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Abstract—We propose an approach for improving the digitiza-
tion of shape and color of 3D artworks in a cluttered environment
using 3D laser scanning and flash photography. In order to
separate clutter from acquired material, semi-automated methods
are employed to generate masks for segment the 2D range maps
and the color photographs, removing unwanted 3D and color
data prior to 3D integration. Sharp shadows generated by flash
acquisition are trivially handled by this masking process, and
color deviations introduced by the flash light are corrected at
color blending time by taking into account the object geometry.
The approach has been applied to, and evaluated on, a large
scale acquisition campaign of the Mont’e Prama complex, an
extraordinary collection of stone fragments from the Nuragic
era, depicting larger-than-life archers, warriors, boxers, as well as
small models of prehistoric nuraghe (cone-shaped stone towers).
The acquisition campaign has covered 36 statues mounted on
metallic supports, acquired at 0.25mm resolution, resulting in
over 6200 range scans (over 1.3G valid samples) and 3426
10Mpixel photographs.

I. INTRODUCTION

The increasing performance and proliferation of digital
photography and 3D scanning devices is making it possible to
acquire at reasonable costs very dense and accurate sampling
of both geometric and optical surface properties of real objects.
A wide variety of cultural heritage applications particularly
benefits of this evolution, which makes it potentially possible
to construct accurate colored digital replicas not for single
digital objects but at a large scale. The wide availability of
accurate reconstructions built from objective measures has
many applications that range from virtual restoration to dis-
semination.

The most widely used approach today is a combination of
(triangulation) laser scanning with digital photography. Digital
object surfaces are reconstructed by the laser-scan-generated
range maps, while the apparent color value sampled in digital
photos is transferred by registering the photos with respect to
the 3D model and mapping it to the 3D surface using the
recovered inverse projections. This approach is particularly
well suited to the cultural heritage domain, since scanning and
photographic acquisition campaigns can be performed quickly
and easily, without the need to move objects to specialized ac-
quisition labs. The most costly and time consuming part of 3D
reconstruction is thus moved to post-processing, which can be
performed off-site. In recent years, research has thus focused
on improving and automating the processing steps, leading,
e.g., to (semi-)automated scalable solutions for range-map
alignment [1], surface reconstruction from point clouds [2]–
[5], photo registration [6], [7], and color mapping [8]–[10].

Fig. 1. Reassembled Neolithic statue with supports. The black support
structures holds the fragments in the correct position, with minimal contact
surface, avoiding pins and holes in the original material. A 360 degree view
is possible, but scanning is difficult because of clutter and shadows.

In this paper, we improve the scanning and color map-
ping pipe-line for the important and difficult case of on-
site scanning of 3D artworks in a cluttered environment.
This case arises, for instance, when scanning restored and
reassembled ancient statues in which (heavy) stone fragments
are maintained in place by a custom exostructure (see Fig. 1 for
an example). Digitizing statues without removing the supports
enables scanning directly on location and without the need
of moving the fragments. On the other hand, the presence of
the supporting structure typically generates shadowing effects
and extra acquired geometry. With the standard 3D scanning
pipeline, this produces shadow-related color artifacts and leads
to a heavy and mostly manual post-processing step that in-
cludes geometry cleaning and 2D pixels masking.

We propose a practical approach for improving the dig-
itization of shape and color of 3D artworks in a cluttered
environment. Geometry is acquired using a triangulation laser
scanner, which produces range and reflectance maps, while
color is acquired by taking a collection of photographs with
an uncalibrated camera, using the camera flash as the only
illumination. A semi-automatic method is employed to seg-
ment the 2D range maps and color photographs, separating
clutter from the statue material. Starting from a small training
set of manually segmented reflectance maps and photographs,



we learn a simple statistical description of the statue material,
which is used to generate approximate segmentation masks for
both range maps and color photographs. These masks, are then
refined using graph-cut based segmentation, and used to re-
move the unwanted 3D and color data prior to manual editing.
Sharp shadows created by flash acquisition are trivially handled
by this masking process, and color deviations introduced by
the flash light are corrected at color blending time by taking
into account the object geometry. The quality and efficiency of
our approach have been evaluated on a real world large scale
digital reconstruction project concerning the Mont’e Prama
complex, an extraordinary collection of stone fragments from
the Nuragic era, depicting larger-than-life archers, warriors,
boxers, as well as small models of prehistoric nuraghe (cone-
shaped stone towers). The acquisition campaign, performed
in a museum setting without removing the statues from their
custom supports, has covered 36 statues, acquired at 0.25mm
resolution, resulting in over 6200 range scans (over 1.3G valid
samples) and 3426 10Mpixel photographs.

Contribution. Our main contributions are the following: an
easy-to-apply acquisition protocol based on laser scanning
and flash photography; a simple and practical semi-automatic
method for clutter removal and photo masking; a scalable
implementation of the entire masking, editing, and color-
blending pipe-line, working fully out-of-core without limits on
model size and photo number; an evaluation of a large-scale
real-workd application of the method and tools on a massive
acquisition campaign.

Advantages. Our method handles the difficult case of on-site
acquisition of a cluttered environment, as exemplified by the
case of statue fragments maintained in place by exostructures.
Based on the standard combination of laser scanning and flash
digital photography, it does not need complex illumination
setups (just a dark room during color acquisition), reducing
time required for color acquisition. Post-processing time is
radically reduced with respect to current procedures, thanks to
semi-automatic masking of color and geometry and scalable
color-corrected color blending.

Limitations. The method assumes that the statue material is
easily separable from the unwanted support structure by ana-
lyzing reflectance and color, and can thus not be applied when
the statue and the supporting structure are visually indistin-
guishable. However, It must be noted that this differentiation is
enforced in modern restoration practices. The results presented
in this paper take the assumption that the statue material is
fairly diffuse and homogeneous, as is common for all ancient
artifacts made of stone. This is not an intrinsic limitation
of the method, which could also be applied, as is, if the
supporting material has those characteristics just by reversing
the masks. Regions of contact between the exostructure and
the imaged object cannot obviously be recovered, since they
are invisible to the imaging devices. This is common to all use-
cases involving static supports. Since these parts are small, and
generally uninteresting, infilling techniques are generally used.
This is, however, orthogonal to our work.

II. RELATED WORK

Our system extends and combines state-of-the-art results
in a number of technological areas. In the following, we

only discuss the approaches most closely related to our novel
contributions. We refer the reader to the recent survey of
Callieri et al. [11] for up-to-date information on the entire
3D scanning pipeline.

Color and geometry masking. Editing and cleaning the ac-
quired 3D model is often the most time-consuming recon-
struction task [11]. While some techniques exist for semi-
automatic 3D clutter removal in 3D scans, they are typically
limited to well-defined situations (e.g., walls vs. furniture
for interior scanning [12] or walls vs. organic models for
exterior scanning [13]). Interactive 2D segmentation is a well
known research topic with different state-of-the-art solutions
that typically involve classification and/or editing of color
image datasets (see well-established surveys [14], [15]). In
general, the aim of these techniques is to efficiently cope with
the foreground/background extraction problem at the cost of
as less as possible user interactive effort. The most simple tool
is Magic Wand of Adobe Photoshop 7 [16]. The user selects
a point and the software automatically computes a connected
set of pixels that belongs to the same region. Unfortunately, an
acceptable segmentation is rarely achieved due to the fact that
choosing the right color or intensity tolerance value is a hard or
even impossible task. All earliest methods, as the intelligent
scissors [17], active contours [18], and Bayes matting [19],
require a considerable degree of user interaction in order
to attain satisfactory results. More accurate approaches are
presented that solve the semi-automatic image segmentation
by using Graph Cuts [20]; here the user marks a small set
of background and/or foreground pixels as seeds, and the
algorithm propagates that information to the remaining image
regions. Among the big number of extensions of the Graph
Cuts methodology [21], [22], the GrabCut technique [23]
combines a very straightforward manual operation, with a color
modeling and an extra layer of (local) minimization to the
Graph Cuts technique; this puts a light load on the user and
proves to be very robust in different segmentation scenarios.
Here we propose an adaptation of the GrabCut approach to the
problems of point cloud geometry editing and pre-processing
of images for texture blending. First we employ this method
to perform a minimal user assisted training of the algorithm
on a small set of acquired range maps and images, and then
we combine it with a rough color segmentation in order to
automatically mask the massive amount of 3D points and
textures.

Color acquisition and blending. Most cultural heritage appli-
cations require to associate material properties to geometric
reconstructions of the sampled artifact. While many works
exist for sampling Bidirectional Radiance Distribution Func-
tions (BRDF) [24], [25] using sophisticated controlled lighting
environments, most cultural heritage applications impose fast
on-site acquisition together with the use of low-cost and easy
to use procedures and technologies. Color photography is
the most common approach. Since removing lighting artifacts
requires knowledge of the lighting environment, one approach
is to employ specific techniques that uses probes [26], [27],
which are, however, hard to use in practice in a museum setting
with local lights. Dellepiane et al. [28], [29] proposed, instead
to used camera flash light, employing the Flash Lighting
Space Sampling (FLiSS), a correction space where a correction
matrix is associated to each point in the camera field of view.
The method requires a heavy calibration step. Starting from



the fact that medium- to high-end reflex cameras support fairly
uniform flash illumination and RAW data acquisition modes
that produce images where each pixel value is proportional
to incoming radiance [30], we take the simpler approach of
using a constant color balance correction for the entire set of
photographs and apply a per-pixel intensity correction based on
geometric principles. This approach reduces calibration needs.
In addition, while previous color blending pipe-lines worked
on large triangulated surfaces [8] or single-resolution point-
clouds [10], we blend images directly on a multiresolution
structures, leading to increased scalability.

Scalable editing and processing. Massive point-cloud pro-
cessing and interactive point-cloud editing are required to
produce high quality 3D models from an input set of registered
photos and merged geometries. In this work, we represent
geometric datasets as a forest of out-of-core octrees of point
samples [31]–[33], and employ the same structure for all op-
erations, including color blending and editing. While previous
works split and refine nodes based on strict per-node sample
budgets, our approach is based on local density estimating,
which allows us to use more balanced structures.

III. TECHNIQUE OVERVIEW

Fig. 2 outlines the proposed approach, which consists in a
on-site and an off-site phase.

The on-site operations are geometry and color acquisition.
Geometry acquisition is performed with a (triangulation) laser
scanner, incrementally coarsely aligning range maps in order
to monitor 3D surface coverage. Color acquisition, is, instead,
performed in a dark room using flash photography. A Macbeth
color checker, visible in at least one of the photographs, is
used for post-process color calibration. Similarly to what done
for range maps, coverage is (optionally) checked by coarsely
aligning the photographs using a SfM pipeline.

All the rest of the work can be performed off-site, using
separate geometry and color pipe-lines, which communicate
only at the final merging step. In order to remove geometric
clutter, the user manually segments a very small subset of the
input range maps, and produces a training dataset that allows
the algorithm to automatically mask unwanted geometry. This
step exploits the reflectance channel. The automatic masking
can be (optionally) revised by visually inspecting it and
manually improving the segmentation. Masks are then applied
to all range maps, which are then finely registered with a global
registration approach and manually edited for giving the final
touches.

The color pipe-line is similar. Starting from the pho-
tographs in raw format, after the training performed by the
user on a small subset of images, the algorithm automatically
masks all the input photos. After a visual check and a manual
refinement, the masked photos, already coarsely aligned among
themselves with SfM, are aligned with the geometry using the
approach of Pintus et al. [6]. The photos are finally blended
to the surface by color-blended projection [8], [10]. During
the blending step, colors are calibrated using a data extracted
from the color checker, and differences in illumination caused
by flash photography is corrected using geometric information.

Details on semi-automatic geometry and color masking,
scalable data consolidation and color mapping are provided

in the following sections. The corresponding phases are high-
lighted in yellow in Fig. 2.
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Fig. 2. Pipeline. We improve digitization of 3D artworks in a cluttered
environment using 3D laser scanning and flash photography. Semi-automated
methods are employed to generate masks for segment the 2D range maps
and the color photographs, removing unwanted 3D and color data prior to
3D integration. Sharp shadows generated by flash acquisition are handled by
the masking process, and color deviations introduced by the flash light are
corrected at color blending time by taking into account object geometry. User-
guided phases are highlighted in yellow.

IV. SEMI-AUTOMATIC GEOMETRY AND COLOR MASKING

Our masking process aims to separate the foreground
geometry (the object to be modeled) by the cluttering data (in
particular occluding objects), under the assumption of different
appearances, as captured in the reflectance and color signals.
Starting from a manual segmentation of small set of examples
(Sec. IV-A), we learn a histogram-based classification of ma-
terials (Sec. IV-A), which is then refined by finding an optimal
labeling of pixels using graph cuts (Sec. IV-C), before a final
(optional) user-assisted revision, which can be performed using
the same tool used for manual segmentation.

A. Manual segmentation

In order to perform the initial training, the user is provided
with a custom segmentation tool, with the same interface for
range maps and color images. The tool allows to visually
browse images/scans in the acquisition database, visually select
a small subset of them (typically, less than 5%), and draw
a segmentation in the form of a binary mask, using white
for foreground and black for background. The mask layer is
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Fig. 3. Automatic masking. Geometry (top) and color (bottom) results for a single image. From left to right: acquired reflectance/color image; user-generated
ground truth masking; mask generated by histogram-based classification; final automatically generated mask; difference to ground truth; magnified region of
difference image. In the difference image, black and white pixels are perfect matches, while yellow pixels are false positives, green pixels are false negative
points on this image, and red pixels are real false negative points considering the entire dataset.

rendered on top of the image layer, and the user can vary
the transparency of the mask to evaluate the masking results.
In addition to using standard draw/erase brushes, we support
interactive grab-cut segmentation [23], in which the user
selects a bounding box of the foreground object to initialize
the segmentation method.

B. Histogram-based classification

The user-selected small subset of manually masked images
and range maps is used to learn a rough statistical distribution
of pixel values that characterize foreground objects. For arti-
facts made of fairly uniform materials, e.g. stone sculptures,
3-4 range maps and 4-5 images are typically sufficient.

For range maps, we build a 1D histogram of reflectance
values, quantized to 32 levels, by accumulating all pixels
that were marked as foreground in the user-defined mask.
For color images, instead, we use a 2D histogram based on
hue and saturation, both quantized to 32 levels. Ignoring the
value component is more robust to shading variation due to
flash illumination and variable surface orientation. The process
is repeated for all manually masked images, accumulating
histogram values before a final normalization step.

The histogram computed on the training set can be used
for a rough classification of range map/image pixels based
on reflectance/color information. This classification is sim-
ply obtained by back-projecting each image pixel to the
corresponding bin location, and interpreting the normalized
histogram value as foreground probability.

It is worth to be noted that it is not important whether
the histogram is computed from foreground or clutter data; if
the rest of the pipeline is consistent, the only constraint is the
already mentioned assumption that the two appearances are
reasonably well separable.

C. Graph cut segmentation

As illustrated in Fig. 3, third column, the histogram-based
classification is very noisy, but roughly succeeds in identifying
the foreground pixels, which are generally marked with high
probabilities. This justifies our use of histograms for the rough

classification step rather than the more complex statistical
representations typically used in soft segmentation [34], [35].

Segmentation is improved by using the rough histogram-
based classification as starting point for an iterated graph
cut process. We initially separate all pixels in two regions:
probably foreground for those with normalized histogram value
larger than 0.5, and probably background for the others. We
then iteratively apply the GrabCut [23] segmentation algo-
rithm, using a Gaussian Mixture Models with 5 components
per region and estimating segmentation using min-cut. As
illustrated in Fig. 3, column 4, the process produces tight and
well regularized segmentation masks.

V. DATA CONSOLIDATION AND COLOR MAPPING

The final result of the automatic masking step is a mask
image associated to each range map and color image. These
masks are used for pre-filtering geometry and color informa-
tion before further processing.

Fig. 4. Interactive inspection and editing. Left: all captured range maps
imported into out-of-core scene structure without applying masks. Right:
automatic masking removes most if not all clutter. Editing can thus be limited
to fixing fine details.

A. Multiresolution octree for point-cloud management

All the rest of the processing, including color mapping,
is performed by using an editable out-of-core structure based
on a forest of octrees. The structure consists in a scene
structure, hierarchically grouping models and associating to
each group a rigid body transformation for positioning it
with respect to its parent. The leafs of the scene structure
are out-of-core octrees of points. Similarly to Wand et al.’s



system [31], data points are stored unmodified in the leaf
nodes of the octrees, while inner provide grid-quantization-
based multiresolution representations. In contrast to previous
work, we dynamically decide whether to subdivide or merge
nodes base on a local dynamic density estimation. In particular,
at each insertion/deletion operation in a leaf node, we count
how many grid cells are occupied in the quantization grid
that would be associated to the node upon subdivision. If this
number is larger than four times the number of points, we
consider the node dense enough for splitting. The structure
provides efficient rendering and allows for handling very large
data sets using out-of-core storage, while supporting efficient
online insertion, deletion and modification of point samples.

After completing the masking process, we import into a
scene structure all the range maps, using a separate octree per
range map (see Fig. 4). The initial transformation of each range
map is the coarse alignment transformation computed during
the scanning campaign, while normals and local sampling
space are computed by local differences. The hierarchical
scene structure is exploited for grouping scans (e.g., separating
low-res from hi-res scans, as well as labeling semantically
relevant parts). Alignment and editing operations are applied
to the structure using an interactive editor. Alignment is
performed by applying to (subsets of) the range scans a
global registration method based on the scalable approach of
Pulli et al. [36], using GPU-accelerated KNN to speed-up
local pairwise ICP [37]. After satisfactory global alignment,
multiple octrees can optionally be merged together. Interactive
editing is performed on the structure using a select-and-apply
paradigm supporting undo history. At each application of a
modifier (e.g., point deletion), modified samples are moved to
a temporary out-of-core structure (an memory-mapped array)
prior to modification. By associating the array to the undo list,
we are able to perform reversible editing.

Fig. 5. Flash illumination. Top: two out of many calibration images taken
at difference distances under flash illumination. Bottom: using RAW camera
data, distance-based scaling provides a reasonable correction. Balance between
color channels can then be ensured using color-checker-based calibration.

B. Color correction and blending

The color attribute is obtained first by mapping masked
photo in the same 3D model reference frame [6], and then by

Fig. 6. Color correction and masking. Left: original image under flash
illumination: note sharp shadows and uneven intensity; Right: projected images
with corrected color and masked regions highlighted in red. Note how distance-
based correction correctly equalizes shading and support as well as shadow
areas are identified by the mask.

performing seamless texture blending of those images onto the
surface [10]. In contrast to previous work, we blend and map
images directly to the out-of-core multiresolution structure, and
perform color correction starting from captured RAW images
during the mapping operation.

In our context, flash illumination is a viable way to image
the objects, as it provides us sharp shadows together with
knowledge of per-image illumination direction. Since at color
mapping-time the geometry of the image is known, we can
correct each projected pixel according to the position of surface
on which it projects with respect to the camera and the
flash light. In addition, cluttering material, e.g., the supporting
exostructure, generates sharp shadows, which can be easily
identified both by the masking process and by shadow casting
of the geometry.

In contrast to previous work [28], [29], we handle images
directly in RAW format, which allows us to correct images also
without prior camera calibration. We experimentally measured
that, on a medium/high end camera, such as the Nikon D200,
RAW data acquisition produces images where each pixel
value is proportional to incoming radiance (as also verified
elsewhere [30]), and that the flash light emits fairly uniform
illumination within a large working space. Fig. 5 shows
results of images of a checkerboard taken in a dark room
with t=1/250s f/11.0+0.0, ISO 400. As shown in the graph
on the right, values (measured on the white checkerboard
squares) are proportional to 1/d2, where d is the distance
from the flash light. It is thus reasonable to simply correct
pixel intensities at color mapping time by applying a correction
factor of (di/d0)2, where d0 is the user-provided desired object
distance, and di is the distance to the flash of the surface visible
from the pixel. Fig 6 shows how distance-based correction
correctly equalizes shading. In the same image, it can be noted
that support as well as shadow areas are correctly identified
by the mask. As in standard settings, color balance can be
recovered by taking an image of a calibration target (color
checker).

While more accurate results can possibly be obtained with
calibration techniques, even the most accurate ones performed
off-site [28], [29] do not perfectly match local illumination
settings, since indirect illumination is not taken into account.
We thus consider this uncalibrated approach to be of practical
use. It should be noted that, whenever needed, these alternate
techniques can be easily performed in a post-process from the
same captured data. The availability of RAW images in the



captured database adds in addition the ability to perform a
variety of post-process enhancements [30].

C. Surface reconstruction and filling

The final colored point cloud can be directly used for
many applications. In order to produce consolidated models
represented as colored triangle meshes, among the many state-
of-the-art approaches [2]–[4], we adopt the smoothed signed
distance technique [5], a recent variational formulation for
the problem of reconstructing a watertight models that forces
the implicit function to be a smooth approximation of the
signed distance function to the surface. The method produces
watertight surfaces and directly handles the color signal within
the same framework. This is particularly interesting in our
setting, since it smoothly fills the unsampled areas by diffusing
both geometry and colors.

VI. IMPLEMENTATION AND RESULTS

We implemented on Linux the methods described in this
paper in a C++ software library and system. The out-of-core
octree structure is implemented on top of Berkeley DB 4.8.3,
and OpenMP is used for parallelizing blending operations.
The automatic masking subsystem is implemented on top
of OpenCV 2.4.3. RAW color images from the camera are
handled using the dcraw 9.10 library. The SfM software used
for image-to-image alignment is Bundler 0.4.1 [38]. All tests
were run on a PC with a 8 cores Intel Core i7-3820 CPU
(3.60GHz), 64GB RAM, and a NVIDIA GTX680 graphics
board.

A. The Mont’e Prama test case

We have tested our system with a variety of high resolution
models and settings. In this paper, we discuss the results
obtained during a very large scanning campaign of the Mont’e
Prama complex, a large set of Neolithic stone sculptures cre-
ated by the Nuragic civilization in Western Sardinia. More than
5000 sculpture fragments were recovered after four excavation
campaigns carried out between 1975 and 1979.

According to the most recent estimates, the stone fragments
came from a total of 44 statues depicting archers, boxers,
warriors and models of prehistoric nuraghe (cone-shaped stone
towers). These can be traced to an as-yet undefined period,
which goes from the tenth to the seventh century BC. Restora-
tion, carried out at the Centro di Restauro e Conservazione
dei Beni Culturali of Li Punti (Sassari) resulted in the partial
reassembly of 25 human figures with height varying between
2 and 2.5 meters, as well as of 13 one-meter-sized nuraghe
models.

Following modern restoration criteria, reassembly has been
performed in a non-invasive way (no drilling or bolt insertions
into the sculptures). Definite joining fragments have been glued
using a water soluble epoxy resin, and all the gaps on the
surface filled with resin have been covered with lime-mortar
stucco. Custom external supports have been designed to sustain
all the parts of a statue in order to assure stability to all the
components without the use of mechanical attachments. The
support allows a 360 degree view of the statue.

The scanning campaign covered 36 reconstructed statues,
which were scanned and photographed directly in the museum
setting. Figure 7 summarizes the reconstruction results.

B. Acquisition

The geometry of all the statues has been acquired at
0.25mm resolution, resulting in over 6200 640x480 range
scans using a Minolta Vivid 9i in tele mode. Geometry
scanning resulted in over 1.3G valid position samples. Color
was acquired with a Nikon D200 camera with a 50mm lens.
All photos were taken with a flash light in a dark room,
with a shutter speed of 1/250s, aperture f/11.0+0.0, and ISO
sensitivity 400. Photo scans resulted in 3426 10Mpixel pho-
tographs. The on-site scanning campaign required 620 hours
to complete for a team of two people, one camera, and one
scanner. In practice, on-site time was reduced by parallelizing
acquisition with two scanning teams working on two statues at
a time. The acquisition time includes scanning sessions, flash
photography sessions (in dark room), and coarse alignment
of scans using our point cloud editor. Photo alignment using
the SfM pipeline was performed after each flash acquisition
session, and in parallel to the scanning session, in order to
verify whether sufficient coverage had been reached. Average
bundle adjustment time was of 2 hours/statue.

C. Automatic geometric masking

Model Clutter True
pts pts False-Pos False-Neg False-neg

Samples 51.4M 790K 240 (486) 35757 (11219) 5369 (2746)
(%) 0.03 (0.06) 4.53 (1.42) 0.68 (0.35)

Fig. 8. Automatic geometric masking evaluation. Results of manual
segmentation of a single statue (Guerriero3) compared with automatic masking
results. We report the number of range map samples labeled as model (“Model
pts”) and clutter (“Clutter pts”) in the ground truth dataset, the samples
erroneously labeled as statue (“False-positive”) or clutter (“False-negative”) in
the automatic method, as well as the number of false negative points that really
lead to missing data in the combined dataset (“True False-negative”). Values
between parentheses compare the cleaned-up and the ground-truth dataset,
instead of the purely automatic method. Percentages are computed with respect
to the number of clutter points.

The quality and efficiency of our automatic geometric
masking process has been extensively evaluated on a se-
lected dataset that was also manually segmented to create a
ground-truth result. The selected statue, Guerriero3 (depicted
in Fig. 1), is composed by 226 range maps (54 of which
containing clutter data).

Each ground-truth mask was created manually from the
reflectance channel of the acquired range map using our
interactive mask editor. An experienced user took about 330
minutes to complete the manual segmentation process for
the entire statue. For the sake of completeness, we also
evaluated the time required to remove clutter data from the
3D dataset by direct 3D point cloud editing, as done in typical
scanning pipelines. Using our out-of-core point cloud editor,
this operation was completed by an experienced user in about
300 min, which is not so different from the time required by
the manual 2D segmentation approach. By taking into account
the relative complexity of the other statues, we can estimate a
total time of about 130-150 man hours for the manual cleaning
of the entire collection of statues.



Fig. 7. Mont’e Prama complex. From left to right: full set of reconstructed statues; original image of one statue (warrior 3); reconstructed model; closeup
on head of reconstructed model; closeup on eye of reconstructed model.

The automatic segmentation process started by manually
segmenting 5 reflectance images using the same editor used
for manual segmentation. This training set was used as input
to the automatic classifier. The entire process took 9 minutes
for the training set creation and 6 minutes for automatic mask
computation on 8 cores. The automatically generated masks
where then manually verified and retouched using our system.
This additional step, which is optional, took about 30 minutes.
Applying the automatic process to the entire statue collection
took just 5 hours excluding manual cleaning and 13.5 hours
with the manual post-process cleanup, leading to a more than
ten-fold speed-up with respect to the manual approaches.

The efficiency of the automatic masking method is eval-
uated in the table in Fig. 8, which shows the results of
the comparison tests between the automatic segmented masks
(with and without post-process manual cleaning) and the
ground-truth dataset.

More than 95.0% of the clutter samples are correctly la-
beled. False-positive samples represent extra points which can
be easily identified and removed from the automated masks via
2D editing and they are only about 0.03% of the total clutter in
the ground-truth dataset. False-negative points represent statue
samples that have been erroneously masked; they are about
4.5% (1.4% in the clean-up dataset) of the total clutter in the
ground-truth dataset. Since overlapping range maps typically
acquires the same geometric region from multiple points of
view, a false-negative sample is not a problem if its value is
correctly classified in at least one mask covering the same
area. By taking into account this fact, we verified that these
really missing points (True false negative) are only 0.68% of
the total imaged clutter surface. This check has been performed
by looking in overlapping scans for samples within a radius of
1mm from each missing sample. As illustrated in Fig. 3, the
missing points are, in addition, often very sparse or represent
small boundary area and, thus, their effect on dataset quality
is pretty limited.

D. Automatic color masking

The quality and efficiency of the color masking process
has been evaluated similarly to what done for the geometry.
The selected statue, “Guerriero3” (depicted in Fig. 1), was
imaged by 68 photographs (33 of which containing clutter
data). Manually masking the images took 181 minutes, while
applying the automated process took 9 minutes to generate the
training set, 15 minutes to automatically computing the masks
on 8 cores, plus other 30 minutes for the optional post-process
cleanup. Speed-up is, again, substantial. This allowed us to

Model Clutter True
pts pts False-Pos False-Neg False-neg

Samples 220.5M 12.1M 381K (334K) 263K (253K) 8642 (7725)
(%) 3.16 (2.77) 2.18 (2.09) 0.07 (0.06)

Fig. 9. Automatic color masking evaluation. Results of manual seg-
mentation of a single statue (Guerriero3) compared with automatic masking
results. We report the number of colored samples labeled as model (“Model
pts”) and clutter (“Clutter pts”) in the ground truth dataset, the samples
erroneously labeled as statue (“False-positive”) or clutter (“False-negative”) in
the automatic method, as well as the number of false negative points that really
lead to missing data in the combined dataset (“True False-negative”). Values
between parentheses compare the cleaned-up and the ground-truth dataset,
instead of the purely automatic method. Percentages are computed with respect
to the number of clutter points.

perform masking for the entire set of statues in only 41 hours
(17 hours without the post-process cleaning). By taking into
account the relative complexity of the other statues, we can
estimate a total time of about 145 man hours for the manual
cleaning of the entire collection of statues.

As illustrated in the table in Fig. 9, we obtain similar
results in the color masking than those obtained for geometry
masking. Again, about 95.0% of the samples are correctly
labeled. False-positive samples, represent in the color case
points where clutter color could potentually leak to geometry
areas. These represent about 3% of the clutter area, i.e.,
below 0.2% of the model area. False-negative points represent,
instead, statue samples that do not receive color by a given
image since they have been erroneously masked; they are about
2.2% (2.1% in the cleaned-up dataset) of the total clutter in the
ground-truth dataset, but reduce to negligible amounts when
considering overlapping photographs. This is because of the
large overlap between photos and the concentration of false
negative in thin boundary areas covered from other angles.
Sampling redundancy, required for alignment purposes, is thus
largely beneficial also for automatic masking.

E. Consolidation and coloring

The generated geometry and color masks have been used
to create digital 3D models for the 36 statues (see Fig. 7).
All models have been imported after cleaning in our system
based on forests of octrees, which has been used for all the
3D editing and color blending. Using lossless compression,
we store our hierarchical database at an average cost about
38B/sample, with per sample positions, normals, radii, colors,
and blending weights (including database overhead). Disk
footprints for our multiresolution editable representation are
thus similar to storing single-resolution uncompressed data. We



have compared the performance of our system with respect to
the state-of-the-art streaming color blender of [10]. The total
blending time of Guerriero3 has been of 23 minutes with our
pipeline, which works directly on the editable representation
and includes flash illumination color correction, while the
streaming color blender took 2.5 minutes for pre-computing
the Morton-ordered sample stream and the culling hierarchy,
and 26 minutes for color blending. The increased flexibility of
our system does not, thus, introduce additional overhead, while
not requiring additional temporary storage and supporting fast
turnaround times during iterative editing sessions. Flash color
correction proved to be adequate and produces visually ap-
pealing results without unwanted color variation and/or visible
seams between acquisition (see Fig. 7 for an example).

VII. CONCLUSION

We have proposed an approach for improving the digi-
tization of shape and color of 3D artworks in a cluttered
environment using 3D laser scanning and flash photography.
The method, applied on a real-world large scale digital recon-
struction project concerning 36 statues mounted on supports,
has proven capable of notably reducing on-site acquisition
times and off-site editing times, while being able to produce
good-quality results.
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