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Abstract—This paper considers a Cognitive Radio (CR) chan-
nel composed of a secondary user (SU) and a primary user (PU).
An analysis of the power minimization over several orthogonal
frequency bands at the SU level under the following constraints
is provided: a minimum Quality of Service (QoS) constraint,
maximum peak and average interference to the PU constraints.
The general solution, when it exists, is a water-filling type of
solution which can be computed via iterative algorithms. It turns
out that, in the case of two orthogonal bands a closed-form
analytical solution can be found and a complete analysis of the
feasibility of these opposing constraints is presented in details.
Several numerical results that sustain and give inside into the
analysis are also discussed.

Index Terms—Cognitive Radio channels, power-efficient spec-
trum allocation problems, green communications

I. INTRODUCTION

The concept of Cognitive Radio [1] has recently emerged as
a promising paradigm for a more efficient use of the available
spectrum by allowing the coexistence of licensed (primary)
and unlicensed (secondary) users in the same bandwidth.
Another major concern that is rapidly gaining momentum is
the energy consumption for green communications. Recently,
there has been an important switch of focus from a data rate
maximization vision to an application-based utility optimiza-
tion one, that takes into account the cost of power consumption
to achieve the target data rates [2], [3].

In this paper, we consider a home-automation scenario
where several technologies (i.e., WiFi, PLC, Femto, etc.) are
able to operate simultaneously and where different appliances
may have different hierarchical priorities. The EconHome-box
is meant to allocate frequency bands and powers in a green
telecommunications sprint. Notice that the analysis we provide
is not restricted to this scenario alone and can be applied to
any CR system with several orthogonal sub-channels available

This work was sponsored in part by the FUI SYSTEM@TIC Project
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for communication: OFDM systems, interoperability of several
coexisting transmission systems.

To model this home-automation scenario we consider a CR
channel composed of a primary user (PU) and a secondary
user (SU) that is opportunistically accessing the channel and
interfering with the PU. The question under investigation is
to know how the SU will optimally allocate the available
power over the available bands to minimize its total power
consumption under several constraints: target QoS constraint,
peak and average maximal interference levels that the SU can
create to the PU.

The problem of resource allocation has mainly been studied
from a data rate maximization point of view. For exemple, in
[4], [5], [6] the authors considered the maximization of the
Shannon achievable rate over several sub-channels, subject to
transmit powers and mask constraints on each sub-channel. In
[4], a centralized approach based on convex optimization (see
e.g., [7], [8]) was proposed to compute, under some technical
conditions, the achievable rate region of the system.

To the best of the authors’ knowledge, the closest works
to ours are [9] and [10]. In [10], the authors consider the
distributed minimization of transmit powers subject to rate
target constraints for the multi-user parallel interference chan-
nels. The difference to our work consists in the absence
of PU and thus, of the interference constraints that limit
the SU transmissions’. In [9], the authors study the multi-
users multiple-input multiple-output (MIMO) Cognitive Radio
channels. In order to design cognitive MIMO SU transceivers,
the authors of [9] model the distributed maximization of
the Shannon achievable rates under interference constraints
imposed by the presence of the PU. In order to approach this
complex problem, the authors study several particular cases by
systematically eliminating one of the interference constraints
and solving a simpler problem. In this paper, we consider a
simpler channel model (the single-SU case and the multiple



orthogonal sub-channels). However, the novelty and interest of
our work consists in the fact that we study the dual problem of
[9] in its generality with respect to the feasibility constraints.

Our contributions can be summarized as follows: i) in the
general case of arbitrary number of orthogonal bands, we give
the analytical water-filling solution to the power minimization
problem under minimum rate and maximum peak and average
interference constraints created to the PU, when it exists; ii)
in the case of two orthogonal frequency bands, we give an
analytical closed-form solution and a complete study of the
feasibility of all the constraints is provided; iii) numerical
simulations that sustain the analysis are provided for different
channel parameters.

The remainder of this paper is organized as follows. In
section II, we describe the system model. We provide the
water-filling type of solution of the general optimization
problem section III. A closed-form solution in the case of
two orthogonal bands is given in section IV. In section V, we
present some interesting simulation results. We conclude this
paper in sectionVI.

II. SYSTEM MODEL

The CR channel under study system is depicted in Fig.1.
The primary/secondary user consists of a Primary/Secondary
Transmitter (PT/ST) and a Primary/Secondary Receiver
(PR/ST) respectively. Each transmitter or receiver is equipped
with only one antenna. The transmission is done over N ≥ 2
orthogonal frequency bands. The transmit power of ST in the
frequency band k ∈ {1, ...N} is denoted by pk. We denote
the overall power allocation profile by p = (p1, p2, ..., pN ),
p ∈ RN

+ .
The received signal at SR in band k can be written as:

yk =
√
pkhksk + ik,PU + nk, (1)

where hk represents the channel gain, sk the transmit signal
of the ST is given by unit-power variable over each orthogonal
frequency band. The instantaneous power gain of the ST-
SR direct link, the interfering ST-PR link is denoted by are
denoted by |hk|2, gk respectively. All the channels are assumed
to be stationary, ergodic and independent from the noises. The
noise nk v N (0, σ2

k) is a zero-mean circularly symmetric
complex Gaussian noise vector and the interfering signal from
the PU ik,PU v N (0, σ2

k,PU ).

Fig. 1. Channel model for the communication in band k.

In this scenario, the Shannon achievable rate of the SU is
given by

R(p) =

N∑
k=1

log2(1 + ckpk), (2)

where ck is related to the interfering ST-PR link by

ck =
|hk|2

σ2
k + σ2

k,PU

(3)

where σ2
k,PU is the interfering variance from the PU and σ2

k

is the variance of the thermal noise.

III. GENERAL OPTIMIZATION PROBLEM

We consider the constrained power minimization problem
at the SU level. Three constraints are considered in our
optimization problem: a) a QoS constraint (4); b) peak (6)
and average (5) interference constraints to protect the PU and
limit the interference caused by the SU.
1— Target rate constraint:

R(p) =

N∑
k=1

log2(1 + ckpk) ≥ Rmin, (4)

which is imposed to achieve a minimum QoS of the SU
transmission.

2— Average interference power shaping constraint:

N∑
k=1

gkpk ≤ P , (5)

where P is the maximum average interference level that
can be received at PR. This constraint is an imposed
interference limitation at the PR.

3— Peak interference power shaping constraints:

0 ≤ gkpk ≤ P peak
k , ∀ k = 1, . . . N, (6)

where P peak
k is the maximum peak interference level

that can be received at PR in a given band.
The optimization problem under study can be written as:

min
{pk}Nk=1

N∑
k=1

pk

s.t. R(p) =

N∑
k=1

log2(1 + ckpk) ≥ Rmin

N∑
k=1

gkpk ≤ P

0 ≤ gkpk ≤ P peak
k ∀ k ∈ {1, ..N}

(7)

Notice that without loss of generality, we can consider
only the case where Rmin > 0. In the case where Rmin = 0
the solution is trivial and the transmission powers are equal
to zero, p∗k = 0 ∀k, i.e.,no transmission is performed at the SU.
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In the case of applying a flat power allocation policy (i.e.,
∀k ∈ {1, ..N} pk = p), all the constraints become more
strict and the feasible set is reduced. The constraints in

this case will be given by p ≤ min

{
P peak
k

gk
,

P∑
k gk

}
and∑

k log(1 + ckp) ≥ Rmin. Therefore, the benefit of applying
our optimal allocation policy comparing to this flat power
allocation policy, is to have much more flexibility in the
feasibility of our constraints and a significant gain in terms
of power consumption.

Theorem 1: If the feasible set of the optimization problem
(7) is not void, the optimal power allocation policy is given
by the following water-filling type solution 1:

p∗n =

[
ξn −

1

cn

]P peak
n

gn

0

, ∀n ∈ {1, . . . N} (8)

where ξn =
λ

ln(2)(1 + βgn)
, λ and β verify the following

conditions:{
λ > 0 and

N∑
k=1

log2(1 + ckp
∗
k) = Rmin

}

and

{
β > 0 and

N∑
k=1

gkp
∗
k = P

}
or

{
β = 0 and

N∑
k=1

gkp
∗
k < P

}
.

If the feasible set is void then the problem (7) has no
solution.

Proof: We denote the feasible set by SN such that:

SN =
{
p ∈ RN

+ | 0 ≤ gkpk ≤ P
peak
k ,

N∑
k=1

log2(1 + ckpk) ≥ Rmin,

N∑
k=1

gkpk ≤ P

}
. (9)

Two different scenarios are possible:
• SN = ∅: In this case, there is no feasible power

allocation policy, i.e., no vector p ∈ RN
+ that satisfies

simultaneously all the constraints in (9).

• SN 6= ∅: Given the concavity of log(.) function, the
linearity of powers constraints and the convexity of the

1 We denote by [x]ba = min{max{x, a}, b} or equivalently

[x]ba =

 x, if a ≤ x ≤ b
a, if x < a
b, if x > b.

objective function
N∑

k=1

pk, it is easy to prove that SN is

convex [8], i.e., ∀ p̂k, p̃k ∈ SN , ∀ θ ∈ [0, 1] we have

θp̂k + (1− θ) p̃k ∈ SN . (10)

Thus, the optimization problem in (7) is a convex problem
which has at least an optimal solution. Therefore, we can
apply the Lagrangian method to solve (7).
The Lagrangian is given by:

L(p, λ, β, α, µ) =

N∑
k=1

pk − λ

(
N∑

k=1

log2(1 + ckpk)

−Rmin) + β

(
N∑

k=1

gkpk − P

)
−

N∑
k=1

αkgkpk

+

N∑
k=1

µk

(
gkpk − P peak

k

)
,

(11)

where λ, β, α = (α1, α2, ..., αN ) and µ =
(µ1, µ2, ..., µN ) are the non-negative Lagrangian multi-
pliers of the corresponding constraints (4)(5)(6), respec-
tively. We denote p∗ an optimal solution.
The Karush-Kuhn-Tucker (KKT) optimality conditions
are:

i) Compute the solution that gives null Lagrangian

derivative:
∂L
∂pn

∣∣∣∣∣
pn=p∗

n

= 0 ;

ii) Non-negative Lagrangian multiplier of the rate con-

straint λ > 0 and
N∑

k=1

log2(1 + ckp
∗
k) = Rmin

or λ = 0 and
N∑

k=1

log2(1 + ckp
∗
k) > Rmin ;

The case of null Lagrangian multiplier of the rate
constraint cannot occur, because if λ = 0 then the
Lagrangian in (11) becomes:

L(p, β, α, µ) =

N∑
k=1

pk + β

(
N∑

k=1

gkpk − P

)

−
N∑

k=1

αkgkpk +

N∑
k=1

µk

(
gkpk − P peak

k

)
,

and the optimization problem in (7) is given by:



min
{pk}Nk=1

N∑
k=1

pk

s.t.
N∑

k=1

gkpk ≤ P

0 ≤ gkpk ≤ P peak
k ∀ k ∈ {1, ..N}

In this power optimization problem the optimal
power solution p∗ is null. Then the SU optimal rate
is null also (i.e.,

∑N
k=1 log2(1 + ckp

∗
k) = 0), this is
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contradictory to the QoS constraint which is strictly
positive (Rmin > 0). Thus, the Lagrangian multiplier
of the rate constraint is strictly positive and given by:

λ > 0 and
N∑

k=1

log2(1 + ckp
∗
k) = Rmin

iii) Non-negative Lagrangian multiplier of the average

interference power constraint β > 0 and
N∑

k=1

gkp
∗
k =

P or β = 0 and
N∑

k=1

gkp
∗
k < P ;

iv) Non-negative Lagrangian multiplier of the peak pow-
ers constraints for each band:

αn > 0 and gnp∗n = 0 or αn = 0 and gnp∗n > 0

µn > 0 and p∗n =
P peak
n

gn
or µn = 0 and p∗n <

P peak
n

gn
.

As we said before, in order to compute the optimal
solution of our problem we derive the Lagrangian in (11),

∂L
∂pn

∣∣∣∣∣
pn=p∗

n

= 0,

⇔ 1−
λcn

ln(2)(1 + cnp∗n)
+ (β − αn + µn)gn = 0,

⇔
λcn

ln(2)(1 + cnp∗n)
= 1 + (β − αn + µn)gn,

⇔ (1 + cnp
∗
n) =

λcn

ln(2)(1 + (β − αn + µn)gn)
,

⇔ p∗n =
λ

ln(2)(1 + (β − αn + µn)gn)
− 1

cn
.

Considering the other KKT conditions, the solution in
function of the optimal (αn,µn) is as follows:
? αn = 0 and µn = 0 (the optimal power solution is

strictly 2 between 0 and P peak
n /gn)

p∗n =

(
λ

ln(2)(1 + βgn)
−

1

cn

)P peak
n

gn

0

, (12)

? αn = 0 and µn > 0,

p∗n =
P peak
n

gn
, (13)

2The notation (x)ba is defined by:

(x)ba =

{
x, if a < x < b
0, otherwise.

? αn > 0 and µn = 0,

p∗n = 0. (14)

Finally, the equations (12), (13) and (14) can be re-written
in a compact form as follows:

p∗n =

[
λ

ln(2)(1 + βgn)
−

1

cn

]P peak
n

gn

0

, (15)

where λ and β verify the following conditions:{
λ > 0 and

N∑
k=1

log2(1 + ckp
∗
k) = Rmin

}
{
β > 0 and

N∑
k=1

gkp
∗
k = P

}

or

{
β = 0 and

N∑
k=1

gkp
∗
k < P

}
.

Thus, by making a change of variable

ξn =
λ

ln(2)(1 + βgn)
, we obtain the analytical solution

of the problem (7), which is expressed by the well known
water-filling:

p∗n =

[
ξn −

1

cn

]P peak
n

gn

0

. (16)

When the feasible set is void, one or more constraints need
to be relaxed if the system owner wishes to allow a non-trivial
secondary transmission.

IV. THE CASE OF TWO ORTHOGONAL FREQUENCY BANDS

In this section, we focus on the specific case where only
two orthogonal frequency bands are available, i.e., N = 2.
This is motivated by the fact that an analytical study of the
feasible set in the general scenario (9) is very difficult. As we
will show, this difficulty is overcome in this case. We provide
a complete and closed-form analysis of the feasibility of the
opposing constraints: the QoS constraint on one hand, and the
power constraints on the other. Moreover, this two bands case
models the systems where two different technologies can co-
exist, i.e., (WiFi+PLC), or (WiFi+Femto), which is pertinent in
current home-automation systems. Because these technologies
are inherently different or heterogeneous, it is realistic to
assume the orthogonality property of the sub-channels.

In what follows, we focus on the simpler case of N = 2 for
the following reasons: a) it can be realistic in several scenarios
among which we have mentioned here above two of them; b)
it can be solved in an analytical closed-form way; c) it gives
insight and intuition on what happens in a general system with
N > 2 sub-channels which can be solved only numerically.
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In this case, the optimization problem in (7) can be refor-
mulated as:

min{p1 + p2}
s.t p ∈ S2, (17)

where, the feasible set S2 is given by

S2 =
{
p ∈ R2

+ | 0 ≤ g1p1 ≤ P
peak
1 , 0 ≤ g2p2 ≤ P peak

2 ,
2∑

k=1

log2(1 + ckpk) ≥ Rmin,

2∑
k=1

gkpk ≤ P

}
.

Theorem 2: In the case of two orthogonal frequency bands,
when a solution to (17) exists, it is unique and its closed-form
solution is given here under.

If P < −
g1

c1
−
g2

c2
+ 2

√
(
g1

c1

g2

c2
) exp(Rmin) or otherwise if

max{p̂1, p̃1} < 0 then the constraints (4) and (5) can not be
simultaneously satisfied. Also if at least one of the following

conditions is met:
P peak
1

g1
< p̂1 or

P peak
2

g1
< min{p̂2, p̃2}

or

{
f1(

P peak
1

g1
) > P peak

2 and f−11 (
P peak
2

g2
) >

P peak
1

g1

}
then

constraint (6) can not be satisfied. In all the aforementioned
cases, a feasible solution does not exist. In all other possible
scenarios an optimal solution exists and is given by



p∗1 =

 − 1

c1
+

√
exp(Rmin)

c1c2

y

x

,

p∗2 =

 − 1

c2
+

√
exp(Rmin)

c1c2

z

w

,

where x, y, w, z are given by

x = max

{
max {p̂1, 0} , f−11

(
P peak
2

g2

)}
,

y = min

{
min

{
p̃1, f

−1
1 (0)

}
,
P peak
1

g1

}
,

w = max

{
max {p̃2, 0} , f1

(
P peak
1

g1

)}
,

z = min

{
min {p̂2, f1(0)} ,

P peak
2

g2

}
.

(18)

The parameters p̂, p̃ are the intersection points of the
functions f1(.) and f2(.) defined as: f1 : R→R (derived from
the rate constraint(4)) such that:

f1(p1) =
1

c2

(
exp(Rmin)

1 + c1p1
− 1

)
(19)

and f2 : R→ R (derived from the average interference power
constraint(5)) such that:

f2(p1) =
P − p1g1

g2
. (20)

Proof:
In order to solve the optimization problem (17), we rewrite

the feasible set using the two functions defined in (19) and
(20) in the following manner:

S2 = A
⋂
B

A =
{

(p1, p2) ∈ R2 | f1(p1) ≤ p2,
f2(p1) ≥ p2}

B =

[
0,
P peak
1

g1

]
×

[
0,
P peak
2

g2

]
.

(21)

The set B represents simply the peak interference constraints
in each band which restricts the feasible set S2. Notice that
the set B is not void, however the set A can be void.

In order to find the conditions under which the set S2 is void
or not, i.e., a solution exists or not, we have first to discuss the
set A. Thus, we analyse the feasible set A in the plane p1Op2,
where O is the origin point of coordinates (0,0) and p1 and p2
are the axes of our plane. In order to do that, we investigate
the intersection points (p1, p2) ∈ A, of the functions f1(.) and
f2(.) by solving the system of equations:

p2 =
1

c2

(
exp(Rmin)

1 + c1p1
− 1

)
,

p2 =
P − g1p1

g2
,

p1 ∈

[
0,
P peak
1

g1

]
,

(22)

We further have:

P − g1p1
g2

=

(
1

c2

)(
exp(Rmin)

1 + c1p1
− 1

)
,

p1 ∈

[
0,
P peak
1

g1

]
,

(23)

⇔

(
P

g2
−
g1

g2
p1

)
=

1

c2

exp(Rmin)

(1 + c1p1)
−

1

c2
,

⇔
(
Pc2 − g1c2p1 + g2

)
(1 + c1p1) = g2 exp(Rmin).

We obtain a quadratic equation w.r.t p1

−g1c2c1p21 +
(
Pc1c2 − g1c2 + g2c1

)
p1

+Pc2 + g2(1− exp(Rmin)) = 0. (24)

5



Fig. 2. No Solution because the set A = ∅ ⇒ S2 = ∅

Thus, we obtain in (24) a quadratic equation where its
discriminant is given by

∆p1 =
(
Pc1c2 − g1c2 + g2c1

)2
+4g1c2c1(Pc2 + g2 − g2 exp(Rmin)). (25)

(a) If ∆p1 < 0 we have that f1(p1) > f2(p1) ∀p1 ∈ R, this
means that the functions f1(.) and f2(.) do not intersect
i.e the two functions in this case are disjoint (Fig.2) and
the set A = ∅. Thus, S2 = ∅ and we have no solution.

(a) One Solution: S2 = {(p∗
1 , p

∗
2)}.

(b) No Solution because A = {(p̂1, p̂2)} ∩ B = ∅

Fig. 3. ∆p1 = 0 and the function f2(.) is tangent to the function f1(.)
where (a) : One Solution, (b): No Solution

(b) If ∆p1
= 0, then another equation in the second degree

is required. To find P̄ in this case we calculate the
discriminant ∆P , which is given by

∆P = 16c31c
3
2g1g2 exp(Rmin) > 0. (26)

Thus, we obtain two solutions:

P 1,2 = −g1
c1
− g2
c2
± 2

√
g1g2

c1c2
exp(Rmin). (27)

Note that one of the two solutions is negative, so it
is rejected. Thus, the constraint of average interference
powers must satisfy this condition:

P = −
g1

c1
−
g2

c2
+ 2

√
g1g2

c1c2
exp(Rmin). (28)

Thus the intersection point in this case (∆p1
= 0) where

f1(.) is tangent to f2(.), is unique p̂ = p̃ with
p̂1 =

P

2g1

p̂2 =
P

2g2

(29)

Note that in this case A = {(p̂1, p̂2)} and if this singleton
is in B (Fig.3. (a)), it is the solution of (17) i.e., S2 =
{(p̂1, p̂2)} and p∗ = p̂. However, if {(p̂1, p̂2)} 6∈ B see
Fig.3.(b), then, we have no solution and S2 = ∅.

(a) If p̃1 < 0 and p̂1 > 0

(b) No solution: if max{p̂1, p̃1} < 0 because A ∩ B = ∅

Fig. 4. Particular cases: either (a): One solution or (b):No solution

(c) If ∆p1 > 0 which is equivalent to

P > −
g1

c1
−
g2

c2
+ 2

√
g1g2

c1c2
exp(Rmin), then we have

two distinct intersection points (see Fig.4 and Fig.5)
(p̂1, p̂2), (p̃1, p̃2) ∈ A, where
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p̂1 =
(Pc1c2 − g1c2 + g2c1)−

√
∆p1

2g1c1c2
,

p̃1 =
(Pc1c2 − g1c2 + g2c1) +

√
∆p1

2g1c1c2
,

(30)

where ∆p1 is expressed in (25), p̂1 < p̃1 , p̂2 = f1(p̂1)
and p̃2 = f1(p̃1) .

(a) One Solution: if A
⋂
B 6= ∅

(b) No solution because A ∩ B = ∅

Fig. 5. ∆p1 > 0, A 6= ∅ either (a):One Solution, or (b):No Solution

The discussion in this case is done as a function of the
sign of the intersection points (p̂1, p̂2) and (p̃1, p̃2).
• If max{p̂1, p̃1} < 0 (see Fig.4(b)), then we are

back to the case f1(p1) > f2(p1), ∀ p1 ∈ R. Thus,
S2 = ∅ and we have no solution.

• If p̂1 or p̃1 is negative, (see Fig.4 (a) when p̃1 < 0),
then we have an unique solution if A ∩ B 6= ∅.
In this case, see Fig.4(a), the optimal solution
(p∗1, p

∗
2) of the problem (17) is not between the

intersection points (p̂1, p̂2)and (p̃1, p̃2), but it is
computed between (p̂1, p̂2) and (0, f1(0)). These
two last cases (if max{p̂1, p̃1} < 0 and if p̂1 or p̃1
is negative) are met, only for small values of Rmin.

• If both of the two abscissas of the intersection points
p̂1 and p̃1 are positive, (see Fig.5), then we have
an unique solution if A ∩ B 6= ∅ (see Fig.5(a))
and in this case, the optimal solution (p∗1, p

∗
2) exists.

However, if A∩B = ∅, see Fig.5(b), because of the

peak interference constraint P peak
k , then we have no

solution.

We give a short sketch of this analysis in Summary 1.

Summary 1 Closed-form analytical solution for the N = 2
case

If P < −
g1

c1
−
g2

c2
+ 2

√
g1

c1

g2

c2
exp(Rmin), then A = ∅:

No Solution: Average interference power P and QoS
constraints are never simultaneously satisfied

Else A 6= ∅,

If max{p̂1, p̃1} < 0 ⇔ A ⊂ (−∞, 0]× [0,+∞),
then A ∩ B = ∅:

No Solution: Average interference power P and QoS
constraints are not simultaneously satisfied in B

Else max{p̂1, p̃1} > 0 ⇔ A 6⊂ (−∞, 0]× [0,+∞),

If
P peak
1

g1
< p̂1 or

P peak
2

g2
<

min{p̂2, p̃2} or

{
f1

(
P peak
1

g1

)
>
P peak
2

g2
and

f−11

(
P peak
2

g2

)
>
P peak
1

g1

}
, then A ∩ B = ∅:

No Solution: P peak
k constraints are not satisfied

Else A ∩ B 6= ∅:

Exists a solution given by:



p∗1 =

 − 1

c1
+

√
exp(Rmin)

c1c2

y

x

,

p∗2 =

 − 1

c2
+

√
exp(Rmin)

c1c2

z

w

.

EndIf

EndIf

EndIf

where x, y, w, z are given in Theorem 2 in equation (18), and
(p̂1, p̃2) , (p̃1, p̃2) are given in (30) and ∆p1

is given in (25).
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(a) One solution (p∗
1 , p

∗
2 ) gets closer to (p̂1, p̂2)

(b) One solution (p∗
1 , p

∗
2) = (p̂1, p̂2)

(c) No solution (p∗
1 , p

∗
2 ) gets out of the set B

Fig. 6. The average interference constraint is satisfied with a strict inequality in ??
and (a), or with equality in (b). However in (c) the feasible set does not exist

V. NUMERICAL SIMULATIONS

Our simulation parameters are generic and, thus, all the
observations we make here under remain valid for any values

of the parameters and any practical system.

A. SU Rate and Interference Powers Caused by SU to PU vs.
QoS Constraint Rmin

(a) SU optimal rate vs. rate constraint Rmin

(b) Interference levels caused by SU to PU vs. rate constraint Rmin

Fig. 7. SU optimal rate (a) and interference levels caused by SU to PU (b) vs. rate
constraint Rmin

In Fig.7, we plot the SU optimal rate R∗ , R(p∗) defined
in (2)) and the interference powers levels caused by SU to
PU (g1p∗1 , g2p∗2 and g1p

∗
1 + g2p

∗
2) versus the minimum rate

constraint Rmin over two orthogonal frequency channels with
the system parameters: c1 = 2.5, c2 = 1.4, P = 10, P peak

1 =
5, P peak

2 = 7, g1 = 2 and g2 = 1.3.
In the two sub-figures, we observe that there is a zone where

our problem does not admit a solution where the average
interference power and QoS constraints are not simultaneously
satisfied (for example the case of Fig.2). However, there
is a critical value when Rmin ≈ 3.866 below which an
optimal solution exists. Therefore, if the QoS constraint is
too restrictive, i.e., Rmin is above this threshold, a feasible
solution does not exist.

In Fig.7.(a), we see that the optimal rate is equal to the
minimum rate constraint Rmin which is trivial, because of the
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KKT condition of λ > 0 in (15).

Fig. 8. Zoom of Fig.7 (b) for some values of Rmin

In Fig.7.(b) zoomed in Fig.8, we remark that in the interval
where Rmin ∈ [0, 8.26] the average interference constraint
is satisfied with a strict inequality (

∑N
k=1 gkp

∗
k < P ) which

are illustrated in Fig.6.(a). We observe that the transmit
powers required to achieve the QoS constraint Rmin, increase
exponentially. Also the optimal point (p∗1, p

∗
2) is on the curve

f1(p) in between p̂ and p̃. By increasing Rmin we observe
that p∗ gets closer to p̂. It turns out that in this scenario,
when Rmin > 8.26 the average interference constraint is
satisfied with equality and the optimal solution is equal to
the intersection point p∗ = p̂ which is illustrated in Fig.6.(b).
Finally when Rmin exceeds the critical value of 3.866 then a
feasible solution does not exist as we see in Fig.6.(c) because
p̂ gets out of the set B.

B. SU Rate and Interference Powers Caused by SU to PU vs.
Interference Power Constraint P

In Fig.9, we plot the SU rate R∗ and the interference powers
levels caused by SU to PU (g1p∗1 , g2p∗2 and g1p

∗
1 + g2p

∗
2)

versus the average interference power P over two orthogonal
frequency channel with the system parameters: c1 = 2.5, c2 =
1.4, Rmin = 3, P peak

1 = 5, P peak
2 = 7, g1 = 2 and g2 = 1.3.

Similarly to the previous figure there is a zone where there is
no feasible solution.

In Fig.9.(a) the SU rate is equal to the minimum rate
constraint Rmin for P > 6 . In conclusion, if P is below
a certain threshold then the average interference constraint is
too restrictive and a solution does not exist.

In Fig.9.(b) we note that the interference power level caused
by SU to PU for each orthogonal frequency band is constant
and independent from P . Therefore, P does not influence the
expressions of the optimal power p∗ once it exists. For exam-
ple, if P ' 6, the average interference constraint is satisfied
with equality. However, if P > 6 we obtain g1p∗1 +g2p

∗
2 < P ,

then the average interference constraint is satisfied with strict
inequality.

(a) SU optimal rate vs. interference power constraint P

(b) Interference levels caused by SU to PU vs. interference power constraint P

Fig. 9. SU optimal rate (a) and interference levels caused by SU to PU (b) vs.
interference power constraint P

C. SU Rate and Interference Powers Caused by SU to PU vs.
the Direct Link Gain c1

In Fig.10, we plot the SU rate R∗ and the interference power
level caused by SU to PU (g1p∗1, g2p∗2 and g1p

∗
1 + g2p

∗
2 )

versus the direct link gain in the first band c1 in the scenario:
c2 = 1.4, Rmin = 3,P = 10 , P peak

1 = 5, P peak
2 = 7,

g1 = 2and g2 = 1.3.
In Fig.10.(a), the optimal rate is equal to the minimum rate

constraint Rmin for all c1 values (∀c1 > 0.9). We see that
if the quality of one of the direct links (i.e., small values of
the direct link gain c1) is very poor, then the QoS constraint
cannot be satisfy and thus, a feasible solution does not exist.

In Fig.10.(b), we note that the optimal power for each
orthogonal frequency band decreases exponentially with the
direct link gain c1. The higher the quality of the direct
links, the lower are the powers required to achieve the QoS
constraint. For example, if c1 ' 0.9, we see that the average
interference constraint is satisfied with equality. However, if
c1 > 0.9 the average interference constraint is satisfied with
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(a) SU optimal rate vs. the direct link gain c1

(b) Interference levels caused by SU to PU vs. the direct link gain c1

Fig. 10. SU optimal rate (a) and interference levels caused by SU to PU (b) vs. the
direct link gain c1

strict inequality i.e. g1p∗1 + g2p
∗
2 < P .

D. SU Rate and Interference Powers Caused by SU to PU vs.
the interference link gain g1

In Fig.11, we plot the optimal rate R∗ and SU rate and
interference powers caused by SU to PU (g1p∗1, g2p∗2 and
g1p
∗
1 + g2p

∗
2 ) versus the interference link gain g1 over two

orthogonal frequency channels with the system parameters:
c1 = 2.5, c2 = 1.4, Rmin = 4, P peak

1 = 5, P peak
2 = 7,

P = 10 and g2 = 1.3.
In Fig.11.(a), the optimal rate is equal to the minimum rate

constraint Rmin for values of the interference link gain g1
below a certain threshold. We see that when the quality of the
interfering link is high (i.e. high values of g1 ) the maximal
interference constraint are not met and a feasible solution does
not exist.

In Fig.11.(b), we observe that, except for some borders

values (nearly the critical threshold) where p∗1 =
P peak
1

g1
(see

equation (18)) the optimal transmit power value p∗1 does not

(a) SU optimal rate vs. the interference link gain g1

(b) Interference levels caused by SU to PU vs. the interference link gain g1

Fig. 11. SU optimal rate (b) and interference levels caused by SU to PU (b) vs. the
interference link gain g1

depend on g1 . The optimal transmit power p∗2 is independent
of the interference link gain g1 except for the same region
where p∗2 is proportional to the interference link gain g1
(see equation (18)). For example, if g1 ' 1.7, we see that
the average interference constraint is satisfied with equality.
However, if c1 < 1.7 the average interference constraint is
satisfied with strict inequality i.e. g1p∗1 + g2p

∗
2 < P .

In the case where N > 2, the difficulty lies in the fact that
the iterative water-filling algorithm converges to the optimal
solution provided that the feasibility set of all the constraints is
non void. Finding the conditions on the system parameters that
ensure that the feasible set is non void, is a difficult problem
since the number of constraints and the degrees of freedom
becomes larger.

VI. CONCLUSIONS

In this paper, we have analysed the power allocation prob-
lem over orthogonal bands at the opportunistic user’s level
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under a target QoS constraint and maximal interference caused
to the primary user of the spectrum constraints.

We have seen that, depending on the system parameters,
a feasible solution does not always exists. This is mainly
caused by the simultaneous requirements of minimum target
achievable rate at the SU and maximum allowed interference
level caused to the PU. When a solution exist, it takes the
form of water-filling and the closed-form solution is provided
for the particular case of two available frequency bands.

Future work include the case of multiple secondary and
primary users for which efficient distributed algorithms have
to be proposed. Also, we will consider the effect of im-
perfect parameters estimation or knowledge, and investigate
the robustness of our power allocation problem to these
imperfections.
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