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Abstract—We survey the latest advances in machine learning
with deep neural networks by applying them to the task of
radio modulation recognition. Results show that radio modu-
lation recognition is not limited by network depth and further
work should focus on improving learned synchronization and
equalization. Advances in these areas will likely come from novel
architectures designed for these tasks or through novel training
methods.

I. INTRODUCTION

Deep neural networks have been pushing recent perfor-
mance boundaries for a variety of machine learning tasks in
fields such as computer vision, natural language processing,
and speaker recognition. Recently researchers in the wire-
less communications field have started to apply deep neural
networks to cognitive radio tasks with some success [13],
[12], [10]. In particular it has been shown that relatively
simple convolutional neural networks outperform algorithms
with decades of expert feature searches for radio modulation
[13]. This paper provides an introduction to deep neural net-
works for the cognitive radio task of modulation recognition,
compares several state of the art methods in other domains,
and experiments with learning techniques.

Deep neural networks are large function approximations
comprised of a series of layers, where each layer represents
some transform from input to output activations based on a
parametric transfer function with some set of learned weights.
Each layer is typically a known linear function with adjustable
parameters and a non-linear activation function such that the
resulting function composition can be highly non-linear [3].
Function parameters in deep neural networks are typically
trained with a gradient descent optimizer from some loss
function computed on the output of the network. For a multi-
class classification task such as modulation recognition the
objective function is often categorical cross-entropy (eq. [I).
Categorical cross-entropy is a measure of difference between
two probability distributions. For deep learning classification
tasks the probability distribution is usually a softmax (eq. 2) of
the output of the classifier network which is then converted to
a one-hot encoding for classification purposes [3]]. The error is
calculated in what is known as the forward-pass and weights
are adjusted using the chain rule to find error contribution for
each parameter in what is known as the backward-pass. This
kind of network output layer, optimization and loss function
have been used very successfully for multi-class vision tasks
such as object recognition on the Imagenet dataset [7].
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H(p,q) = Xzp(x)logg(z) (D
e* )
0(2)7 = W for J = 1, 7K (2)

Applying deep neural networks to solve well-known prob-
lem types, such as classification, is a matter of

« selecting a network architecture and hyper-parameters

o training the network to select weights which minimize
loss

o applying it to the problem at hand

There are several well established network architectures
including multi-layer perceptrons, many variations of con-
volutional networks, and recurrent networks. Although the
goal of machine learning is to develop generalized techniques
the current state of the art network types still seem to be
application specific. For example, Google views Convolutional
Long short-term Deep Neural Networks (CLDNN) to be
worthy of patenting even though it is only used in their voice
processing research. The state of the art in image recognition
uses variants of the inception architecture, residual networks,
and other architectures that enable many combinations of
convolutional layers, while managing the combinatorial com-
plexity of weights and activations. We discuss these methods
in greater detail in the next section.

Before applying deep neural networks to wireless commu-
nications signals it is worth reviewing the state of the art for
other application areas. The next section will review deep
neural network architecture and learning advances that are
likely to be valid and useful for wireless communications
applications. Following the review of interesting deep archi-
tectures and training methods, results are in section and a
discussion in section [Vl

A. Neural Network Architectures

The common element in all state of the art deep neural
networks is the use of convolutional layers. A convolutional
layer consists of Ny convolutional filters. The use of con-
volutional layers started for image and hand-writing recog-
nition to provide feature translation invariance [8]. The use
of convolutional filters in neural networks may be slightly
different than expected for someone already familiar with FIR
filters and DSP at least partially due to the use of activation
functions in neural networks. Convolutions in neural networks



are typically very small (1x1 through 5x5 are common sizes
in image processing). In typical DSP applications filters are
very wide (many taps/high order) rather than deep (small
taps, but cascaded). Modern methods of implementing these
filters, such as polyphase filterbanks, typically provide ways to
reduce the width of filters for computational or latency reasons.
The transfer function for a standard convolutional layer [9]]
is given below in equation |3} where y; is the output feature
map for the ¢th filter, b and k represent learned bias and
filter weight parameters, x; represents the input activations,
* denotes the convolution operation, and f(..) denotes a
(typically non-linear) activation function such as a rectified
linear unit (ReLU) or sigmoid.

Yi = f (b] + Eikij * JL‘L) (3)

A visible trend in neural networks for image processing
is building deeper networks to learn more complex functions
and hierarchical feature relationships [2], [[1]. Deep networks
enable more complex functions to be learned more readily
from raw data than shallower networks with the same number
of parameters [1], [18]]; however, depth in neural networks is
widely believed to be limited by unstable gradients that either
explode or vanish in earlier or later layers in the network.
This problem has been improved in recent years by the use of
gradient normalization in optimizers as well as non-linearities
which do not exacerbate the vanishing gradient problem such
as rectified linear units (ReLUs). As a result several important
architectures have been used to win competitions such as Im-
ageNet by increasing depth that we will look at for improving
radio modulation recognition.

The inception architecture used in GoogLenet [17] is one
successful approach to increasing network depth and ability
to generalize to feature of differing scales while still manag-
ing complexity. This network consists of repeated inception
modules. Each inception module (shown in figure , contains
four parallel paths with the output being the concatenation
of the four parallel outputs. The first path is a bank of 1x1
convolutions that forward along selected information. The
1x1 convolutions are a form of selective highway networks
that simply pass information forward with no transformation.
The second and third paths are 1x1 convolutions followed
by a bank of 3x3 and 5x5 convolutions to provide multiple
scales of feature detection. Finally, the last parallel path is a
3x3 pooling layer followed by 1x1 convolutions. Intermediate
inception modules in the network are connected to softmax
classifiers that contribute to the network’s global loss for
training. These classifiers are believed to help in preventing
vanishing gradients.

Another approach to increasing depth uses architectures
that forward information untouched across layers. The best
approach so far, which won ImageNet 2015, is residual net-
works [4]. A residual network adds one layer’s output to the
output of the layer two layers deeper (as shown in figure [2)).
This is known as a residual network because the forwarded
information forces the network to learn a residual function as

1x1 eorvolulions

1x1 convolutions i [ [} L)
i

ixi ian:
. x1 convolutions

Previous layer

Fig. 1: Inception Unit diagram from [17], generalizing to
feature learning of multiple scales while also managing model
complexity.
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Fig. 2: Residual network diagram from [4], allowing feature
maps combinations from multiple source layers to select
optimal architecture paths within a network.

part of feature extraction. The residual network authors suggest
that vanishing gradients are resolved by normalization tech-
niques that have been widely adopted and that network depth
is instead limited by training complexity of deep networks
which can be simplified with residual functions.

CLDNNSs are an approach for voice processing that operate
on raw time-domain waveforms rather than expert voice fea-
tures such as log-mel cepstrums [16]], [15]. The architecture
uses two convolutional layers followed by two recurrent layers
made up of Long Short-Term Memory (LSTM) cells. LSTMs
are a common recurrent network architecture consisting of
several gates that control how long history is maintained [S]].
CLDNNs can also have connections that bypass layers that
are intended to provide a longer time context for the extracted
features. For example, the original CLDNN forwards raw
samples with the output of convolutional layers before the
LSTM layers [15].

Inspired by the use of expert knowledge to guide network
architectures such as convolutional networks and CLDNNs we
experiment with a convolutional network that we will refer to
as a convolutional matched filter. The rather simple idea is
to take the general architecture of a typical communications
receiver and build a neural network architecture that has
similar parts. Communications receivers have a filter (typically



matched to the transmitted pulse or wave shape), synchronizer,
and sampler. Often the filter up front decimates to a small
number of samples per symbol for the synchronizer which
performs phase shifts to find the optimal sampling point.
The sampler then slices to bits or emits audio for analog
modulations. The neural network architecture analog to this
is a convolutional layer with pooling followed by an LSTM.

B. Neural Network Training

Hyper-parameters of a network such as learning rate, num-
ber of filters/feature maps per layer, filter size, and to some
extent number of layers all affect network size and are hard to
optimize. Recent research has attempted to optimize hyper-
parameters as regular parameters that can be trained with
backpropagation and gradient descent like network weights
and biases. For this study we ignore training hyper-parameters
and use the adam optimizer [6] which provides gradient
normalization and momentum which reduces the importance
of hyper-parameters like learning rate.

Guided by work that shows depth being more important
than number of feature maps [2] we will establish a baseline
convolutional network similar to that used in Radio Convo-
lutional Modulation Networks [13]. Our first step is to tune
the number of filters and number of taps per filter and view
those as unimportant hyper-parameters for the remainder of
experiments to test suitability of different architectures for RF
data.

C. Test Setup
II. TECHNICAL APPROACH

We use the RadioML2016.10a dataset [[12] as a basis for
evaluating the modulation recognition task. The goal is to use
a 128-sample complex (baseband I/Q) time-domain vector to
identify the modulation scheme out of 11 possible classes. The
128 samples are fed in to the network in a 2x128 vector where
the real and imaginary parts of the complex time samples are
separated. The dataset uses a power delay profile, frequency
selective fading, local oscillator offset, and additive white
Gaussian noise with details of these effects in [[12]. The dataset
is labeled with both modulation type and SNR ground truth.
We use the all-SNR top-1 classification accuracy as a single-
number benchmark and show top-1 accuracy over SNR to
compare techniques.

All models and training are done with the Keras deep
learning library using the theano backend using an Nvidia
GTX 1070 GPU.

We start with a network similar to the CNN2 network
from [13]]. This is the chosen baseline because results from
[13] show significant improvement upon expert methods; any
further improvements should be considered state of the art.
The primary difference is we will use nfilt filters of size
Ixtaps on each layer. We will do a simple hyper-parameter
optimization to

o find the best number of filters and filter size for RF

modulation recognition
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Fig. 3: Varying the number of filters per layer has small impact
that is more noticeable at higher SNRs. Each network has 1x3
filters in a 2 convolutional layer network with 1 dense layer
and a softmax classifier.

 test assumptions gained from other fields on network
depth and filter size

III. RESULTS
A. Baseline Convolution Network

The baseline convolutional network has two convolution
layers and a single dense layer before the softmax classifier.
Each hidden layer has a rectified linear unit (ReLLU) activation
function and dropout of 50%. The first hyper parameter
optimization is the size of our convolutional layers. Each layer
will have 1x3 filters and we will vary the number of filters
to find how many are needed. From [1]], [L8], [2] we expect
that a large range in the number of filters will give similar
performance before any overfitting will happen.

As expected there is a rather large window from about
30 to 70 filters per layer where performance is very similar.
The top-1 classification accuracy for 20-90 filters in 10-filter
increments is shown in figure 3] For the remaining experiments
we will use 50 filters per layer.

Next, we optimize the size of each filter. [2] suggests that
the size of filters also has minimal impact, but based on expert
knowledge of the radio domain and the dataset we expect 8-
tap filters to be optimal. For this experiment we use a two-
convolution layer network with a single hidden dense layer
followed by the softmax classifier. The convolution layers each
have 50 filters with a filter size of 1xntaps where ntaps varies
from 3 to 12.

Results from varying filter sizes for each convolution layer
suggest that smaller filters are not as good as larger filters. We
hypothesized based on expert knowledge of the dataset that 8-
tap filters would be the best. It is difficult to distinguish a clear
winner from the results per SNR graph in figure i} however,
the whole dataset classification accuracy shows that 7-12 taps
all have similar performance around 61% with differences
being statistically insignificant.
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Fig. 4: Varying the number of taps (filter size) in both con-
volutional layers. Lower numbers of taps are clearly inferior,
but performance clusters as number of taps increases.
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Fig. 5: Varying the number of convolution layers in a DNN
does not improve radio modulation recognition.

Finally, for purely convolutional networks we experiment
with increasing network depth. For this experiment we use 50-
tap convolutional layers with 1x8 filters. After the convolution
layers we use a single hidden dense layer followed by a
final dense softmax classifier. We start with a 2-convolutional-
layer network and add convolution layers. Trends from deep
learning suggest that adding more layers should improve
classification performance until the gradient becomes unstable.

Varying the number of convolutional layers shows little to
no improvement in classification accuracy. Accuracy over SNR
for this task is shown in figure [5] This shows that there is
no more feature depth for our network to learn. The data is
not highly hierarchical to start with since the modulated data
generally changes only the amplitude, frequency, or phase of
a complex sinusoid; however, it is somewhat surprising that
adding more convolutional layers does not appear to help
reduce affects of noise at lower SNRs.
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Fig. 6: Training history showing the training loss and valida-
tion loss for a hyper-parameter optimized CNN and a 9-layer
residual network. Both networks result in similar validation
losses and training losses, but the residual network trains in
fewer epochs.

B. Residual Networks

Although it is not surprising that adding more convolutional
layers does not improve classification accuracy it is surprising
that the classification and loss improvements plateau as soon
as 2 or 3 convolutional layers. The original resnet insight
is that deeper networks result in higher training loss which
suggests higher training difficult rather than overfitting. Figure
[6] shows that our hyper-parameter optimized CNN and a 9-
layer residual network reaches similar loss, validation loss, and
accuracy which is not shown; however, the residual network
learns in fewer epochs. We also experimented with residual
networks with 5-9 layers that all had similar performance
and training times. This combined with our hyper-parameter
search for ordinary CNN depth suggests we are not limited
by network depth for radio learning tasks as much as we are
limited by features purely CNN architectures can learn.

C. Inception Modules

Inception modules also do not improve radio modulation
classification in our experiments here, using inception modules
tuned for our dataset. The three branches used in each module
are 50 1x1 filters, 50 1x3 filters, and 50 1x8 filters. The 1x3
and 1x5 filter branches also have 50 1x1 filters in front of them
as shown in figure [/l The results for 1-4 inception modules
in a network do not show any improvement over our hyper-
parameter optimized CNN. Again, this suggests that we are
not limited by depth or apparently by scale of filters.

D. LSTM Networks

As the final architecture we test adding recurrent network
layers, namely those comprised of LSTM units, for modeling
temporal features. This approach is widely used in time-series
applications and we expected that modulated baseband time-
series may be similarly applicable. We tested two and three
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Fig. 7: An inception module for RF data showing convolution
filter sizes. Each convolution layer has 50 filters.
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Fig. 8: A CLDNN architecture for RF data. The output of the
first 1x8 convolution layer is concatenated with the output of
three 1x8 convolution layers before going to the LSTM.
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layer convolutions followed by recurrent layers in a CLDNN-
type architecture with and without the forward/bypass con-
nection before the recurrent layer. We found that the forward
connection as a concatenation of the raw waveform and the
convolutional output, shown in figure [8] results in better
classification accuracy and more stable gradient descent than
other architectures. Using a pooling layer that would create
an architecture like the previously described convolutional
matched filter detector does not help classification.

To further understand what limits classification accuracy
we look at the confusion matrix for a CLDNN shown in
figure [I0} There are two primary areas of confusion. One
is between the analog modulations and the other is between
higher order QAMs. The analog modulations will be hard to
address, but the QAMs can likely be improved on with better
synchronization and reducing channel impairments.

Gaining intuition on what the CLDNN is learning in each
layer is important for guiding future work. To do this we plot
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Fig. 9: A CLDNN consistently outperforms other network
architectures for SNRs above -8dB.
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Fig. 10: The all-SNR confusion matrix for a CLDNN shows
the most confusion between analog modulations and a separate
confusion between higher order QAMs.

the time and frequency representations of some filter taps.
For the frequency response the filter taps are zero-padded
with 100 zeros to get a 128-point FFT. Figs. [T1a] and [123]
show two select filters from the first layer. The time-domain
representations do not look particularly familiar to an expert
eye; however the frequency responses do show shaped low-
pass filters. Other filters that are not shown have frequency
selective components, DC blockers, and sinc-like spectral
shapes.

Another way to visualize these filters is to apply random
data to them and perform a gradient ascent for the output
of a particular filter which will converge on data that most
activates a convolutional neuron [[11]. Results for the selected
two filters are shown in figs.[ITb|and[I2b] The resulting vectors
look somewhat like crude PSK and FM/FSK modulations to
an expert eye. The vectors also display some constant phase
rotation that is present in our dataset due to the simulated
channel model. It is important to note that these two filter vi-
sualizations were selected and not all filters appear meaningful
to an expert.

IV. DISCUSSION

Performance of deep neural networks in the radio domain
does not seem to be limited by network depth the same way the
image, natural language processing, and acoustic domains are.
Although our experiments focused on modulation recognition
as a benchmark task, we expect other radio machine learning
tasks to be able to use similar network architectures. Further
advances in deep learning for radio tasks will likely come
from improved training methods and network architectures that
can learn to transform RF data to remove effects of wireless
channels, which neural network architectures are not designed
for. One example that is currently being explored is the use
of spatial transforms to equalize and synchronize incoming
waveforms [14].
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(a) Time and frequency magnitude representations of a filter in the
first convolutional layer of our trained CLDNN.
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(b) Random data trained to maximally activate the filter, which winds
up looking like BPSK.

These experiments also focused on a dataset that is nomi-
nally bandwidth-normalized which is a poor assumption for
signals captured from real radio transmissions. Future net-
works used in real-world applications will need to learn to
either resample signals to be bandwidth normalized, or learn
features for many bandwidths. Networks that can resample,
synchronize, and remove non-linear channel distortions are
all exciting future work for the field. We believe that as
radio environments become increasingly complex, combining
varying temporal behaviors of modulations, multi-modulation
protocols and combining many radio emitters interoperating
within a single band, many of these notions of hierarchy
within deep networks will become increasingly important in
allowing our networks to scale to cope with the complexity
effectively as has been similarly shown in the vision domain
within complex multi-object scenes.
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