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Abstract—Robots are expected to perform actions in a human
environment where they will have to learn both how and when
to act. Social human robot interaction could provide the robot
with external feedback to guide them. In previous work, we have
developed bio-inspired models for action planning which enables
the system to adapt its representations and thus its behavior in
the context of latent learning with rewards. In this paper the focus
is put on using negative signals. It stresses an important feature
of a cognitive system : it must be aware of its own objectives
i.e. aware of what it is about to do. The model presented here
allows the robot the awareness of its goal, and we show that
such a knowledge enhances the behavior of a robot receiving an
external negative signal.

I. INTRODUCTION

Robots are expected to enter in a closer and closer in-

teraction with humans. They should be able to act on the

world accordingly. Working in a human environment requires

that robots can adapt to a changing environment i.e. with

constraints on when and how to perform actions that can

evolve. During human robot interaction, the robot is expected

to follow human instructions. In pre-verbal stage, the feed-

back modulating the actions of the robot could be a simple

social feedback like facial expressions. Social referencing [1]

corresponds to the observed fact that infants can use their

parents’ expression to valuate an object, a situation or an

action. Social referencing was implemented on robots [2] [3]

using this social feedback to determine whether or not they

could play with a given object. If an expression of joy is

presented, the robot knows that it can reach for the object

whereas an expression of anger or fear will make the robot

avoid touching the object. The same feedback can also be used

to modulate directly behaviors for instance by weighting some

sensorimotor associations in navigation [4].

Let us consider the case of an agent planning actions in its

environment. Given a certain context, its behavior may unfold

as different actions and specific goals that would terminate

these sequences of actions. Basically, reaching the correct goal

can give the agent a reward and usually changes the active

context. For instance, the behavior could be navigating and

getting resources like water at different places (goals) when the

agent is thirsty. As several water resources may be available in

the environment, the robot could reach any of them to satisfy

it thirst. There is also a knowing agent (like a human) that

can help the robot to decide where to go. The knowing agent

can convey a negative signal when it sees that the robot is

making wrong choices of action (e.g. going to a dried-out
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Fig. 1. Modifying an agent behavior from negative signals. A motivated agent
navigates in an environment with two resources placed at Goal1 and Goal2.
The motivational context (drive) for reaching one of the resources is active. A
knowing agent conveys negative signals to prevent the motivated agent from
going to Goal2 (trajectory in dash line). Left The negative signals trigger the
inhibition of the directions of movement. As the agent still considers the Goal2
as a correct goal, many negative signals are needed to change the target of
the agent. Right The negative signal removes the attractiveness of the second
goal. The agent now aims directly for Goal1.

well). A negative feedback is usually given as soon as the

human teacher notices that the robot is doing something wrong

i.e. it will not wait until the end of the sequence to show the

robot that it is making mistakes. The mistake may be the action

and thus the performed action may be inhibited. However, if

it is the goal that was incorrect, only inhibiting actions is not

efficient to change the behavior of an agent that tries to reach a

wrong goal (Fig. 1a). If the agent had access to the information

of the pursued goal, it would be able to remove the activation

of the incorrect goal. Then the agent would pursue another

goal changing adequately its behavior (Fig. 1b). How can the

robot update a context-goal association from an anticipatory

given signal ? To do so, the robot will have to be aware

of its goals and motivations in order to change them. Such

a knowledge could help it to solve this immediate planning

problems of inhibiting the target of a behavior, but it would

more generally be useful for the agent to have a better control

over its own behaviors.

In previous works, we developed models explaining how

a robot can navigate and even plan its navigation. These

models use place-cells, a particular type of neuron found in

the Hippocampus that maximally fires when the robot is at

a learned spatial position. At first, these place-cells can be

directly associated with orientations i.e. direction to be heading

to. Such simple sensorimotor associations can build attractors

defining trajectories in the space [5] [6]. However, with such

a model, action planning is limited to using reinforcement

learning [7] that can be quite long to adapt to changes. A latent



Fig. 2. Cognitive map built on-line during visual navigation task with
Robulab (Robosoft) mobile platform.

learning of a topological model of the environment can build

faster representations of the possible actions and can adapt

plans faster. Those topological maps, called cognitive maps,

are based on encoded actions that are transitions between

place-cells associated with orientations of movement [8]. An

example of built cognitive map is given in Fig. 2. Cognitive

maps can encode the possible sequences of transitions between

place-cells as recurrent connections. A drive corresponding to

a motivational context or an active physiological need (e.g.

thirst) can be associated with one of the transitions in the

cognitive map. With respect to the motivation, this transition

then represents a goal for the system. As a result of the

recurrent network encoding, a gradient of activities is diffused

from the goal to the other transitions in the cognitive map.

These propagated activities can give a bias on the transitions

to be performed. The selected direction of the movement

then enables the navigating robot to follow the shortest path

toward its goal [9] [8]. The use of cognitive maps are not

restricted to transitions between place-cells and navigational

task. The categories encoded and used in the Hippocampus

may correspond to multi-modal states [10]. This idea was

implemented on real robots with a cognitive map based on

proprioceptive states and color based motivational contexts

that enabled a robot made of a robotic arm and a camera

to sort colored cans [11]. Whatever the task is, the action

planning with cognitive maps relies on a gradient ascent on

the diffused activities. The selected actions lead the agent to

the closest goal that is a local maximum of the gradient. The

robot cannot know where is the local maximum before it is

reached. As it does not have a direct access to the goal it

is pursuing, how can an agent determine from the diffused

gradient what its current goal is ?

In Section II, the model of cognitive maps that is used in

this paper is briefly summarized. A specific focus is given on

how the goals are encoded in the described implementation of

the cognitive maps. In Section III, we detail how an agent that

chooses actions on the basis of a gradient ascent can determine

its own objectives. The mechanisms are first to select and

inhibit one of the possible goals and then to monitor if it

is related to the current behavior of the agent. In that case,

the agent succeeded to estimate its goal and the result is the

selected goal. In Section IV, a simulated agent goes through

the different steps to built the representations for planning

with motivational contexts. The goal awareness system is

implemented and enables the robot to modify its behavior

when an external negative signal is perceived. In Section V,

we remind the biological relevancy of this model of cognitive

map and we discuss its position in the development of planning

capabilities.

II. COGNITIVE MAP AND GOAL PURSUIT

The cognitive map model relies on the computation of the

performed transitions between different states. In the case

of navigation, each state corresponds to a place-cell that

fires maximally when the robot is at the location which is

encoded by the cell. The predicted transitions are used to

build the cognitive map. Each time a transition is performed,

the cognitive map is updated to include this transition into

the topological graph of the possible sequences of transitions.

In the cognitive map, recurrent connections between neurons

representing the different transitions are adapted as the robot

behaves. The activity from recurrent network orecj is the result

of the competition between the different activities propagated

through the recurrent connections.

The system is considered to be in an exclusive motivational

state m given by the drive layer, also called the motivational

context layer. In this layer, only one neuron (index m) can

be different from null and equal to 1. In previous works [12],

the motivational contexts were directly associated with some

neurons in the cognitive map implicitly defining the corre-

sponding transition as a goal. In order to manipulate the goals

more easily they are now recruited in a separate layer. The

recruitment of a new learned goal L is done when a reward

is received (R=1) (eq. (1)). A goal is directly related to the

last performed transition L assumed to be the one that get the

reward. The learning is based on a recruitment according to a

vigilance threshold and a Hebbian like rule for the maximally

activated neurone LJ . The learning depends on a learning

rate and a decay factor, αL, supposed equal to enable the

convergence of the weights toward 1.






Lj =
∑

i

wL
ij · T

L
i

∆wL
iJ = R · αL(TL

i · LJ − wL
iJ)

(1)

The learned goals L are gated by the reception of a reward.

Only when a reward is received the correlation between an ac-

tive drive Mm and an active learned goal will be learned with

the following Hebbian like rule (2). The resulting activities in

the learning layer corresponds to the desire of performing this

goal, called a desired goal D, given an active drive.














Dj = [
∑

i

wD
ij ·Mi + 2R · H(Lj)−R]+

∆wD
ij = αD

j (Mi ·Dj − ·wD
ij )− λD

j · wD
ij ·Mi

with αD
j = R · εD · H(Lj)

(2)

where H is the Heavyside function and εD is the global

learning rate and with a topological neuromodulation αD
j of

the learning given by the learned goals L and gated by the
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Fig. 3. Cognitive map based motor control and own goal estimation. I.) States representing the places are recruited with respect to a vigilance threshold.
Changes of states are events that are predicted from memory delay memorizing the timing of the change. Based on these events, transitions are predicted. II.)
When a reward is received, the last performed transition is encoded as a goal. The reward and the active goal supervise the association between the active
drive with the goals. Desired goals encode the confidence in getting a reward related to the active drive. The desired goal layer projects these activities in
the cognitive map. The cognitive map also learns the possible sequences of transitions. A gradient activity propagates from the active goal-transition to the
previous transitions in the learned sequences. III.) The cognitive map activities can bias the selection of the transition to be performed. Doing so the system
follows the gradient toward the topologically closest goal.

reward R. The active decay λD
j can be used to unlearn the

drive-goal association. It is always null except when a negative

feedback is received (see eq. (14)). It must be noted that

during reward reception there will only be one active desired

goal. Thus, the reward only reinforces the association between

the active drive and the goal corresponding to the current

last performed transition (index k in the cognitive map). An

intermediary layer G, receiving exciting connection from the

desired goal layer D, must be introduced here. Currently it is

only a copy of the activity in D. Its role appears clearly during

the goal selection and inhibition during the goal detection

process described in Section III. The connections from the

goal layer G to the cognitive map are also learned (3).

∆wmotiv
ij = R(δjk · εmotiv

·Di − αmotiv
· wmotiv

ij ) (3)

In the cognitive map, only the neuron corresponding to the last

performed transition (index k) is active. As the recruitment

ensure that only one goal is associated to a given transition, a

transition in the cognitive map can only be associated with this

unique learned goal. A motivational context inputs an activity

omotiv
j in the cognitive map (4), considering the goals desired

after inhibition G.

omotiv
j = [max

i
(wmotiv

ij ·Gi)]
+ (4)

The output activities Oj of the neurons in the cognitive map

result from a competition between the computed activities

from the recurrent connections orecj and the activities omotiv
j

related to the motivations (drives) of the agent (5)1.

Oj = [max(omotiv
j , orecj )]+ (5)

1In the following description of the model (Fig. 4), the equations are given
for discrete time.

The motivational activities are diffused from the associated

transitions to the previous transitions and so on with decreas-

ing activities as the recurrent connective weights are lower than

1. The activities in the cognitive map come to bias the selection

of the transition TW
b that determines the motor commands

(eq. 6).










TW
j = δjb · H(T s

j )
b = argmax

j

(T s
j ))

T s
j = max((TP

j − 1) +Oj)

(6)

with TP the possible transitions in a given state. As a result

of the different competitions, the activity of each neuron in

the cognitive map corresponds to only one gradient, resulting

of the activity of the different goals.

III. DETECTING OWN OBJECTIVES FROM GRADIENT

PROPAGATION IN A LEARNED COGNITIVE MAP

The principle of the goal detection is to modify the diffused

gradients by modifying goals activities, one after another, and

to monitor if the modifications are propagated to the activity

of the selected transition TW (Figure 4). The desired goal

activities can be modulated by the research of the current

followed goal. Goals are successively selected and tested.

An internally built “keep goal” signal K supervises the

goal checking by gating the selection of a new goal. When

it is null, a new goal can be selected to modulate the desired

goal activities. Otherwise the K signal is equal to 1, and it

maintains the selected goal until the checking processed is

finished or as long as required to keep the result when the

detection is successful. The goal checking process depends

on the propagation of modifications of the gradients in the

cognitive map. Once the running propagation signal P (eq. (7))
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stops detecting changes in the cognitive map, the K signal

can become null again unless the goal detection is successful

(A = 1) (eq. (8)).

P =
∑

j

H(Oj(t− 1)−Oj(t)) +H(Oj(t)−Oj(t− 1)) (7)

K = H(A(t− 1) + P (t− 1)− reset) (8)

A reset signal can also be applied to force a new a goal

detection2.

The activities in the selected goal layer S is modified only

when K is null. A new goal (index a) is selected depending

on the current possible goals estimated from the desired drives

D (binary values) and some noise η (eq. 9).



























Sj = δja · H(sj)
a = argmax

j

(sj)

sj = [ K · Sj(t− 1)
+(1−K)( (H(Dj)− 1)

+A(t− 1) · Sj(t− 1) + η ) ]+

(9)

In order to perform the goal detection, the selected goal

are inhibited one after the other. The inhibition goal layer

I receives the selected goal S activities and some inhibition

from the reward R and the keep goal signals K (eq. (10)).

The reward signal R can prevent the modulation in order to

2Each signal is noted without the time index when it correspond to the
current iteration. The time index is only given when it differs from the current
iteration like (t− 1) for previous iteration.

avoid perturbing the learning of the goal to cognitive map

associations.

Ij = H(Sj −K −R) (10)

The goal layer G contains the desired goal D activities

modulated by the goal inhibition I .

Gj = Dj − 0.5Ij (11)

The success of the detection is stored in the goal detected

signal A meaning the detection have been achieved (eq. (13)).

From (9), a selected goal a is detected as the current goal if

it generates the propagated gradient that gives the activity of

the current transition to be performed. Neurons in the layer

V are dedicated to detecting strong negative variations of the

propagated activities in the cognitive map. The layer keeps the

activations in memory as long as no new goal is checked (12).

The goal-detected signal is activated only if one of the active

neurons in the variation detection layer corresponds to the

selected transition in TW .

Vj = H(Oj(t− 1)−Oj(t)) + Vj(t− 1) ·K (12)

A = H(
∑

j

Vj · T
W
j ) (13)

Thereby, the own goal evaluation is based on simple

mechanisms: selecting a goal, modulating its propagation and

monitoring if it influences the propagated activity at the level

of the selected transition. The information of which goal is

pursued is important to let the agent have a better control

over its own behavior. For instance, the information of the

current goal can be used to reduce the desire for this goal

when a negative signal is received. In the equation of the drive-

goal association learning (eq. (2)), a topological active decay

term λA
j is introduced. This term can be modulated to ensure

that the association is unlearned when a negative feedback is

received (eq. 14).

λA
j = λA

·N ·A · Sj with λA = 0.5 (14)

with λA a global decay factor. If a negative feedback N is

received while the goal detection is successful (A = 1), then

the detected goal present in S will enable the decay of the

connection between this goal and the active drive. As the

necessary signals are already present, the mechanism to inhibit

the behavior is then very simple.

IV. BEHAVIOR INHIBITION IN AN AGENT AWARE OF ITS

GOALS

The model for goal awareness was tested in a simulation

of an autonomous agent navigating in a Cartesian 2D space.

The basis of the simulation is a quite classic paradigm of

autonomous motivated navigation. The agent is to build the

corresponding action representations. Then, some interactions

with the agents will be used to modify the behavior of the

robot with the use of the goal awareness system. The virtual

agent needs are food and water. In the environment, two water
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Fig. 5. Left The agent explore its environment and encoded it as states (place-cells), transitions and sequences of transitions. Dots are place-cells, arrows are
learned oriented transitions and the dash-gray lines are the trajectories of the robot during exploration. Center Infinite resources (water: W1,W2 and food:
F1, F2) are added to the environment. The agent continue to explore and learn the rewarded goals. Right Resulting cognitive map built during these two
first phases. The arrows and their thicknesses and colors represent respectively the possible transitions and their activities in the cognitive map (the bigger
and darker for higher values). The activities correspond to the propagated gradient when the first drive (thirst) is active.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 0.72

0.74

0.76

0.78

0.79

0.79

0.82

0.84

0.84

0.85

0.85

0.85

0.89

0.89

0.890.92

0.92

0.92

0.94

0.94

0.94

0.94

1 1

x

y

W1
W2

a)

F2F1

W1 W2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

y

b)

Fig. 6. Left Representation of the goal detected by the agent after the cognitive map is built. For each position, the agent estimates the current goal it would
pursue. Red dots correspond to the goal on the right (W2) and blue squares are for the goal on the left (W1). The black thick line separates the two areas
related to each goal. Right Initial behavior of the agent. The agent exploits the two resources on the right (Water 2 and Food 2). The agent always estimates
the goal it is going to. The color and the shape of the points of the trajectory correspond to this goal estimation in the case of thirst motivation. Red dots are
for W2, blue squares for W1 and black diamond for goals that are not associated with thirst (F1 and F2).

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.65

0.67

0.69 0.7

0.7

0.7

0.72

0.72

0.73

0.74

0.74

0.78

0.78

0.78
0.79

0.8

0.81

0.83

0.83

0.85

0.88

0.92

0.94

1

x

y

W1
W2

b)

F2F1

W1 W2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

y

a)

Fig. 7. Left Representation of the goals detected by the agent after the negative signal is received. The association between thirst and the goal W2 was
reduced by half. Thus, the propagated gradient now only corresponds to the goal W1 (blue squares). Right A negative signal is given while the robot moves
toward W2. As the propagated gradients changed also does the target of the agent. The change of goal is visible in the goal estimation displayed for each
point of the trajectory (blue squares replace red dots). The consecutive behavior of the agent is effectively adapted. It then aims to the goal W1 and keeps
exploiting the two goals W1 and F1.



sources and two food sources (all infinite) can be available (see

Fig. 5b). As time passes, food and water drives increase. When

they are still low, the behavior of the agent is exploratory.

When one of them is over a given threshold, a competition

selects the most activated drive to motivate the behavior of

the agent. Depending on its representation of the environment

and the possible actions in it, the agent will reach for the

closest adequate resource. When the agent is at the spot, the

satisfied drive is reset letting the agent pursue the other drive,

if activated enough, or resume its exploratory behavior. In

the first phase, the agent explores its environment randomly.

Place-cells like categories are recruited when the position of

the robot is too different from any already encoded position

with respect to a vigilance threshold. In the experiments, a

simplification of the visuo-motor based architecture [5] is used.

Place-cells are not built on landmark-azimuth couples but on

Cartesian position (x, y). Also, the movements of the agent

are not directly encoded as an orientation neural field but as

the position of the next place-cell to be reached. The goal

estimation mechanisms does not depends on the kind of states

used but on the goal inhibition and the activity propagation

in a topological map. As the agent moves, the maximally rec-

ognized category can change. Consecutive categories are then

coded as transitions. The possibles successions of transitions

are encoded in the cognitive map. The resulting representation

of the possible actions in the environment is displayed in

Figure 5c.

The capability of the agent to recognize its goals entirely

relies on the previous learning and encoding of the cognitive

map. After the phase of learning with the resources, the

representation given by the own goal detection is evaluated.

For different positions in the environment, the agent estimates

the goal it expects to reach (Fig. 6). The result stresses the

fact that what is important is the state in which the robot is.

In each state only one goal is ever expected.

In Fig. 7, a negative feedback is received while the agent is

exploiting the resources. It is directly converted into a decay

of the drive-goal association reducing it by half. As a result,

the diffused gradient is modified and the agent changes its

goal and thus its behavior. The resulting goal estimation for

each position is given in Fig. 7a. With such a strong decay, the

former goal does not propagate anymore because its related

motivational activity is lower than the gradient propagated by

the other strongly activated goal.

The choice of the action to be performed by the robot is

given by both the drive and the state in which the robot is.

Depending on its state, some transitions will be possible or

not and the propagated gradient may not come from the same

goal. The most important effect of the negative feedback is not

to reduce the desirability of the goal transition but to modify

the area of domination for each goal. In comparison with our

previous work [12], goals are now stressed as a major actor

of the planning process. They are explicitly coded and can be

used to make hypotheses (“Is this one the current goal?”) and

modulate them in order to find and select the current followed

goal.

V. DISCUSSION

In this paper, we studied how negative signals can induce

behavior adaptation in the case of action planning based on

cognitive maps. With cognitive maps, behaviors rely not only

actions but also goals that will generate an activity propagated

from action to action in order to trigger specific sequences.

Adapting the behavior may not only be changing what action

should be done but also changing what sequence is to be

done. Determining which goal and thus which sequence is

followed needs a particular processing due to the properties

of the used cognitive maps. Potential goals are selected to

estimate whether or not they are related to the current behavior

of the robot. The selected goal is inhibited and then can be

determined as the current goal if this inhibition eventually

modifies the value of the propagated gradient that biases the

activity of the selected action.

The architecture for planning with a cognitive map mainly

relies on models of the Hippocampus, the Prefrontal Cortex

and Parieto-temporal Cortices. The encoded low level actions

are transitions corresponding to changes between two place-

cells. The Hippocampus with the Entorhinal Cortex, known as

a novelty detector can detect these changes of states. The cells

of the Dendate Gyrus (DG) provide a time basis to the cells of

the CA3 to predict the place-cell activities and thus events like

changes of most recognized place-cell. These predictions are

then used to predict transitions (in CA1) [12]. A competition

between the possible transitions is performed at the level of the

Basal Ganglia giving the action selection. It can be biased by

the Prefrontal activities from the propagation in the cognitive

maps.

This described system is not the only solution to explain

how behavior can be adapted from negative feedback. It more

likely corresponds to a last developmental stage of action

planning. At first the brain can directly use simple sensorimo-

tor actions valuated by a reinforcement learning process [7]

occurring in the Basal Ganglia. In order to capture the correct

properties of the task to be performed, this process must slowly

adapt the encoding and thus the behavior. The Basal Ganglia

can count on the frontal cortex to solve this problem. There

exist several cortico-striatal loops involving the Basal Ganglia

and the frontal cortex with different functional levels [13] [14].

The simple action planning directly based on reinforcement

learning correspond to the motor loop represented in the

frontal cortex by the Supplementary motor areas (SMA), the

Premotor Cortex (PMC) and the Somatosensory area (SSA).

When a negative signal is received, working memories [15]

present in the frontal cortex could come to temporarily inhibit

the incorrect actions. As a result, the behavior is adapted

fast while the reinforcement learning process learn what to

do at its own speed. A more cognitive loop (called spatial

loop in [14]) includes the dorso-lateral cortex (DLC) and

the posterior parietal cortex (PPC). This loop correspond to

the cognitive map model. The goals would be in the dorso-

lateral cortex whereas the cognitive map would be encoded

in the recurrent connections of the posterior parietal cortex.



The nodes corresponding to motor actions in the motor loop

find their homologous in the goals of the spatial loop. The

difference is that these goals can propagate activities in net-

works (cognitive maps) thus encapsulating complete sequences

of actions. Considering that the spatial loop are a development

of the original motor loop, the same inhibition process can

occur. Depending on the reception of a negative signal, the

working memories can come to inhibit goals as well as actions

providing the basis for enabling an agent to detect its own

goal while planning with the cognitive map. In [15], the

authors showed that cognitive tasks (Wisconsin test, Tower of

London test) could be solved by neural network models of the

prefrontal functions based on testing and selecting code-rule

clusters (goals).

Implementing the motor and spatial loops in parallel can be

used to get the best of the two strategies [16]. However their

interactions may not be restricted to selecting which strategy

is the best at a given moment. As the cognitive map can plan

sequences of actions, such sequences could be reencoded as

action primitives. The reinforcement learning process and the

motor loop could directly process such primitives. As these

primitives are new possible actions, they should be integrated

in the cognitive representations of the possible actions i.e.

in the cognitive maps. Then, the spatial loop could build

sequences including the more complex action primitives. The

development of more and more complex behaviors would not

be performed by one superior structure but rather from the

recurrent interactions between the quite simple motor loop and

spatial loop. In order to handle these primitives and complex

sequences, the nodes (representing goals or actions) should

be reencoded as chunks merging adequately many different

sensory signal [17]. An adequate extraction of the relevant

features to be encoded is the challenge to be tackled [18].

Fig. 8. Can sorting based on a cognitive map model: Pick and place
experiment with a Katana (Neuronics AG) robotic arm.

Finally, current ongoing work also focuses on implementing

and validating the own goal detection model on real robot

(Fig. 8). Correctly taking negative feedback into account

should improve how natural interactions can be, including in

non-navigational tasks like arm control.
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