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Abstract—Small-cell deployment in licensed and unlicensed
spectrum is considered to be one of the key approaches to cope
with the ongoing wireless data demand explosion. Compared to
traditional cellular base stations with large transmission power,
small-cells typically have relatively low transmission power, which
makes them attractive for some spectrum bands that have strict
power regulations, for example, the 3.5GHz band [1]. In this
paper we consider a heterogeneous wireless network consisting
of one or more service providers (SPs). Each SP operates in both
macro-cells and small-cells, and provides service to two types of
users: mobile and fixed. Mobile users can only associate with
macro-cells whereas fixed users can connect to either macro- or
small-cells. The SP charges a price per unit rate for each type
of service. Each SP is given a fixed amount of bandwidth and
splits it between macro- and small-cells. Motivated by bandwidth
regulations, such as those for the 3.5Gz band, we assume a
minimum amount of bandwidth has to be set aside for small-
cells. We study the optimal pricing and bandwidth allocation
strategies in both monopoly and competitive scenarios. In the
monopoly scenario the strategy is unique. In the competitive
scenario there exists a unique Nash equilibrium, which depends
on the regulatory constraints. We also analyze the social welfare
achieved, and compare it to that without the small-cell bandwidth
constraints. Finally, we discuss implications of our results on the
effectiveness of the minimum bandwidth constraint on influencing
small-cell deployments.

I. INTRODUCTION

Current cellular networks are expected to evolve towards
heterogeneous networks (HetNets) to cope with the explo-
sive demand for wireless data [2], [3]. This requires service
providers (SPs) to deploy small-cells in addition to traditional
macro-cells. While typical macro-cells, such as cellular base
stations, typically have large transmission power and therefore
are capable of covering users within a large region, small-cells
have much lower transmission power and are used to provide
service to a local area. This unique characteristic of small-cells
enables them to be an attractive choice in some spectrum bands
that have strict power regulations. For example, in 2012, the
FCC proposed to create a new Citizens Broadband Service in
the 3550-3650 MHz band (3.5GHz Band), previously utilized
for military and satellite operations [1]. Due to the low power
constraint within this band, only small-cells can be deployed.
For SPs that want to use this band to expand their service, this
type of bandwidth regulation needs to be taken into account
in determining optimal resource allocation strategies.

This work was supported by NSF under grant AST-134338.

While the deployment of small-cells will increase overall
data capacity, it also complicates the network management and
resource allocation for SPs. This includes how to differentiate
the pricing schemes and optimally split their limited bandwidth
resources between macro- and small-cells, taking into account
the fact that users in the network are also heterogeneous
in terms of mobility patterns. Moreover, these decisions are
further complicated by regulatory restrictions on certain bands,
such as the designation of new spectrum in the 3.5GHz band
only for small-cells.

A. Contributions

Our paper analyzes the impact of regulatory requirements
that certain bands be used only for small-cells on competitive
service providers that allocate bandwidth between macro- and
small-cell networks. We also analyze the associated social
welfare. At present new spectrum is typically apportioned
based on an auction, and another goal is to provide insight
into the social welfare achieved via winner-take-all auctions.
Given the policy implications of such an analysis, we briefly
discuss these results at a high-level; detailed results are in
Section V.

The scenario that we consider in the paper is the following.
The spectrum regulator needs to allocate B units of newly
available bandwidth to two competitive SPs. Each SP has an
initial endowment of licensed bandwidth Bo1 and Bo2 , and gets
a proportion of the new bandwidth, denoted as Bn1 and Bn2 .
The regulator determines the rules for this assignment using an
appropriate auction procedure; e.g., an allocation of Bn1 = B
and Bn2 = 0 corresponds to the outcome of a winner-take-all
auction that SP 1 wins.The initial bandwidth can be allocated
by each SP to either macro-cells or small-cells. In contrast, the
new bandwidth can only be used for small-cells, as enforced
by the regulatory constraint.

In Figure 1 we present a typical result that we obtain
for different partitions of the new bandwidths amongst the
two SPs. The blue line represents the social welfare achieved
when the SPs cooperate and the new bandwidth comes with
no restrictions; the red line represents the social welfare
achieved when the SPs cooperate and the new bandwidth is
restricted to small cell use; and the green curve represents the
social welfare achieved when the SPs compete with the new
bandwidth restricted only to small cell use. From the results of
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our previous work [13], it is easily verified that blue line is also
the social welfare achieved when the SPs compete and there
is no restriction on the usage of the new bandwidth. It is clear
from Figure 1 that the introduction of restrictions on the usage
of new bandwidth results in a reduction in social welfare, and
additionally, only specific partitions of the new bandwidth will
lead to this reduced social welfare value being achieved with
competing SPs. It should also be noted that the assignment that
results from a winner-take-all auction yields much lower social
welfare; these correspond to the two endpoints in the figure.
Numerical investigations also show that the SP with the larger
amount of initial bandwidth endowment obtains the highest
marginal revenue increase from any new bandwidth with the
other SP losing revenue when this occurs. The larger SP would
thus, bid higher to reduce the influence of the smaller SP.

Thus one of the main contributions of our paper is to
highlight the possibility of such negative outcomes with the
specific designation chosen for small cells, and also to point
out the necessity of carrying out such analysis before deciding
on other regulatory constraints for newly available spectrum
bands.
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Fig. 1. Social welfare versus Bn
1 with large B. Here SW∗

wo is the optimal
social welfare without regulatory constraints, SW∗

w is the optimal social
welfare with regulatory constraints, and SWNE

w is the equilibrium social
welfare with regulatory constraints.

We now summarize our other contributions in this paper:
1. Incorporating Bandwidth Regulations into the HetNet

Model: Prior related work that considers bandwidth allocation
assumes SPs are free to split spectrum between macro- and
small-cells in any way. Here, we add additional small-cell
bandwidth constraints that impose a minimum amount of
small-cell bandwidth to the SPs. This is primarily motivated
by the 3.5GHz Band released by the FCC that can only be
used to deploy small-cells. The introduction of such bandwidth
constraints has a direct influence on the optimal pricing and
bandwidth allocation strategies of SPs.

2. Characterizing the impact of the regulatory constraints
for SPs in both monopoly and competitive scenarios: We
analyze scenarios with both a monopoly SP and competitive

SPs. We show that in the monopoly scenario the SP simply
increases its small-cell bandwidth to the required minimum
amount if its original small-cell bandwidth is less than the
constraint. This applies to both social welfare and revenue-
maximization. With two competitive SPs, there always exists
a unique Nash equilibrium that depends on the regulatory
constraints. We illustrate this by considering three cases
corresponding to whether the original equilibrium allocation
satisfies the two constraints. We characterize the equilibrium
for each case.

3. Social Welfare Analysis: We also quantify the influence
of the regulatory constraints on the social welfare. We con-
clude that if the equilibrium without constraints violates the
constraints, then social welfare loss is inevitable. However,
the social welfare loss is always bounded, and the worst
case happens when the spectrum regulator requires the SPs
to allocate all bandwidth only to small-cells. In this extreme
case there are no macro-cells, and consequently none of the
mobile users receives wireless service.

B. Related work

Pricing and bandwidth allocation problems in HetNets have
attracted considerable attention. In [4]–[6], small-cell service
is seen as an enhancement to macro-cell service. In contrast,
small-cell and macro-cell service are considered to be separate
services in [7]–[14], [17], the same as our model in this paper.
Only optimal pricing is studied in [4], [6], [11], [12], while [5],
[7]–[10], [13], [14], [17] consider joint pricing and bandwidth
allocation, as in this paper. Additionally, except for [11]–
[14], [17] that include the competitive scenario with multiple
SPs, all the other work assumes only one SP. In this paper,
we investigate both monopoly and competitive scenarios, and
adopt a model similar to that in our previous work [10], [13]
(which did not consider bandwidth regulations).

The rest of the paper is organized as follows. We present
the system model in Section II. We consider monopoly and
competitive scenarios in Section III and Section IV, respec-
tively. Social welfare analysis is in Section V. We conclude
in Section VI. All proofs of the main results can be found in
the appendices.

II. SYSTEM MODEL

We adopt the mathematical model in our previous work [13]
for the analysis. We now describe the different aspects of it
while pointing out the additional elements considered here.

A. SPs

We consider a HetNet with N SPs providing separate
macro- and small-cell service to all users. Denote the set
of SPs as N . Each SP is assumed to operate a two-tier
cellular network consisting of macro- and small-cells that are
uniformly deployed over a given area. We further assume
all SPs have the same density of infrastructure deployment.
We normalize the density of macro-cells to one. The density
of small-cells is denoted as NS . In our setting, macro-cells
have high transmission power, and therefore can provide large



coverage range. In contrast, small-cells have low transmission
power, and consequently local coverage range.

Each SP i has a total amount of bandwidth Bi exclusively
licensed.1 Since we assume all macro- and small-cells use
separate bands, each SP i needs to decide how to split its
bandwidth into Bi,M , bandwidth allocated to macro-cells, and
Bi,S , bandwidth allocated to small-cells. When determining
this partition, every SP is required to conform to (possible)
bandwidth regulations enforced by the spectrum regulator.
Specifically, SP i is requested to guarantee a minimum amount
of bandwidth allocated to small-cells, and this lower bound is
denoted as B0

i,S .
For a fixed bandwidth allocation, the total achievable data

rate provided by the macro-cells of SP i is Ci,M = Bi,MR0,
where R0 is the (average) spectral efficiency of the macro-
cells. The total available rate in small-cells of SP i is given
by Ci,S = λSBi,SR0, where λS > 1 reflects the increase in
spectral efficiency due to smaller cell size, and possibly greater
deployment density. Each SP i provides separate macro- and
small-cell services and charges the users a price per unit rate
for associating with its macro-cells or small-cells, namely,
pi,M and pi,S .

B. Users

We assume the users in the networks are also heterogeneous
and categorize them into two types based on their mobility
patterns. Mobile users can only be served by macro-cells. In
contrast, fixed users are relatively stationary, and can connect
to either macro- or small-cells (but not both). Denote the
densities of mobile users and fixed users as Nm and Nf ,
respectively. Note that the heterogeneity of the users can also
arise from an equivalent model that assumes (Nm + Nf ) as
the total density of users, who are mobile with probability
Nm/(Nm +Nf ) and stationary with probability Nf/(Nm +
Nf ). After user association, let Ki,M and Ki,S denote the
mass of users connected to the macro- and small-cells of SP
i, respectively. (Note that Ki,S consists of fixed users only,
whereas Ki,M can consist of both mobile and fixed users.)

Macro-cells Small-cells

Pricing Decision :

Bandwidth Allocation :

Service Competition

SP 1 SP 2

Mobile 
Users

Fixed 
Users

Fig. 2. System Model.

1For the monopoly SP scenario, we will ignore the subscript.

C. User and SP Optimization

Figure 2 illustrates the network and market model. We
now introduce the optimization problems corresponding to
both users and SPs. We assume each user is endowed with a
utility function, u(r), which only depends on the service rate
it gets. For simplicity of analysis, in this paper we assume
that all users have the same α-fair utility functions [15] with
α ∈ (0, 1):

u(r) =
r1−α

1− α
, α ∈ (0, 1). (1)

This restriction enables us to explicitly calculate many equilib-
rium quantities, which appears to be difficult for more general
classes of utility. Furthermore, this class is widely used in both
networking and economics, where it is a subset of the class
of iso-elastic utility functions.2

Each user chooses the service by maximizing its net payoff
W , defined as its utility less the service cost. For a service
with price p, this is equivalent to:

W = max
r≥0

u(r)− pr. (2)

For α-fair utility functions, (2) has the unique solution:

r∗ = D(p) = (u′)−1(p) = (1/p)1/α, (3)

where D(p) here can be seen as the user’s rate demand
function. The maximum net payoff for a user is thus:

W ∗(p) = u(D(p))− pD(p) =
α

1− α
p1−

1
α . (4)

Recall that fixed users can choose between any macro- or
small-cell service offered by any SP, while mobile users can
only choose the macro-cell service provided by a SP. However,
here, we assume mobile users have priority connecting to
macro-cells, which means macro-cells will only admit fixed
users after the service requests of all mobile users have been
addressed.

For the association rules, we adopt the same process de-
scribed in [13]. That is, users always choose the service with
lowest price and fill the corresponding capacity. If multiple ser-
vices have the same price, then the users are allocated across
them in proportion to the capacities. Once a particular service
capacity is exhausted, then the leftover demand continues to
fill the remaining service in the same fashion.

Each SP determines the bandwidth split and service prices
to maximize its revenue, which is the aggregate amount paid
by all users associating with their macro- and small-cells.
Meanwhile they also need to conform to the constraints on
small-cell bandwidth allocation. Specifically, SP i solves the

2In general α-fair utilities require that α ≥ 0 to ensure concavity; requiring
α > 0 ensures strict concavity but allows us to approach the linear case as
α→ 0. The restriction of α < 1 ensures that utility is non-negative so that a
user can always “opt out” and receive zero utility. Note also that as α→ 1,
we approach the log(·) (proportional fair) utility function.



following optimization problem:

maximize Si = pi,MKi,MD(pi,M ) + pi,SKi,SD(pi,S),
(5a)

subject to Bi,M +Bi,S ≤ Bi, Bi,M ≥ 0, Bi,S ≥ B0
i,S ,

(5b)
0 < pi,M , pi,S <∞. (5c)

Alternatively, a social planner, such as the FCC, may seek to
allocate bandwidth and set prices to maximize social welfare,
which is the sum utility of all users, subject to the same
constraints (5b) and (5c). This is given by:

maximize SW =

N∑
i=1

[Ki,Mu(D(pi,M )) +Ki,Su(D(pi,S))].

(6)

D. Sequential Game and Backward Analysis

We model the bandwidth and price adjustments of SPs in
the network as a two-stage process:

1) Each SP i first determines its bandwidth allocation
Bi,M , Bi,S between macro-cells and small-cells. Denote
the aggregate bandwidth allocation profile as B.

2) Given B (assumed known to all SPs), the SPs announce
prices for both macro-cells and small-cells. The users
then associate with SPs according to the previous user
association rule.

We then do backward induction. That is, we first derive the
price equilibrium under a fixed bandwidth allocation. We then
characterize the bandwidth allocation equilibrium based on the
price equilibrium obtained.

III. MONOPOLY SCENARIO WITH A SINGLE SP

We first study the bandwidth allocation when a single SP
is operating in the network. This is similar to the analysis in
our previous work [10], except here we have an additional
regulatory constraint that imposes a minimum bandwidth
allocation to small-cells. This added constraint will change
the optimal bandwidth allocation strategy for the monopoly
SP. In [10] it is concluded that for the set of α-fair utility
functions we use in this paper, the revenue-maximizing and
social welfare-maximizing bandwidth allocation turn out to
be the same. The following theorem states that the optimal
bandwidth allocations under both objectives are still the same,
but adding a large value for the bandwidth set aside for small-
cells changes the optimal bandwidth allocation.

Theorem 1 (Optimal Monopoly Bandwidth Allocation):
For a monopoly SP, the optimal revenue-maximizing and
social welfare-maximizing bandwidth allocation strategies are
the same and can be determined by the following cases:

1. If B0
S ≤

Nfλ
1/α−1
S B

Nfλ
1/α−1
S +Nm

, the optimal bandwidth allocation
remains the same as that without the regulatory constraint. In

this case it is given by:

BSW
S = Brev

S =
Nfλ

1/α−1
S B

Nfλ
1/α−1
S +Nm

, (7a)

BSW
M = Brev

M =
NmB

Nfλ
1/α−1
S +Nm

. (7b)

2. If B0
S >

Nfλ
1/α−1
S B

Nfλ
1/α−1
S +Nm

, the optimal bandwidth allocation
is changed to:

BSW
S = Brev

S = B0
S , BSW

M = Brev
M = B −B0

S . (8)

Consequently there will be both a welfare and revenue loss if
this case applies.

In both cases the optimal macro- and small-service prices
are market-clearing prices, i.e., the prices that equalize the
total rate demand and the total rate supply in both cells.

Theorem 1 states that if the original optimal bandwidth
allocation without the bandwidth regulations already satisfies
the imposed constraint, then the SP just keeps the same
bandwidth allocation. If the original bandwidth allocation
violates the regulatory constraint, then the SP increases the
small-cell bandwidth to the required level. This is because
the added regulatory constraint does not change the concavity
of the revenue or social welfare function with respect to the
small-cell bandwidth, and further increasing the bandwidth
allocation to small-cells will only lead to more revenue or
social welfare loss.

IV. COMPETITIVE SCENARIO WITH TWO SPS

In this section we turn to the competitive scenario with two
SPs, each of which maximizes its individual revenue. Applying
the results from [13], the price equilibrium given any fixed
bandwidth allocation is always the market-clearing price. We
therefore focus on the bandwidth allocation Nash equilibrium.

Considering the case without the additional regulatory con-
straint, using the results from [13], there exists a unique
Nash equilibrium and the bandwidth allocations of two SPs
at equilibrium are given by:

BNE
1,S =

Nfλ
1/α−1
S B1

Nfλ
1/α−1
S +Nm

, BNE
1,M =

NmB1

Nfλ
1/α−1
S +Nm

, (9a)

BNE
2,S =

Nfλ
1/α−1
S B2

Nfλ
1/α−1
S +Nm

, BNE
2,M =

NmB2

Nfλ
1/α−1
S +Nm

. (9b)

With the additional regulatory constraints, we have the fol-
lowing theorem characterizing the corresponding Nash equi-
librium between two SPs.

Theorem 2: With two SPs, with a constraint on minimum
small-cell bandwidth, the Nash equilibrium exists and is
unique. Moreover, the total bandwidth allocated to small-cells
by the two SPs is no less than that without the regulatory
constraints.

Theorem 2 states that the existence and uniqueness of the
Nash equilibrium is preserved after adding the regulatory con-
straints. This can be proved using similar methods as provided



in our previous work [13], with some modifications. The last
part of the theorem may be more subtle than it appears. One
may try to argue that if any of the constraints is violated, that
SP then needs to increase its bandwidth allocation to small-
cells. It would then hold that the total bandwidth allocated
to small-cells surely increases. However, the logic does not
carry through if only one constraint is violated at the Nash
equilibrium omitting the constraint. In that case, the SP with
violated constraint must increase the bandwidth allocation to
small-cells. However, the other SP, whose equilibrium small-
cell bandwidth allocation without regulations satisfies the
constraint, may potentially decrease its bandwidth in small-
cells in response to the increase in bandwidth allocation of
its competitor. In that case, determining the change in total
bandwidth requires a more detailed analysis. Nonetheless,
Theorem 2 indicates even in that case the total bandwidth
in small-cells would not decrease. We will present a specific
example later.

Depending on whether the regulatory constraints are vio-
lated or not at the Nash equilibrium without the constraints,
there are three cases we need to cover independently. We will
see that, in each case, the Nash equilibrium behaves differently.

Case A: Both constraints are satisfied. The new Nash
equilibrium is the same as the Nash equilibrium without
regulations.

Case B: Both constraints are violated. The Nash equilibrium
without regulations is no longer valid. The following proposi-
tion characterizes the properties of the new Nash equilibrium.

Proposition 1: In case B, the Nash equilibrium with regu-
latory constraints is one of the following types:
Type I. Both SPs increase their small-cell bandwidth alloca-
tions to exactly the required amount, i.e, B1,S = B0

1,S , B2,S =
B0

2,S .
Type II. One SP increases its small-cell bandwidth exactly
to the required amount, while the other SP increases further
beyond the required amount, i.e, B1,S = B0

1,S , B2,S >
B0

2,S or B1,S > B0
1,S , B2,S = B0

2,S .
It is conceptually easy to characterize the necessary and

sufficient conditions for the first type of Nash equilibrium to
hold since at that equilibrium the marginal revenue increase
with respect to per unit of bandwidth increase in small-cells
should be non-positive for both SPs. This can be analytically
expressed via the two corresponding inequalities:

λSR
0
S
−α −R0

M
−α −

αλ2SB
0
i,SR0

Nf
R0
S
−α−1

+

(Bi −B0
i,S)R0

Nm
R0
M
−α−1 ≤ 0, for i = 1, 2. (10)

Here, R0
S and R0

M are defined as follows:

R0
S =

λS(B
0
1,S +B0

2,S)R0

Nf
, (11a)

R0
M =

(B1 −B0
1,S +B2 −B0

2,S)R0

Nm
. (11b)

Case C: Only one constraint is violated. Without loss
of generality, we assume at the Nash equilibrium without
regulations, only SP 2’s small-cell bandwidth allocation falls
below the required threshold. In this case, the new Nash
equilibrium is characterized by the following proposition:

Proposition 2: In case C, the Nash equilibrium with regu-
latory constraints is one of the following two types:
Type I. Both SPs increase their small-cell bandwidth alloca-
tions to exactly the required amount, i.e, B1,S = B0

1,S , B2,S =
B0

2,S .
Type II. Only SP 2 allocates exactly the required minimum
amount of bandwidth to small-cells, i.e, B1,S > B0

1,S , B2,S =
B0

2,S .
Note that equation (10) also applies to give conditions when

a type I equilibrium arises.
While the type I Nash equilibrium in both cases B and

C indicate both SPs allocate exactly the required minimum
amount to small-cells, they are quite different. In case B both
SPs increase their small-cell bandwidth allocations, whereas
in case C, one SP increases its small-cell bandwidth while
the other SP decreases its small-cell bandwidth. Another
difference that is worth pointing out is that in case C, the
SP whose small-cell bandwidth allocation without regulations
violates the constraint always operates at exactly the required
minimum point at the new Nash equilibrium, while it will
further increase its small-cell bandwidth beyond the minimum
point in a type II equilibrium for case B.

Next we use a specific example in Figure 3 to illustrate the
different Nash equilibrium regions as a function of the small-
cell bandwidth constraints discussed in the preceding cases.
The system parameters for this case are: α = 0.5, Nm = Nf =
50, R0 = 50, λS = 2, B1 = 2, B2 = 1. In this example the
original equilibrium small-cell bandwidth allocations without
the regulatory constraints are: B1,S = 1.34, B2,S = 0.67. Re-
gion A corresponds to the Nash equilibrium in case A, which is
also the equilibrium without the regulatory constraints. Region
B.I and Region B.II correspond to the type-I and type-II Nash
equilibrium in case B where both constraints are violated at
the original equilibrium, and the same rule applies to Region
C.I and C.II.

V. SOCIAL WELFARE

In this section we focus on social welfare analysis. In our
previous work [10] [13], we showed that for the set of α-
fair utility functions we use here, the bandwidth allocation
at equilibrium is always socially optimal in both monopoly
and competitive scenarios. With the additional regulatory
constraints on the minimum amount of small-cell bandwidth
allocations, this is not necessarily true. Obviously, if the
equilibrium without regulations already satisfies the regulatory
constraints, then the preceding result still holds, i.e., in case
A in the previous section. Otherwise, a social welfare loss is
incurred compared to the case without regulatory constraints.
Denote SW∗wo,SWNE

w as the equilibrium social welfare without
and with regulatory constraints, respectively. The following
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theorem states that the loss in social welfare is lower bounded,
and the worst point occurs at the scenario where the regulatory
constraints require both SPs to allocate all bandwidth only to
small-cells.

Theorem 3 (Social Welfare): Compared to the case with-
out the regulatory constraints, social welfare loss is incurred
when the following inequality is true:

Nfλ
1/α−1
S

Nfλ
1/α−1
S +Nm

∑
i∈N

Bi <
∑
i∈N

B0
i,S . (12)

We have:
SWNE

w

SW∗wo
≥
( Nfλ

1/α−1
S

Nfλ
1/α−1
S +Nm

)α
, (13)

where the bound is tight exactly when B0
i,S = Bi,∀i ∈ N .

In practice, a spectrum regulator, such as the FCC, may seek
to find an optimal way to allocate newly available spectrum so
that the market equilibrium yields the largest social welfare.
We next use our results to analyze the case where the spectrum
regulator needs to allocate a total available new bandwidth B
to two competitive SPs. SP 1 and 2 each have initial licensed
bandwidth Bo1 and Bo2 , and get a proportion of the new
bandwidth, denoted as Bn1 and Bn2 . The initial bandwidth is
free to use for either macro-cells or small-cells. In contrast, the
new bandwidth can only be used for small-cells. As mentioned
before this is motivated by the 3.5GHz band, where FCC
regulates the power constraint to be very small, and therefore
it can only be used for small-cell deployment [1].

The spectrum regulator needs to determine the optimal split
of the new bandwidth such that the social welfare under market
equilibrium is maximized. We consider the following three
scenarios for any possible bandwidth partition (Bn1 , B

n
2 ):

1) The optimal social welfare without regulatory constraints,
SW∗wo. Note, from [13], this is the same as the equilibrium
social welfare without regulatory constraints. This will be used
as a benchmark.

2) The optimal social welfare with the regulatory con-
straints, which we denote as SW∗w.

3) The equilibrium social welfare with regulatory con-
straints, SWNE

w/ .
The next theorem compares the three scenarios depending

on the total amount of newly available bandwidth B.
Theorem 4: Depending on the amount of new bandwidth

B, there exists a bandwidth threshold T

T =
(Bo1 +Bo2)Nfλ

1/α−1
S

Nm
, (14)

and we have the following conclusions:
1. If B > T , then SWNE

w ≤ SW∗w < SW∗wo. The first inequality
is binding, i.e, SWNE

w = SW∗w < SW∗wo, if and only if equation
(10) holds.
2. If B ≤ (Bo1+B

o
2 )Nfλ

1/α−1
S

Nm
, then SWNE

w ≤ SW∗w = SW∗wo.
The first inequality is binding, i.e., SWNE

w = SW∗w = SW∗wo, if
and only if the following condition is met:

Bn1 ∈
[
B −

Bo2Nfλ
1/α−1
S

Nm
,
Bo1Nfλ

1/α−1
S

Nm

]
, Bn2 = B −Bn1 .

(15)
Theorem 4 states that if the total amount of newly available

bandwidth is too large, no matter if the two competing SPs
maximize revenue or social welfare, we always have some
social welfare loss compared to the case without regulatory
constraints. This can be explained as follows. Using the set
of α-fair utility functions, without regulatory constraints the
socially optimal bandwidth allocation strategy is to allocate
bandwidth to macro- and small-cells based on a fixed pro-
portion. If the total amount of newly available bandwidth is
not large, simply following the original allocation satisfies
the regulation requirement and is therefore socially optimal.
However, when the amount of new bandwidth becomes large,
since the new bandwidth is required to be allocated to small-
cells only, the original optimal proportion would no longer be
valid given the small-cell bandwidth constraints. As a result
of this, social welfare loss relative to the original allocation
scheme becomes inevitable. Further, note that the bandwidth
threshold at which this loss begins occurring is proportional
to Nf

Nm
, so that when there are more fixed users willing to use

small-cells, the threshold increases. It is also increasing in λS ,
the gain in spectral efficiency of small-cells and in the initial
allotment of licensed bandwidth.

Theorem 4 also indicates that when the amount of newly
available bandwidth is below the threshold, there exists a
bandwidth split that achieves the optimal benchmark social
welfare. This result suggests that if a spectrum controller is
planning to enforce bandwidth regulations on newly released
bands, it should consider the possible impacts on the market
equilibrium without regulations carefully. In particular, if the
amount of newly available bandwidth is too large, imposing
such regulations might lead to social welfare loss compared to
the scenario where the regulations were not imposed. On the
other hand, if the amount of new spectrum is small compared
to the existing bands already licensed to SPs in the market,



the influence on the market equilibrium from the introduction
of bandwidth regulations on the new bands is minor and
controllable, and therefore will not incur any loss in the social
welfare.

Figure 1 and 4 illustrate Theorem 4. The system parameters
we use in both cases are: α = 0.5, Nm = Nf = 50, R0 =
50, λS = 4, Bo1 = 1, Bo2 = 1.2. The Figures differ in the
amount of new bandwidth. In Figure 1, B = 10, while in
Figure 4, B = 6. We can see that when the amount of newly
available bandwidth is not large, there is a bandwidth split
that achieves the optimal benchmark social welfare. However,
when the amount of new bandwidth is large relative to the
amount of original bandwidth of the SPs, there exists no
possible bandwidth split schemes that achieve the optimal
social welfare without the constraints.
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Fig. 4. Social welfare versus Bn
1 with small B.

VI. CONCLUSIONS

In this paper we considered the impact of bandwidth
regulations on resource allocation in a HetNet. We showed
that by imposing a required minimum bandwidth allocation
to small-cells, the optimal bandwidth allocation strategies of
SPs can change dramatically. While this change is relatively
straightforward in the monopoly scenario, it turns out to be
much more complicated in the competitive scenario with two
SPs. Specifically, the existence and uniqueness of Nash equi-
libria are still preserved after adding the regulatory constraints.
However, the equilibria can exhibit very different structures
and characteristics as the constraints vary. We also showed that
the introduction of such regulations may shift the equilibrium
away from an efficient allocation, thus incurring some social
welfare loss. Our results suggest that adding such regulatory
constraints complicates the resource allocation schemes in
the HetNets. While these constraints may be introduced by
the spectrum regulator to address other concerns, they can
ultimately reduce the social welfare achieved. For future direc-
tions, we are planning to study other policy considerations that
we did not take into account in this paper, like the implications

for innovation, spectrum caps, and the management of harmful
interference.
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APPENDIX A
PROOF OF THEOREM 1

The proof of Theorem 1 is straightforward and we can apply
the results in [10] directly. In particular, if the original optimal
bandwidth allocation still holds with the added regulation con-
straints, then we are done. Otherwise we have to increase the
small-cell bandwidth allocation. Both the revenue and social
welfare are concave functions in the small-cell bandwidth
allocation, and at the original equilibrium point the marginal
revenue and social welfare increase with respect to per unit
increase in bandwidth are equal for both macro- and small-
cells. Hence, when the small-cell bandwidth increases, we
enter the region where the marginal revenue and social welfare
increase with respect to per unit increase in bandwidth for
small-cells is smaller than that of macro-cells. As a result, the
best option is to operate at the boundary point, i.e., allocating
exactly the required minimum amount of bandwidth to small-
cells.

APPENDIX B
PROOF OF THEOREM 2

As this is a concave game, to prove the existence and
uniqueness of the Nash equilibrium, we can use the uniqueness
theorem (Theorem 6) in Rosen’s paper [16], which gives
sufficient condition in terms of a certain matrix being negative
definite. In our previous work [13] it was proved that the
required matrix is negative definite for the corresponding game
without bandwidth restrictions. Here the only difference is
that we have additional linear constraints on the bandwidth
allocations, which does not have any effect on this result.
Therefore, the same arguments also apply here.

As for the second part of the theorem, denote RS and R′S
as the average service rate in small-cells with and without
the regulatory constraints, respectively. Suppose at the Nash
equilibrium with constraints, the sum bandwidth allocation to
small-cells is less than that without the regulatory constraints,
then we have:

R′S < RS . (16)

Denote Di =
∂Si
∂Bi,S

, it follows that:

D1 +D2 =λS

[
2u′(RS) +RSu

′′(RS)
]
−[

2u′(RM ) +RMu
′′(RM )

]
. (17)

Since 2u′(r) + ru′′(r) decreases in r, and we know that
at the Nash equilibrium without constraints, D1 = D2 = 0,
we can conclude that D1 + D2 > 0 at the equilibrium with
constraints. As a result, at least one of D1 or D2 must
be greater than 0 at equilibrium. Without loss of generality,
suppose D2 > 0 at the equilibrium with constraints.

Given D2 > 0 , it must be that B′2,S = B2, and D1 ≤ 0.
This is because if D1 > 0 also holds, B′1,S = B1 and it
contradicts with the fact that R′S < RS .

Then at the Nash equilibrium without constraints, we have:

D1 =λSu
′(RS) + λ2S

B1,SR0

Nf
u′′(RS)

− u′(RM )− B1,MR0

Nm
u′′(RM ) (18)

=λS

[
u′(RS) +RSu

′′(RS)
]
−
[
u′(RM ) +RMu

′′(RM )
]

− λ2S
B2,SR0

Nf
u′′(RS) +

B2,MR0

Nm
u′′(RM ) = 0. (19)

At the equilibrium with constraints, similarly we have:

D1 =λS

[
u′(R′S) +R′Su

′′(R′S)
]
−
[
u′(R′M ) +R′Mu

′′(R′M )
]

− λ2S
B2R0

Nf
u′′(R′S) ≤ 0. (20)

However, since u′(r) + ru′′(r) decreases in r, u′′(r) < 0
and increases in r, and the fact that R′S < RS , R

′
M > RM ,

the inequality sign in (20) should be reversed. Therefore we
have a contradiction.

APPENDIX C
PROOF OF THEOREM 3

Applying the same arguments we used in proving Theorem
1, we know that since increasing the small-cell bandwidth
allocation beyond the original equilibrium point only decreases
the social welfare, then the worst case occurs at the point that
all bandwidth is required to be allocated to small-cells.

APPENDIX D
PROOF OF THEOREM 4

For scenario 2) and 3), as long as the sum of the small-
cell bandwidth allocations of the two SPs at the equilibrium
without the constraints is larger than the sum of the regulation
constraints, then they are the same. This requires:

Nfλ
1/α−1
S (Bo1 +Bn1 +Bo2 +Bn2 )

Nfλ
1/α−1
S +Nm

≥ Bn1 +Bn2 , (21)

which yields the following condition:

B ≤
(Bo1 +Bo2)Nfλ

1/α−1
S

Nm
. (22)

Otherwise, if the preceding condition is not satisfied, the social
welfare corresponding to the second scenario is also less than
that corresponding to the first scenario, i.e, SW∗w < SW∗wo.

On the other hand, the only possible way for scenario 3) to
achieve the optimal social welfare corresponding to scenario
1) is to ensure the Nash equilibrium is exactly the same as the
one without the regulation constraints. This requires:

Nfλ
1/α−1
S (Bo1 +Bn1 )

Nfλ
1/α−1
S +Nm

≥ Bn1 ,
Nfλ

1/α−1
S (Bo2 +Bn2 )

Nfλ
1/α−1
S +Nm

≥ Bn2 ,

(23)



which can be simplified to:

B ≤
(Bo1 +Bo2)Nfλ

1/α−1
S

Nm
, (24a)

Bn1 ∈
[
B −

Bo2Nfλ
1/α−1
S

Nm
,
Bo1Nfλ

1/α−1
S

Nm

]
. (24b)

When SW∗w < SW∗wo, it means the required minimum sum
bandwidth allocation to small-cells is larger than the sum
bandwidth in small-cells at the equilibrium without constraints.
Since we know that at the original equilibrium the social
welfare is maximized and the social welfare is a concave
function with respect to the sum bandwidth in small-cells,
in this case the social welfare maximizing point with the
constraints is therefore exactly the required minimum small-
cell bandwidth point, i.e, when B1,S + B2,S = B0

1,S + B0
2,S .

The only possibility for scenario 3) to achieve this is to ensure
B1,S = B0

1,S , B2,S = B0
2,S at the Nash equilibrium with

constraints. As a result, equation (10) becomes exactly the
condition for SWNE

w = SW∗w.
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