] and a characterization of the security primitives.
If the properties are probabilistic, the SMC capabilities can
again be used.

The entire SEcubeTM platform is ready to support security-
agnostic application designers in their need to add security
aspects to their models, by leveraging predefined abstract
security primitives, which they might theoretically not even
know nor understand in detail, as in [21]. For these rea-
sons, DIME includes by design the support of properties
and model manipulations that are foundational for the OTA-
based XMDD. DIME focuses on application experts, who

are typically non programmers, and its versatility is a key
characteristic.

c) Performance and Real-time properties: The hard
real-time constraints of AAL solutions can be analyzed in our
integrated framework by model checkers like UPPAAL [13],
a state-of-the-art tool for verifying real-time systems. End-to-
end deadlines, response times and synchronization constraints
can be encoded as (timed) CTL properties and model checked
with UPPAAL, assuming the model of the system as a network
of timed automata.

PLASMA can be used through its GUI, but also via the
command line or embedded in other software as a library. The
PLASMA GUI, itself created using the Cinco metamodeling
environment [19], supports its use as a standalone SMC with
multiple ‘drop-in’ modeling languages, and provides an SMC
engine and a source template to create custom simulator
classes. A plugin system makes adding a simulator, a checker
or an algorithm component pretty straigthforward. To benefit
from massive distribution of the simulations, the PLASMA API
provides generic methods to define distribution algorithms. We
have used these functionalities to distribute large number of
simulations over a computer grid 2.

REMES is already integrated with UPPAAL, and the latter
can also be added to DIME, and easily interfaced with Plasma
via a dedicated plugin.

d) Resource Analysis: Resource guarantees and opti-
mizations are kept as much as possible distinct from design
issues, in order to maintain information on the structure and
the design decisions independent of the considerations that
lead to a particular optimized implementation.

Resource-related properties of AAL solutions, like CPU,
bandwidth and memory usage, can be expressed and analyzed
in REMES (REsource Model for Embedded Systems) [2],
[12], which is a resource-aware behavioral language of in-
teracting components, called modes, which communicate with
one another and the environment via shared variables. Each
of the considered abstract resources, that is, memory, CPU,
energy, bandwidth, have a dedicated type in the language:
mem, CPU, eng, bdw, respectively. The semantics of REMES
modes is given in terms of (priced) timed automata, so
feasibility analysis as well as optimal and worst-case resource
usage of various AAL solutions can be checked as (weighted)
computation tree logic properties with the UPPAAL suite.

In the future, one could equip the DIME models with the
ability to express resource models and characteristics as in the
REMES model, in order to also encompass resource-aware
behavior, and be able to reason about possible trade offs
between quality-of-service attributes of AAL solutions.

e) Fault tolerance and Reliability: The reliability of an
AAL solution for a specified period of time under specified
environmental conditions can be modeled probabilistically in
Plasma or UPPAAL SMC (Statistical Model Checker) [22],
and the probability of successful operation can be checked by

2https://project.inria.fr/plasma-lab/documentation/tutorial/
igrida-experimentation/



hypothesis testing with Plasma for untimed models, and with
UPPAAL SMC for timed models, or estimated via probability
evaluation.

UPPAAL SMC can be interfaced with Plasma for statistical
analysis of complex timed models, and with REMES to
provide statistical model checking of resource-related proper-
ties. Replicated AAL models can be abstracted into networks
of stochastic timed/hybrid automata that can be statistically
model checked to analyze fault tolerance.

f) Evolution and Tools Interoperability: Changes in
models and properties are inevitable for dynamic AAL sys-
tems, to which a new health service can be added at a later
time, or hardware can be replaced depending on the user’s
needs. Such changes need to be supported by a potential inte-
grated framework for modeling and analyzing AAL systems.

In DIME, system changes (e.g., upgrades, customer-specific
adaptations, new versions) occur only, or at least primarily, at
the model level, with a subsequent global re-verification, and
re-compilation (or re-synthesis, in the future).

Evolution can be handled in REMES by depicting intra-
and inter-component dependencies via dependency analysis
[23] that traces the impact of some modification in the model.
Smooth changes are facilitated by tools interoperability, which
means that we can exchange model artefacts between tools.

Moreover, in order to ensure semantic compatibility be-
tween the involved tools (DIME, SECube, REMES, UPPAAL
and Plasma), that is, guarantee that a model preserves the orig-
inal execution semantics from one tool to the other, we might
need to define a “semantic translator” that implements the
model-to-model translations based on a mapping metamodel,
either in a constructive way as in Cinco or in a transformational
manner [24].

REFERENCES

[1] Steve Boßelmann, Johannes Neubauer, Stefan Naujokat, and Bernhard
Steffen. Model-Driven Design of Secure High Assurance Systems:
An Introduction to the Open Platform from the User Perspective. In
T.Margaria and Ashu M.G.Solo, editors, The 2016 International Con-
ference on Security and Management (SAM 2016). Special Track ”End-
to-end Security and Cybersecurity: from the Hardware to Application”,
pages 145–151. CREA Press, 2016.

[2] Cristina Seceleanu, Aneta Vulgarakis Feljan, and Paul Pettersson.
Remes: A resource model for embedded systems. In 14th IEEE
International Conference on Engineering of Complex Computer Systems
(ICECCS 2009), pages 84–94. IEEE Computer Society, 2009.

[3] Antonio Varriale, Giorgio di Natale, Paolo Prinetto, Bernhard Steffen,
and Tiziana Margaria. SEcubeTM: An open security platform: General
Approach and Strategies. In T.Margaria and Ashu M.G.Solo, editors,
The 2016 International Conference on Security and Management (SAM
2016). Special Track ”End-to-end Security and Cybersecurity: from the
Hardware to Application”, pages 131–137. CREA Press, 2016.

[4] Benoı̂t Boyer, Kevin Corre, Axel Legay, and Sean Sedwards. PLASMA-
lab: A Flexible, Distributable Statistical Model Checking Library. In
Proceedings of QEST, volume 8054 of LNCS, pages 160–164. Springer,
2013.

[5] Dante I Tapia, Sara Rodrıguez, and Juan M Corchado. A distributed
ambient intelligence based multi-agent system for alzheimer health care.
In Pervasive Computing, pages 181–199. Springer, 2009.

[6] Tiziana Margaria and Bernhard Steffen. Agile IT: Thinking in User-
Centric Models. In Tiziana Margaria and Bernhard Steffen, editors,
Leveraging Applications of Formal Methods, Verification and Validation,
volume 17 of Communications in Computer and Information Science,
pages 490–502. Springer Berlin / Heidelberg, 2009.

[7] Tiziana Margaria and Bernhard Steffen. Service-Orientation: Conquering
Complexity with XMDD. In Mike Hinchey and Lorcan Coyle, editors,
Conquering Complexity, pages 217–236. Springer London, 2012.

[8] Tiziana Margaria and Bernhard Steffen. Business Process Modelling in
the jABC: The One-Thing-Approach. In Jorge Cardoso and Wil van der
Aalst, editors, Handbook of Research on Business Process Modeling.
IGI Global, 2009.

[9] Stefan Naujokat, Michael Lybecait, Dawid Kopetzki, and Bernhard
Steffen. CINCO: A Simplicity-Driven Approach to Full Generation of
Domain-Specific Graphical Modeling Tools. 2016. to appear.

[10] Marco Bakera, Tiziana Margaria, Clemens Renner, and Bernhard Stef-
fen. Tool-supported enhancement of diagnosis in model-driven verifi-
cation. Innovations in Systems and Software Engineering, 5:211–228,
2009.

[11] Anna-Lena Lamprecht, Stefan Naujokat, Tiziana Margaria, and Bernhard
Steffen. Synthesis-Based Loose Programming. In Proc. of the 7th Int.
Conf. on the Quality of Information and Communications Technology
(QUATIC 2010), Porto, Portugal, pages 262–267. IEEE, September
2010.

[12] Dinko Ivanov, Marin Orlić, Cristina Seceleanu, and Aneta Vulgarakis.
Remes tool-chain: A set of integrated tools for behavioral modeling and
analysis of embedded systems. In Proc. of the IEEE/ACM International
Conference on Automated Software Engineering, ASE ’10, pages 361–
362. ACM, 2010.

[13] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nut-
shell. International Journal on Software Tools for Technology Transfer,
1(1):134–152, 1997.

[14] Bernhard Steffen, Tiziana Margaria, Andreas Claßen, and Volker Braun.
Incremental Formalization: A Key to Industrial Success. Software -
Concepts and Tools, 17(2):78–95, 1996.

[15] Bengt Jonsson, Tiziana Margaria, Gustaf Naeser, Jan Nyström, and
Bernhard Steffen. Incremental requirement specification for evolving
systems. Nordic J. of Computing, 8:65–87, March 2001.

[16] Alessandro Colombo, Daniele Fontanelli, Axel Legay, Luigi Palopoli,
and Sean Sedwards. Motion planning in crowds using statistical model
checking to enhance the social force model. In IEEE Conference on
Decision and Control (CDC), pages 3602–3608, 2013.

[17] Alessio Colombo, Daniele Fontanelli, Axel Legay, Luigi Palopoli, and
Sean Sedwards. Efficient customisable dynamic motion planning for
assistive robots in complex human environments. Journal of ambient
intelligence and smart environments, 7:617–633, 2015.

[18] P. Zuliani, C. Baier, and E. Clarke. Rare-event verification for stochastic
hybrid systems. In Hybrid Systems: Computation and Control (part
of CPS Week 2012), HSCC’12, Beijing, China, pages 217–226. ACM,
2012.

[19] Stefan Naujokat, Louis-Marie Traonouez, Malte Isberner, Bernhard
Steffen, and Axel Legay. Domain-Specific Code Generator Modeling:
A Case Study for Multi-faceted Concurrent Systems. In Proc. of the 6th
Int. Symp. on Leveraging Applications of Formal Methods, Verification
and Validation, Part I (ISoLA 2014), volume 8802 of LNCS, pages 463–
480. Springer, 2014.

[20] Giorgio di Natale, Alberto Carelli, Pascal Trotta, and Tiziana Margaria.
Model driven design of crypto primitives and processes. In T.Margaria
and Ashu M.G.Solo, editors, The 2016 International Conference on
Security and Management (SAM 2016). Special Track ”End-to-end
Security and Cybersecurity: from the Hardware to Application”, pages
152–158. CREA Press, 2016.

[21] Tiziana Margaria, Bernhard Steffen, and Manfred Reitenspieß. Service-
Oriented Design: The Roots. In Proc. of the 3rd Int. Conf. on Service-
Oriented Computing (ICSOC 2005), Amsterdam, The Netherlands, vol-
ume 3826 of LNCS, pages 450–464. Springer, 2005.

[22] Alexandre David, K.G. Larsen, A. Legay, M. Mikučionis, and D.B.
Poulsen. Uppaal smc tutorial. STTT Journal, 17(4):397–415, 2015.

[23] Raluca Marinescu, Saad Mubeen, and Cristina Seceleanu. Pruning
architectural models of automotive embedded systems via dependency
analysis. In Proc. of IEEE Euromicro SEAA Conference (SEAA 2016,
to appear). IEEE Computer Society, 2016.

[24] Gabor Karsai, Andras Lang, and Sandeep Neema. Design Patterns for
Open Tool Integration. Software and Systems Modeling, 4(2):157–170,
2005.


