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Abstract—One of the most crucial functionalities of cognitive
radio networks is spectrum sensing. Completing this task in an
accurate manner requires opportunistic spectrum access. Tradi-
tionally, sensing has been performed through energy detection by
each individual secondary user. In order to increase accuracy,
individual measurements are aggregated using different fusion
functions. However, even though collaborative spectrum sensing
can increase accuracy under benign settings, it is prone to
falsification attacks, where malicious secondary users report fake
sensings. Previous studies have designed trust (reputation) based
systems to contain the effect of the adversaries, ignoring to a large
extent the wireless channel irregularities when performing the
computation. In this paper, we decouple the reasons behind a false
sensing report and propose the Decoupling Trust and Capability
Spectrum Sensing System (DTCS3). DTCS3 is a collaborative
spectrum sensing system that takes into account both a secondary
sensor node’s trust and its capability to sense the channel.
Through thorough evaluations that consider a large variety of
attack strategies, we show that by accounting for wireless induced
effects while calculating the reporting trust of a secondary user,
we can significantly improve the performance of a collaborative
spectrum sensing system as compared to existing schemes in the
literature. In particular, the true positive/negative rates can be
improved by as much as 36%, while DTCS3 is able to track and
respond to dynamic changes in the adversaries behavior.

Index Terms—Cooperative Spectrum Sensing; Trust; Sensing
Capability; Security

I. INTRODUCTION

The concept of dynamic spectrum access and cognitive radio
networks is not new and it was firstly introduced by Mitola [1].
In brief, the main idea is enabling opportunistic access to the
available resources; licensed spectrum can be made available
to unlicensed users (also called secondary users), when the
licensed entities (also called primary users) are absent. Even
though cognitive radio networks have yet to take off, there are
significantly increased efforts towards commercializing them1,
especially due to the scarcity of the wireless spectrum and the
rapidly increasing demand for wireless connectivity.

For systems using opportunistic sharing an accurate system
to detect the presence or absence of a primary user needs to be
in place2. If the spectrum holes are stochastic in nature, spec-
trum sensing is the dominant approach to acquire the context
information needed to realize a cognitive radio network [4].

1For instance, IEEE 802.22 and the White Spaces Coalition [2].
2See [3] for a longer discussion of different modes of spectrum sharing.

As we will discuss in more details later, sensing is mainly
based on energy detection. Every secondary user observes the
activity on the spectrum and decides whether there is a li-
censed user or not. In order to improve accuracy, collaboration
among the secondary sensor nodes has been proposed. This
essentially, reduces the uncertainty and consequently increases
the confidence that the overall decision is the correct one. For
instance, while a few sensors might suffer from severe fading
and cannot detect the primary signals, overall the cooperation
of the secondary users will provide a reliable decision.

This cooperation though, allows enough space for ma-
nipulation from malicious entities. Depending on the actual
fusion algorithm applied on the individual secondary sensor
readings, one or more colluding adversaries, can lead the
system to a wrong decision. This can either cause disruptions
in the service of the primary users (i.e., interference), or
degrade the performance of the secondary users (i.e., missed
spectrum access opportunities). Existing literature, utilizes
reputation-based approaches to filter “untrusted” reports from
the secondary sensors. While, there are different approaches
for computing the reputation/trust, which we will discuss later
in this paper, the majority of them treat every erroneous
individual report as originating from a non-trusted entity.

However, let us consider the case of a completely trust-
worthy secondary user, say Jack, who suffers from severe
fading conditions. Fading might force him to provide erro-
neous reports. Existing algorithms will consider this as an
evidence of malicious behavior and Jack’s reputation will be
reduced rapidly, even though he is completely trustworthy.
Furthermore, while “bad news travels fast”, that is, the repu-
tation of a user can degrade fast (only after a few erroneous
reports), “good news travels slowly” (i.e., it takes time to build
up one’s reputation back) [5]. Hence, even when wireless
environment conditions for Jack improve (e.g., due to the
temporal or spatial variations of the wireless channel), his
reportings will not be taken into account and this can pose
a significant performance degradation. It should be evident
that if the underlying reputation system could disengage the
reasons behind a false report, similar to the above phenomena
could be avoided.

In this paper, we design a module that operates on top of
a collaborative spectrum sensing system and probabilistically
decouples the reasons behind an erroneous report. In particular,
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we add the secondary user’s capability factor. Hence, for
every user we calculate two metrics, which both scale the
user’s sensor readings in the fusion function: (i) its capability
to provide a correct report and (ii) its reporting trust3. To
reiterate, the capability factor is related with the effect of
wireless channel induced factors on the reportings and for its
calculation we utilize a wireless fading channel model. On
the other hand, the reporting trust is essentially an indicator of
whether the user is malicious or not. We design the Decoupling
Trust and Capability Spectrum Sensing System (DTCS3),
which operates in two phases. First it filters nodes according
to both their trust and capability values. Consequently, DTCS3

utilizes the sensing readings of the remaining nodes to decide
whether there is a primary user on the channel or not.

The main contribution of our study is the decomposition
of the reasons behind the erroneous reportings under
falsification attack settings. We evaluate our scheme via
extensive simulations and we find that under a large variety of
attacks, our system is able to contain the effect of adversaries
by significantly reducing the miss detection rate, which in turn
decreases the interference imposed to the primary users. In
addition, DTCS3 reduces the false alarm rate, thus, improving
the performance of the secondary user network. While this
work focuses on cooperative spectrum sensing, its scope
is much broader. It sets a novel paradigm on decoupling
wireless induced effects from other system/user attributed that
can affect network operations. This decoupling can be very
beneficial for many network functionalities with degraded
performance (e.g., non-delivering routing).

The rest of the paper is organized as follows. Section II
discusses related to our work studies, while Section III presents
the cooperative sensing model and the different attack strate-
gies we consider. Section IV presents DTCS3, our proposed
scheme. Finally, Section V presents our simulation results,
while Section VI concludes our study.

II. RELATED WORK

In this section we will review some representative studies,
which are directly related to our work.

A. Non-Cooperative Detection

Non-cooperative detection is also referred to as local spec-
trum sensing. Sensing is accomplished by a single node
without cooperating with other secondary users. Energy based
detection is the most widespread way to determine the avail-
ability of the channel. In energy detection, the node monitors
the received energy over certain time period. Comparing the
observed value with a predefined energy threshold, the sec-
ondary user decides the availability of the spectrum. Urkowitz
[6] analyzes the characteristic of the simple energy detector
under non-fading channel. In particular, when the primary user
is absent, the detection output exhibits a central Chi-square
distribution. When the primary user is present, the detected
energy is non-central Chi-square distributed. Digham et al. [7]

3The terms trust, reputation and reliability will be used interchangeably in
the rest of the paper.

study the energy detection performance over fading channels.
They provide the theoretical probabilities of miss detection
and false alarm under different channel models and benign
settings.

Matched filter detection [8], [9], cyclostationary feature
detection [10], [11], [12] and eigenvalue-based detection [13]
comprise alternative techniques to energy detection. These
schemes can provide better performance as compared to
energy sensing under specific settings and assumptions. For
instance, while matched filter detection outperforms the en-
ergy detector, it requires a priori knowledge of the primary
users signal “shape”. However, energy detection is still the
most commonly used technique due to its low computational
complexity and its practicality.

B. Cooperative Detection

Compared with local spectrum sensing, cooperative detec-
tion is able to provide more reliable result [14]. Ghasemi
et al. [15] show that under fading channels, the detection
performance can be significantly improved by employing
collaborative sensing even when individual users utilize simple
energy detectors for their decisions. Taricco [16] considers a
cooperative sensing approach in which the local decisions are
linearly combined to provide the final, global decision. He
provides a way to obtain the optimal coefficients for the linear
combination of the local sensor readings under the assumption
of constant SNR at the secondary users. Furthermore, a cluster-
based cooperative spectrum sensing method is proposed by
Sun et al. [17]. They propose to divide the secondary users
into different clusters. The final decision is then based on the
most favorable user’s output in each cluster. Finally, Huang
et al. [18] assuming different average SNR for each node,
incorporate fading into the collaborative spectrum sensing
under benign settings.

C. Trust Based Cooperative Detection

While collaborative sensing provides multiplexing gains
and improves accuracy, it raises security concerns. In par-
ticular, on the one hand malicious users can decrease the
spectrum utilization from secondary users by always reporting
the presence of a primary user. On the other hand, they
can interfere with the primary users’ system by reporting
the former’s absence leading to secondary users’ interfering
transmissions. Of course, the exact fusion algorithm employed
dictates the level of vulnerability. Traditionally, reputation-
based schemes have been proposed for alleviating the effects
of similar falsification attacks.

Qin et al. [19] propose a trust value calculation algorithm
based on the Beta reputation model [20]. They assign different
trust values to every secondary user based on the historical
local sensing results for each node. They also use a sliding
window scheme, where the latest observation has the highest
contribution to the calculation of the reputation value. Chen et
al. [21] propose the use of a Weighted Sequential Probability
Ratio Test (WSPRT) for the trust based cooperative sensing.
Their reputation based scheme is proved to be robust against
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the Byzantine failure problem. In their trust value assignment
algorithm, if a node frequently generates inconsistent results
with the final decision, its reputation value will eventually re-
duce to zero. The proposed scheme exhibits good performance
but requires the knowledge of the a priori probabilities that a
primary user is active. Wang et al. [22] introduce the notion of
consistency on trust values. While the trust value indicates the
average “performance” of a node with regards to its reliability,
the consistency value captures its stability. If both trust and
consistency values of a user are below predefined thresholds,
i.e., his trust is consistently low, its locals sensing report will
not be considered in the final decision.

Sensing can also be disassociated from the radios as pro-
posed by Weiss et al. [23]. From a security perspective, this
approach has merits in that the sensors in such a setting might
be more effectively secured, so the reports they send might
be deemed more trustworthy. While the detailed evaluation of
this approach is beyond the scope of this paper, it remains
a potentially interesting alternative for acquiring stochastic
spectrum holes.

We would like to emphasize on the fact that the notion of
consistency in [22] is different from the capability value we
define in the following section. While one can think of this
consistency value as capturing the intricacies of the wireless
medium (e.g., frequency changes), this is only in approxi-
mation and indirectly. In our work, we clearly distinguish
the reasons behind an erroneous report. We take a holistic
approach, designing a vigorous cooperative spectrum sensing
scheme, towards a new paradigm of security assured systems
that can deliver high performance as well.

III. SYSTEM MODEL

In this section we will introduce the collaborative spectrum
sensing model and the falsification attacks we consider in this
work.

A. Collaborative Spectrum Sensing

As per the cognitive radio network paradigm, no secondary
user is allowed to contend with the primary user while the
latter is transmitting. Secondary users are only able to access
the medium when the primary user does not use the channel.
To ensure this, all secondary users need to know whether
the spectrum is occupied by the primary user. To reiterate,
collaborative spectrum sensing is based on the cooperation
between the secondary users to determine the channel status
(busy or idle). As explained, this significantly increases the
network performance (under benign settings).

In collaborative spectrum sensing, each secondary user
performs local spectrum sensing independently, and uploads
its sensing result to a Data Fusion Center (DFC). The DFC
can be either one of the secondary users or a dedicated
external unit. The sensing reports can either be binary (0-1
local decisions) or the actual local energy measurements (e.g.,
energy values expressed in dBm). The former case corresponds
to the hard decision schemes, while the latter belongs to the
soft decision schemes. Upon the reception of all the reports

from the secondary users for a given time slot t, the DFC
makes the final, binary decision of whether the channel is
occupied or not. Once the decision is made, DFC informs the
secondary users of the decision.

Data Fusion Rule is the algorithm that DFC uses for
combining all the local sensing reports from secondary users
to make the final sensing result. There are different kinds of
fusion rules that can be used depending on the type of decision
scheme used (hard versus soft):

1) Hard Decision: As aforementioned, when hard decision
is utilized, the inputs to the DFC are one bit local decisions
(‘0’ or ‘1’) from all secondary users. The most widely used
hard decision-based fusion rules are:

• “OR” Rule: the final output of the DFC will be ‘1’
(medium is busy) if one or more of the reported local
sensing results is ‘1’. Otherwise the final decision will
be ‘0’ (idle medium).

• “AND” Rule: the final output of the DFC will be ‘1’
only when all the reported local sensing results are ‘1’.
Otherwise the final decision will be ‘0’.

• “Majority” Rule: the final output of the DFC will be ‘1’
if there are more ‘1’s than ‘0’s among all the reported
local sensing results. Otherwise the final decision will be
‘0’.

Besides the simple rules above, more complicated algorithms,
such as the Neyman-Pearson Detection [24], the Sequential
Probability Ratio Test [24], and the Dempster-Shafer Theory
of Evidence [25] are also applicable for hard decisions. Since
hard decision only requires 1-bit from each secondary user, it
keeps the communication overhead minimal and simplifies the
computation. Hence, both faster decisions and lower energy
consumption are viable.

2) Soft Decision: Soft decision-based schemes are more
sophisticated compared with the hard decision ones. A DFC
that uses soft decision requires the original energy readings
from all secondary users. Using this more detailed input in-
formation, the DFC is able to provide more accurate decisions.
However, this happens at the cost of higher complexity and
a slightly increased communication overhead. There exists
a significant volume of literarture on soft decision-based
schemes4. However, hard decision systems have gained more
attention, mainly due to their simplicity. Hence, in this work,
we focus on hard decision as well.

B. Spectrum Sensing Data Falsification (SSDF)
The higher sensing accuracy possible with cooperative

spectrum sensing comes at the cost of higher vulnerability
in secondary users’ misbehaviors. In particular, Spectrum
Sensing Data Falsification (SSDF) attacks can diminish any
performance gains obtained from the collaboration among the
non-malicious secondary users. A malicious user launches an
SSDF attack by sending false sensing report to the DFC.
The behaviors of an SSDF attacker can be classified into the
following categories:

4A few references for the interested reader can be found in [26], [27], [28]
and [29].
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Fig. 1. The architecture of DTCS3 based data fusion center.

• “Always Yes” attack: the attacker always reports that a
primary user exists.

• “Always No” attack: the attacker always reports that there
is no primary user.

• “Always False” attack: the attacker always reports the
opposite of its local spectrum sensing result.

• Random/Intermittent attack: the attacker acts intermit-
tently. He alternates between active and inactive periods.
During his active periods he can launch any type of the
above three attacks. The fraction of the active time of a
random attacker, is referred to as attack ratio.

Under the SSDF attack both false alarm and miss detection
rates may increase on the DFC side. False alarm occurs when
the DFC decides that the channel is occupied, while in fact
there is no primary user active. This prevents all the secondary
users from accessing the medium, resulting in the waste of
spectrum resources and poor performance of the secondary
user network. When miss detection occurs, the DFC announces
the channel to be available when in reality a primary user is
already using it. In this case, interference to the licensed user
will be introduced if some of the secondary users try to access
the spectrum.

In this paper, we focus on the most widely considered
hard decision scheme. However, note here that, the general
framework can be applied to soft decision schemes with
the appropriate modifications. Furthermore, we examine the
“Majority” data fusion rule, since “OR” and “AND” rules are
not very practical due to their high vulnerability; even a single
attacker can significantly degrade the performance. Finally, we
consider all four attack types aforementioned.

IV. PROPOSED DECOUPLING SCHEME

In this section, a novel collaborative spectrum sensing mech-
anism, Decoupling Trust and Capability Spectrum Sensing
System (DTCS3) is presented. It explicitly decouples the trust
and the sensing capability of a node, since the wireless channel
conditions can significantly impact the sensing results. As we
will show DTCS3 is robust against SSDF attacks.

DTCS3 in a nutshell: The overall picture of our framework
is shown in Fig.1, where the DFC is divided into four modules.
The Capability Calculation unit obtains network parameters

(e.g., a secondary users’ SNR as we will see in what follows)
and computes the capability values of secondary users. The
calculated capability value, together with the historical sensing
results, form the necessary input to the Trust Calculation unit.
The Nodes Filter module considers both capability and trust
values to select which secondary users will be used for the final
decision fusion. The Decision Fusion utilizes a certain fusion
rule to obtain the final sensing decision based only on the local
sensing results of the selected nodes. The Decision Fusion
provides not only the final output, but also feedback of the
historical sensing results to the trust calculation unit. In what
follows, we will describe the algorithms of every component
of our framework in detail.

A. Capability Calculation

The capability value for a secondary user represents its
ability to correctly provide the local sensing result. We define
a pair of capability values for the secondary user i at time slot
t, denoted by c0i (t) and c1i (t), for the idle channel scenario
and the busy channel scenario, respectively. The definitions of
the capability values are

c0i (t) = P (oi(t) = 0|H0), (1)
c1i (t) = P (oi(t) = 1|H1), (2)

where H0 and the H1 are the hypotheses of idle channel
and busy channel, respectively, and oi(t) is the binary local
observation value for node i at time slot t.

Suppose that the secondary users apply energy detection
to perform the spectrum sensing. A simple energy detector
diagram is shown in Fig.2, where T is the observing time
period. The input signal of the detector is firstly processed
by the noise pre-filter. If the central frequency is f0 and the
bandwidth is W , after the pre-filter, only the signal within the
band [f0 − W

2 , f0 +
W
2 ] will be kept. The output signal of the

noise pre-filter for node i is denoted by yi(t). The expression
of yi(t) equals

yi(t) = h · si(t) + ni(t), (3)

where h = 0/1 under hypothesis H0/H1, si(t) is the received
signal from the primary user and ni(t) is the additive white
Gaussian noise (AWGN). yi(t) is squared and integrated over
the time period T . Then the output signal is normalized by
Ni(t)

2 , where Ni(t) is the one-sided power spectral density of
the noise for node i at time slot t, and the final output from
the multiplier is denoted by Vi(t). In hard decision, Vi(t) is
compared with a given threshold, say ν, to obtain the binary
local spectrum sensing result (oi(t) = 0 or oi(t) = 1). To
reiterate, Urkowitz [6] has shown that Vi(t) have central chi-
square distribution with 2a degree under H0 and noncentral
chi-square distribution with 2a degree and a non-centrality
parameter of 2aγi(t) under H1, where a = TW and γi(t) is
the signal-to-noise ratio for node i at time slot t. Furthermore,
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the probability density function of Vi(t) can be written as [7]:

fVi(t)(x) =

{
xa−1e−

x
2

2aΓ(a) , H0

1
2 (

x
2γi(t)

)
a−1
2 e−

2γi(t)+x

2 Ia−1(
√
2γi(t)x), H1

(4)
where Γ(.) is the gamma function [30] and Iz(.) is the zth-
order modified Bessel function of the first kind [31].

Under H0, the probability that node i outputs a correct result
at time slot t equals:

P (oi(t) = 0|H0) = P (Vi(t) < ν|H0) = 1−
Γ(a, ν

2 )

Γ(a)
= c0i (t),

(5)
where Γ(·, ·) is the incomplete gamma function [30]. Under
H1, the probability that node i outputs a correct result at time
slot t equals:

P (oi(t) = 1|H1) =P (Vi(t) > ν|H1)

=Qa(
√
2γi(t),

√
2ν)

=c1i (t),

(6)

where Qa(·, ·) is the generalized Marcum Q-function [32].
In a real network, the SNR is measured at the receiv-

er (i.e., the secondary users) and will be collected by the
DFC along with its local sensing result for calculating the
above probabilities and hence, the corresponding instantaneous
capability values. Note here that, in this paper, we only
consider the impact of channel irregularities on the decision
of the nodes’ local sensing functionality. On the contrary, the
communication channel between the DFC and any secondary
user is assumed to be ideal. In other words, a transmission
from a secondary node to the DFC will always be successful.
This is a rather realistic assumption; the amount of the control
information trasmitted from a secondary user to the DFC is
small and hence, less prone to interference.

As it might be evident, since the SNR is reported by the
secondary users, a (malicious and/or selfish) secondary user
can report fake SNR values to disrupt the above calculations.
However, there is no motivation for a malicious users to adopt
such a strategy. If a malicious user reports SNR which is higher
than the real value, it will be assigned lower trust value due
to its malicious attack behavior. If it uploads lower SNR, its
capability value will be degraded and its sensing result will not
be used by the DFC based on our node filter strategy either.
In our evaluations in Section V we further examine this issue
in more detail.

B. Trust Calculation

The reporting trust value of a secondary user, is the proba-
bility that it will provide to the DCF its actual sensing reading

(regardless if it is the correct one or not). As alluded to
above, the majority of the existing trust calculation algorithms
utilize only the sensor’s historical performance, punishing
nodes whose reports do not match the final outcome of the
DCF, with low trust values. Nevertheless, to reiterate, this
is not fair since a completely trustworthy node with a poor
sensing capability will be erroneously assigned a low trust as
well. In our scheme, we calculate the trust value considering
both the historical performance and the node’s capability.

In order to calculate the trust value for a node, say node
i, we still need historical performance information (evidence
set). We denote this set at time slot t as Ωi(t), and each
sample5 point is a tuple that contains the DFC’s output, which
is considered as the ground truth, and the nodes’ sensing
report. Let us assume that there are in total k samples in the
evidence set and the sample interval is τ . Then at time t,
the data within the sample set correspond to the last evidence
collection interval window [t− kτ, t− τ ] and we have:

Ωi(t) =

 < O(1), oi(1) >,
...

< O(k), oi(k) >

 (7)

where O(j) and oi(j) are the jth DFC’s and node i’s output
respectively during the last training interval window. Note here
that for notation simplicity we are using the sample index (j),
rather than the actual time (t − jτ ). We further map every
evidence tuple i to a binary gi such that:

gi(j) =

{
1, if oi(j) = O(j);
0, if oi(j) ̸= O(j). (8)

For a given j, gi(j) is a Bernoulli trial and we define its
probability of success as ri ·wi(j), where ri is the node’s trust
value (to be estimated) and wi(j) is the (weighted) capability
value (formally defined later using the raw capability values
cxi (j)). Hence, the probability density function of gi(j) can be
expressed as:

f(gi(j) = x) = (ri · wi(j))
x(1− ri · wi(j))

1−x, (9)

where wi(j) is defined as:

wi(j) =

{
c1i (j), if oi(j) = 1,
c0i (j), if oi(j) = 0, (10)

where c0i (j) and c1i (j) are the raw capability values of node i
(Section IV-A).

To obtain the trust value ri, we apply Maximum Likelihood
Estimation (MLE) [33]. In particular, assuming a constant
trust value through our evidence collection window, we obtain
the trust value of node i as the solution of the following
optimization problem:

maximize 1
k log(

k∏
j=1

f(gi(j)|ri)) (11)

subject to li ≤ ri ≤ 1 (12)

5We will use the terms evidence, sample and observation interchangeably
in the rest of the paper.
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where li is the lower bound for node i’s trust value based on
the sample set Ωi(t). By defining:

L1 =
1

k

k∑
j=1

gi(j) (13)

L2 =
k∏

j=1

(1− wi(j)), (14)

li will then be:

li =

{
L1, if L1 > 0;
L2

2
, if L1 = 0.

(15)

The percentage of the positive samples in Ωi(t) (i.e., L1) is the
minimum trust that we can have on node i. However, in brief
(more details are given in the Appendix), when this percentage
is 0, the minimum trust on i is given by assuming that all the
samples are negative due to wireless induced effects (i.e., L2).
Finally, the trust values are updated every k samples; once a
full observation set is collected we re-run MLE to obtain a
new trust estimation.

Estimation Error of the Maximum Likelihood Estima-
tion: As with every statistical inference technique, MLE
is associated with an estimation error. However, it has been
proven that the maximum likelihood estimator is unbiased,
i.e., converges to the true value with large sample sizes and
its variance achieves the Cramér-Rao lower bound [34]. This
means that there exists no other unbiased estimator that has
(asymptotically) lower mean squared error. In particular, the
variance of our maximum likelihood estimator is given by:

var(rML
i ) = (I(ri))

−1

=


∂2( 1k log(

k∏
j=1

f(gi(j)|ri)))

∂ri∂r′i


−1

,
(16)

where rML
i denotes the maximum likelihood estimator, and

I(ri) is the Fisher information [34] of ri. Furthermore, as
k increases, the maximum likelihood estimator is normally
distributed [34], that is

rML
i

a∼ N(ri, (I(ri))
−1), (17)

where N(x, y) denotes a normal distribution with mean value
x and variance y.

However, in reality, it is impossible to estimate the trust
value via infinite samples for various reasons. For instance,
if we were to use an arbitrarily large sample size, there
would be an infinitely large delay associated with the decision.
Nevertheless, even if this was not a major concern, and for
instance one could use sample sizes of the order of k ≈ 100,
some of the older observations might be deemed stale6. Hence,
it is desirable to use small sample sizes. In our evaluations (see

6Note that the central limit theorem will still be applicable with a good
approximation.

Section V), we examine this issue further and we show that,
even though we use finite samples to perform the estimation,
our estimation can still recover the actual trust values with
small error.

C. Nodes Filter

When both capability and trust values are computed, we can
choose the nodes whose local sensing results would be used
in the final decision fusion. We use a two-stage algorithm for
filtering the nodes.

Initially, we remove the nodes that have low trust values.
First, we normalize all the trust values of the secondary users
using the following transformation:

r′i(t) =

{
1, if maxi(ri(t))−mini(ri(t)) ≤ ε;

ri(t)−mini(ri(t))
maxi(ri(t))−mini(ri(t))

, otherwise. (18)

where ri(t) is the trust value calculated for node i at time
slot t, ε is a small positive number close to zero and
maxi(ri(t))/mini(ri(t)) are the maximum/minimum values
among all secondary users’ trust values at time slot t. The
normalization process makes the raw trust values of the nodes
more distinct, thus, helping DTCS3 to separate trustworthy
and non-trustworthy nodes with higher precision. Consequent-
ly, any node whose normalized trust value is less than λr

(0 ≤ λr ≤ 1) will be filtered out.
From the remaining nodes we remove those with low

capability values. Similarly, we first normalize the capability
values using a similar transformation:

c0
′

i (t) =

{
1, if maxi(c

0
i (t))−mini(c

0
i (t)) ≤ ε;

c0i (t)−mini(c
0
i (t))

maxi(c0i (t))−mini(c0i (t))
, otherwise.

(19)

c1
′

i (t) =

{
1, if maxi(c

1
i (t))−mini(c

1
i (t)) ≤ ε;

c1i (t)−mini(c
1
i (t))

maxi(c1i (t))−mini(c1i (t))
, otherwise.

(20)

Since each secondary users is associated with a tuple of
capability values, we only retain the nodes for whom both
normalized capability values are above the threshold λc (0 ≤
λc ≤ 1).

D. Decision Fusion

As previously discussed there are several fusion rules that
can be used. Our design choice for DTCS3 is to use the
majority rule. As aforementioned, both AND and OR rules
are vulnerable even under the presence of a single malicious
node and this can lead to significant system degradation even
when any trust/reputation system is in place. Formally, using
the notation introduced, the majority rule is expressed as:

O(t) =


1, if

∑
i

oi(t) >
∑
i

(1− oi(t));

0, if
∑
i

oi(t) ≤
∑
i

(1− oi(t)).
(21)

Note that, our selections in this paper for all the components
do not restrict the compatibility of the DTCS3 framework,
and any other algorithm for the same purpose can be used to
replace the corresponding algorithm mentioned above while
the whole system is still DTCS3 based.
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V. EVALUATIONS

A. Simulation Setup
In our simulations we consider 40 secondary users, random-

ly located in the vicinity of the primary user. In particular,
the secondary users are constrained within a 2km × 2km
square which is 20 km away from the primary transmitter.
The network topology is shown in Fig.3.

Fig. 3. Simulation network deployment.

We use the Okumura-Hata model [35] to calculate the
path loss. The transmitter and receiver antenna heights are
set to 100m and 1.6m, respectively. The central frequency
of the primary user is 700MHz and the bandwidth equals
6MHz. The primary user’s transmission power is 100kW. The
multipath fading is assumed to be Rayleigh distributed, while
the shadow fading follows a log-normal distribution with a
standard deviation of 5.5dBm. We use the minimum signal
level for TV receivers (-83dBm) [36] as the primary user
detection threshold. The environmental noise is assumed to
be white Gaussian. The average noise power level is set to
the value that makes the false alarm rate of a secondary user
equal 0.1, which is the maximum requirement of IEEE 802.22
[37]. Each experiment lasts for 500 simulated minutes while
the sensing period is 10 seconds. The primary user is active
with 50% possibility and its occupation time is exponentially
distributed with a mean value of 1 minute. The training period
is set to 3 minutes, which allows for k = 18. All the results are
the average values based on 5 discrete runs of each scenario.

To simulate the temporal variations of the wireless signals,
we sample the above distributions every time slot. Fig.4
depicts the SNR range of every node during a representative
simulation run.

Our main evaluation metrics are the true positive (i.e.,
complementary of miss detection) and true negative rates
(i.e., complementary of false alarm) as we vary the ratio of
malicious secondary users from 0% (benign settings) to 50%.

We compare DTCS3 with three existing schemes: (1) the
trust aware hybrid spectrum sensing scheme by Qin et al. [19];
(2) the Weighted Sequential Probability Ratio Test (WSPRT)
system proposed by Chen et al. [21] and (3) a plain Majority
rule based on collaborative sensing system without nodes
filter (“Majority Rule” for short). For all the systems, we
obtain their optimal parameters through an extensive set of
simulations, thus, assuring that our results correspond to the
optimal performance of each system under consideration.

B. Efficacy of DTCS3

In this subsection, we focus on the efficacy of our system
under a variety of SSDF attack strategies. For all the attack

strategies, we try both constant and random attacks while the
attack ratio of the random attack is set to 75%7.

“Always Yes” Attack: The purpose of this attack is to
deceive the DFC into believing that the channel is occupied.
Hence, if there is actually no primary user, the spectrum
resources are wasted. In other words, under “Always Yes”
attack, the false alarms increase as compared to the benign
case. However, note here that, there is no effect on the missed
detections. When a primary user is active, the malicious node
reports its presence. Hence, we examine only the true negative
rate under this scenario.
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Fig. 5. True negative rate for different systems under “Always Yes” attack

Fig.5 shows that, as one might have expected, the attack has
higher impact on the correct sensing rate when the malicious
node ratio increases. However, when the malicious node ratio
increases beyond 50% all the schemes perform poorly espe-
cially for the constant attack mode. This is due to the fact that
the DFC’s output is considered as the ground truth. Therefore,
when initially the number of malicious nodes is larger than
that of the benign DFC is forced to provide an erroneous
decision and punish the honest nodes. This initial error carries
over at the consequent estimations. All the schemes perform
better in the random attack case since all the random attackers
launch their malicious behavior independently and they may
not be active simultaneously. Hence, the effective percentage
of attackers is lower.

“Always No” Attack: The purpose of this kind of attack
is to deceive the DFC into believing that the channel is idle.

7Results for other attacks are similar and omitted.



8

−10

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940
Node Index

S
N

R
 (

dB
)

Fig. 4. The box plot of SNR for all the nodes.

Therefore, secondary users will try to access the spectrum,
causing interference to the licensed users. This type of attack
is potentially more harmful, since it affects the transmission
of the primary users and might violate any service level
agreement. However, note here that, there is no effect on the
false alarms produced by the system. Hence, we examine only
the true positive rate under this attack.

As it is evident from Fig.6, “Always No” attack has more
significant impact on the system’s performance as compared
with the “Always Yes”. True positive rate is significantly
reduced even for a moderate number of malicious sensors.
In all the cases, DTCS3 outperforms the rest of the schemes
by as high as 36%. For the case of intermittent attack, just as
above, the random attackers have less impact on the system
performance compared with the constant ones.

Always False Attack: The goal of an always false attacker
is to simultaneously decrease both the true positive and true
negative rates of the DFC to the extent possible. A successful
“Always False” attack will introduce interference while the
primary user is present and lead to spectrum inefficiency when
the primary user is absent. Hence, under this attack we will
evaluate both true positive and true negative rates. Neverthe-
less, DTCS3 is able to recover more erroneous detections as
compared to the rest of the examined systems.

Taking a closer look at the true positive (Fig.7) and the
true negative rates (Fig.8), we can see that both of them are
better as compared to the single purpose attacks (“Always

Yes” and “Always No”). Even when there are 45% malicious
nodes, we can have rates higher than 95%; malicious nodes
are very aggressive - they always report erroneous sensings -
and thus all the proposed schemes rapidly reduce their trust
values. Furthermore, since the sensing abilities of malicious
nodes are not perfect, they sometimes provide correct results
unintentionally, which leads to an acceptable performance even
for the simple majority rule. This is even more pronounced in
the random attack case since the attack intermittence combined
with unintentional correct results can reduce the attack efficacy
to a much larger extent (Figs. 7(a) and 8(a)).

C. Accuracy of Proposed Trust Estimation Algorithm

Now we turn our attention to the accuracy of the core
module of DTCS3, that is, the MLE-based trust estimation.
To test this, we use a scenario where the malicious nodes
randomly perform “Always False” attack. With the same
system deployment we set nodes with ID 1 through 10 as
malicious and their attack ratios are 10% through 100%,
respectively. We want to evaluate whether DTCS3 is able to
capture the change in a node’s attack ratio and assign suitable
trust value accordingly.

Fig.9 depicts the capability and trust values inferred by our
system average for each node at the end of the experiment. As
we can observe, the (average) trust values estimated are very
close to the complementary of the actual attack ratios.

We further calculate the cumulative distribution of the error
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Fig. 6. True positive rate for different systems under “Always No” attack

in the above trust estimations. The trust error is defined as

trust error = |trust value − (1− attack ratio)| (22)

Our results are shown in Fig.10, from which one can see that
more than 90% of the trust estimations exhibit error less than
0.2.

We are also interested in the microscopic performance of
DTCS3. In particular, we seek to examine the ability of our
scheme to converge to the true value of the SU’s trust. For this,
we track the inferred trust value for a specific malicious user
and examine its convergence. Without loss of generality we
monitor the trust values of node 5, whose attack ratio is 50%.
The time series of the estimated trust values for this node is
shown in Fig.11. In the same figure, we plot the average value
of the estimated trust as computed by:

g(t) =
1

t

∑
τ∈{1,...,t}

trust(τ). (23)

As we can see, after approximately 100 samples, the trust
value converges to a value very close to the real one (i.e.,
1-attack ratio).

Finally, we want to examine whether DTCS3 can follow
the dynamic behavior of a malicious node (i.e., one that has
variable attack ratio with time). In our experiment, we set
nine malicious nodes perform constant “always false” attack
and one node perform random attack with variable attack ratio.
We set the change period of attack ratio to 30 minutes. The
simulation results are shown in Fig.12. As we can see, our
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Fig. 7. True positive rate for different systems under “Always False” attack

scheme can follow the attack ratio change fairly accurate and
fast.

D. Fake SNR Attack

Since the SNR value is reported by the secondary user, a
malicious node is able to upload fake SNR information to the
DFC to affect the capability values’ calculation. However, this
is not of its benefit. As we discussed in Section IV-B, if the
node sends an SNR value higher than the real one, its trust
value will be degraded very fast due to its bad performance.
On the other hand, if the node sends lower SNR values, this
node will be filtered out from the final data combination due
to the low capability value and hence, it will not be able to
affect the decision.

To support our above claim, we run a series of simulations
where attacking nodes report fake SNR values. Two types
of fake SNR attacks are involved. In fake high SNR attack
mode, a malicious user always reports an SNR which is 20dB
higher than its real sensing value to the DFC. And the nodes
performing fake low SNR attack will upload SNR values 20dB
lower than the real values. Fig.13 through Fig.16 depict the
results. From the figures, we can see malicious nodes don’t
benefit from reporting fake SNR and thus, they have no
incentive to do so. Note here that, even though the fake SNR
attack does degrade the system performance when malicious
node ratio equals 50%, this would not be good stimulation for
launching this kind of attack since in a real system malicious
nodes are usually fewer than the benign ones.
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Fig. 8. True negative rate for different systems under “Always False” attack
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E. Discussion and Scope of Our Work

The performance of the system can be significantly im-
proved if there is feedback from the network on the actual
ground truth, i.e., was or not the primary user active at the
previous timeslot. Such feedback would drastically increase
the accuracy of DTCS3 calculations. However, since this might
be hard in a real system we have not considered it.

Furthermore, while our simulations included only static
scenarios, we would like to emphasize on the fact that DTCS3,
performs similarly under mobile nodes as well. The mobility
of a secondary user will change its capability value (due
to the spatio-temporal nature of the wireless medium) and
our scheme is able to incorporate this in the calculations.
Additionally, as we shown DTCS3 is able to track the changes
at user functional parameters.

Finally, we would like to emphasize on the fact that our
work needs to be considered as a new paradigm of protocol
design. Decoupling the reasons behind failed operations in a
wireless network is crucial for achieving required levels of
performance and security simultaneously. While we focused
on the dynamic spectrum access problem in this work, our
framework can be applied on other scenarios as well.

VI. CONCLUSION

Collaborative spectrum sensing has been proposed to im-
prove accuracy and spectrum utilization in next generation,
cognitive radio networks. However, different types of mali-
cious nodes can disturb the underlying functionality causing
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Fig. 13. True negative rate of different SNR status under “Always Yes”
attack
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Fig. 14. True positive rate of different SNR status under “Always No” attack

degradation in the network performance. Thus, in order to en-
joy the benefits possible with collaborative sensing, it is crucial
to distinguish benign from malicious nodes. In addition, the
wireless channel conditions can affect the sensor readings of
a node and therefore need to be appropriately considered.

In this paper, we proposed Decoupling Trust and Capability
Spectrum Sensing System (DTCS3), a scheme that consid-
ers both the capability and the trustworthiness of a node
to perform collaborative spectrum sensing. Our evaluations
indicate that DTCS3 exhibits a high degree of robustness
under a large variety of attack scenarios. Our two-step node
selection process guarantees that the selected sensors are both
capable of completing this task and trustworthy. Our extensive
simulations compare DTCS3 with other existing schemes in
the literature and show that our approach outperforms them
under a diverse set of scenarios.
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APPENDIX

Calculation of li when L1 = 0: When L1 = 0, all the
reports of the node under consideration (say i) do not align
with those of DFC. In order to calculate the minimum trust
on this node, we first need to compute the probability x that
all the reports failed due to wireless effects (the trust on the
node is assumed here to be equal to one). This probability is
equal to x =

∏k−1
j=0 (1−wi(j)). If this probability is equal to

zero (which means that the wireless environment is perfect),
then all the transactions must have failed due to node and
thus ri = 0. As the probability x increases, our minimum
trust on i also increases. This is because the sensing might
have legitimately failed and thus, we cannot penalize the node
without knowing why they failed with certainty. However, even
if all reports were opposite due to wireless induced effects
(i.e., x = 1), it may still not mean that the node is completely
trustworthy. In fact, we do not know anything about him in
this case and we should have ri = 0.5. Hence, considering ri
to be a function of x, e.g., f(x), we have f going through
the points (x1, f(x1)) = (0, 0), and (x2, f(x2)) = (1, 0.5).
Assuming for simplicity that f is linear we finally get: li =∏k−1

j=0 (1− wi(j)))/2, when L1 = 0.


