Consensus-Before-Talk: Distributed Dynamic Spectrum Access
via Distributed Spectrum Ledger Technology

Hyowoon Seo, TJihong Park, TMehdi Bennis, and Wan Choi

Abstract—This paper proposes Consensus-Before-Talk (CBT),
a spectrum etiquette architecture leveraged by distributed ledger
technology (DLT). In CBT, secondary users’ spectrum access
requests reach a consensus in a distributed way, thereby enabling
collision-free distributed dynamic spectrum access. To achieve
this consensus, the secondary users need to pay for the extra
request exchanging delays. Incorporating the consensus delay, the
end-to-end latency under CBT is investigated. Both the latency
analysis and numerical evaluation validate that the proposed
CBT achieves the lower end-to-end latency particularly under
severe secondary user traffic, compared to the Listen-Before-Talk
(LBT) benchmark scheme.

Index Terms—Spectrum etiquette, distributed ledger technol-
ogy (DLT), distributed consensus, dynamic spectrum access.

I. INTRODUCTION

Unlicensed spectrum bands are envisaged to be at the cusp
of the collapse, due to the unprecedented overuse by a huge
number of WiFi devices [1] as well as by the contribution
from cellular devices such as licensed assisted access (LAA)
[2], [3]. Their number of access requests may become too large
to be supported by traditional unlicensed spectrum etiquettes
that include Carrier Sensing Multiple Access with Collision
Avoidance (CSMA/CA) [4], [5] and Listen-Before-Talk (LBT)
[6]-[8] for standalone WiFi and WiFi-cellular coexistence
scenarios, respectively.

Furthermore, even with the unlicensed spectrum, a cellular-
grade latency guarantee is expected to be demanded, in order
for WiFi connections to provide seamless WiFi-to-cellular
experiences. A compelling example could be an ultra-reliable
and low-latency communication (URLLC) scenario where a
target latency constraint should be ensured anytime anywhere
[9]-[11], regardless of the connection types. This void is
difficult to be filled by the traditional spectrum etiquettes that
commonly incur random back-off delays due to collisions [4],
[5], as illustrated in Fig. 1-a.

In order to resolve the aforementioned spectrum etiquette
problems, by leveraging distributed ledger technology (DLT)
we propose a novel unlicensed spectrum etiquette, Consensus-
Before-Talk (CBT). In CBT, the unlicensed users’ spectrum
requests are first come to a consensus in a distributed way,
yielding a distributed spectrum ledger (DSL). The DSL, stored
at each user, contains a consensual sequence of the spectrum
requests. This sequence is ordered by a pre-defined consensus

H. Seo and W. Choi are with the School of Electrical Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea (e-mail: hyowoonseo @kaist.ac.kr, wchoi @kaist.edu).

J. Park and TM. Bennis are with the Centre for Wireless Communica-
tions, University of Oulu, Oulu 90014, Finland (e-mail: jihong.park@oulu.fi,
mehdi.bennis @oulu.fi).

frequency
[sres 5 15

spectrum Iedger)

@)@3 (A

(b) Proposed CBT

secondary users pnmary user

(a) LBT

Fig. 1: An illustration of (a) listen-before-talk (LBT) and (b) the
proposed consensus-before-talk (CBT) spectrum etiquettes.

policy, thereby enabling the distributed dynamic spectrum
access of the users without any collision, as shown in Fig. 1-b.

To enjoy this benefit, CBT needs to pay for the extra consen-
sus latency. For the purpose of minimizing this latency without
suffering from severe interference, inspired by the Hashgraph
algorithm [12], the users in CBT exchange their spectrum
access requests using a gossip protocol, and achieve their
consensus by the local computation at each user. In this paper,
the resulting end-to-end CBT latency is investigated, and its
effectiveness is highlighted by comparing it with a benchmark
LBT scheme via analysis and numerical evaluations, followed
by the discussion for possible extensions to the proposed CBT.

II. RELATED WORKS

Towards enabling distributed DSA, unlicensed spectrum
etiquettes have been suggested, which rely on the transmitter-
side information [4]-[8] or on the receiver-side information
[13], [14]. These approaches are commonly rooted in random
carrier-sensing techniques, and thus are insufficient for sup-
porting a large number of users with a strict latency guarantee
due to collisions. With the aid of central management, as done
in Citizens Broadband Radio Service (CBRS) [15]-[17] and
Licensed Shared Access (LSA) [18], [19], one may partly
control the spectrum access requests, thereby ameliorating the
collision problem. Nevertheless, due to the central controller’s
complexity, it is still difficult to cope with dynamic user traffic,
motivating this research.

Towards implementing DLT, distributed consensus algo-
rithms have been studied under both large-scale [20], [21] and
small-scale systems [22]-[24], with the scalability in terms
of the number of participating users. In general, large-scale
consensus algorithms suffer from too long consensus latency,
e.g., avg. 10 min. in Blockchain [20]. On the contrary, small-
scale consensus algorithms, such as Byzantine fault tolerant
tolerance (BFT) schemes, guarantee a fast consensus latency.

Nonetheless, they cannot further increase the participating
users, e.g., up to a few dozen participants [22]-[24], because of
the transaction exchange delays before starting the consensus
process.

To resolve this latency-scalability trade-off, directed acyclic
graph (DAG) based solutions have been propose [12], [25],
[26]. As opposed to the conventional Blockchain structure,
each transaction in a DAG based algorithm is connected
to more than one transactions so that their connections be-
come tangled. Since a DAG has a topological ordering upon
the vertices of the graph, the transaction order can readily
be retrieved, thereby preventing double-spending problems.
Furthermore, from the perspective of the security guarantee,
Blockchain has a single-chained structure, and tries to guar-
antee its security level by inserting dummy computation, i.e.
Proof-of-Work (PoW), in-between the vertices, i.e., blocks. On
the contrary, a DAG based solution has the vertices multi-
dimensionally connected to the other vertices, and this tangled
structure automatically guarantees its security level, which can
be beneficial for saving power.

Recently, one of the DAG based solutions, the Hashgraph
algorithm [12] has been proposed, which minimizes the BFT
algorithm’s transaction exchange bottleneck via a local con-
sensus protocol, thereby allowing the algorithm to support
far more participating users. To be specific, the Hashgraph
algorithm employs a random gossip algorithm as a means
of disseminating transactions. Generally, a gossip algorithm
randomly selects the source-destination pairs, and spreads
information in an asynchronous fashion. When it comes to
its BFT application, on the one hand, it is efficient for quickly
disseminating information without suffering from severe in-
terference. On the other hand, its asynchronous dissemination
may incur stragglers, and obstructs completing the dissemina-
tion, prerequisite to BFT consensus, thus bringing about too
long BFT consensus latency. On this account, the Hashgraph
algorithm exploits an asynchronous BFT consensus protocol
that operates simultaneously with the asynchronous gossip
dissemination. Inspired by this protocol, in this paper we
design a local consensus algorithm for CBT.

III. CONSENSUS-BEFORE-TALK (CBT) ARCHITECTURE

In this section, we describe the propose CBT architecture.
For the sake of convenience, following the convention in
DSA, hereafter we consider primary and secondary users, and
focus primarily on the secondary users’ spectrum access. With
non-zero primary users, it may correspond to a WiFi-cellular
coexistence scenario; otherwise, it can be interpreted as a
stand-alone WiFi scenario.

As shown in Fig. 2, the CBT architecture comprises: a spec-
trum access transaction (SAT), a distributed spectrum ledger
(DSL), and a consensus policy module. In CBT, a secondary
user’s access request is encapsulated in SAT and exchanged
with all the other secondary users. For each received SAT,
the secondary user initiates a consensus protocol with a pre-
defined consensus policy. Once it reaches the consensus with
all the other secondary users, the SAT is verified, and is stored
in the secondary user’s local DSL. Each component of the said
consensus process is detailed in the following subsections.

Distri
ésgggturher: Header: primary access DB, SAH/SAQ controller
Ledger

(DSL) Spectrum
Access H
H 0

History < _'—:
(SAH)y L— ‘-receee

Spectrum
Access

Transaction
(SAT)

Consensus :
Policy [—F—> !
Module [i

Spectrum Access Queue (SAQ)

Fig. 2: An illustration of a Distributed Spectrum Ledger (DSL)
that contains spectrum access queue (SAQ) and spectrum access
history (SAH).

A. Spectrum Access Transaction (SAT)

Each secondary user generates a single SAT when the user
requests spectrum access. At the SAT, the user records its gen-
eration timestamp and the corresponding digital signature cre-
ated by a public-key algorithm, e.g., Rivest-Shamir-Adleman
(RSA) cryptosystem [27]. Then, the SAT is exchanged with
all the other secondary users by using a gossip protocol. For
each received SAT, the secondary user first verifies the digital
signature by the public key of the SAT generator, and then
adds the record of its verified timestamp. As a result, each
SAT contains (i) a single generated timestamp and (ii) verified
timestamps cumulatively recorded by the secondary users.
Note that any verified timestamp is larger than the generated
timestamp, due to the propagation delays.

B. Distributed Spectrum Ledger (DSL)

Each secondary user possesses a DSL. As shown in Fig. 2,
the DSL consists of spectrum access queue (SAQ), spectrum
access history (SAH), a consensus policy module, and a
header. The SAQ is a queue of the SATSs, and is managed
by the consensus policy module that enables the consensus
process and adjusts the scheduling priority of the consensus
SATs. The arrival rate of the SAQ is determined by the
secondary user traffic as well as by the gossip and consensus
delays in CBT. The service rate of the SAQ is set as the
number of maximum accessible secondary users for a unit
timespan that is hereafter given as a number p of time slots.
The maximum accessible amount is determined by the primary
user access information stored in the header. This information
is periodically updated by an external spectrum sensing entity,
as done in Citizens Broadband Radio Service (CBRS) [15]-
[17] and Licensed Shared Access (LSA) [18], [19]. The served
SATs are kept stored on the SAH that can affect the consensus
policy as detailed next.

C. Consensus Policy
The consensus algorithm of CBT is based on practical
Byzantine fault tolerance [23], thus ensuring the following
conditions:
o Termination (Liveliness) — All SATs will be eventually
known by all the secondary users;

« Validity (Correctness) — Invalid SATs cannot be validated
by the secondary users; and

o Agreement (Consistency) — Two secondary users should
not have disagreement on the validity and the time order
of SATs.

For simplicity, we henceforth assume that all the secondary
users are honest, while neglecting Byzantine users that obstruct
the consensus process. The impact of the Byzantine users on
CBT is to be elaborated in Section VI.

In CBT, the consensus objective is to enable secondary users
to follow a pre-defined scheduling rule in a distributed way. To
this end, at first each secondary user’s spectrum access request
becomes associated with its verified timestamps recorded in
its corresponding SAT. Such SATs are then exchanged and
verified by all secondary users. After the verification, the
accumulated verified timestamps reach a consensus, following
a pre-defined consensus algorithm stored in the consensus
policy module within each DSL.

Motivated by the gossip-of-gossip protocol in Hashgraph
[12], the CBT consensus algorithm is locally operated at
each secondary user. To elaborate, as exemplified in Fig. 3,
consider user 1 generated an SAT, and the SAT is propagated
through the following order: users 2—3—1—2—3. Denoting
as t;(¢) and t;(j) with j # i the generated timestamp of
user ¢ and its verified timestamp by user j, respectively,
the generated SAT’s consensus timestamp #;(j) at user j is
given as #;(j) = >z ti(k)/n, where n is the number of
secondary users. Here, the consensus timestamp calculation
at each user neglects its own verified timestamp, in order to
avoid any selfish manipulation. So long as n is sufficiently
large, the consensus timestamps for different users become
almost identical. Thus, each user can independently and locally
calculate its own consensus time, while achieving global
consensus.

The SAT containing the consensual timestamp is then stored
in the SAQ of each user, according to a pre-defined scheduling
rule. Two possible scheduling examples are described as
below.

1) First verified, first served — The spectrum access priority
is determined by the verification timestamp order. For
instance, if #1(j) < #2(j), then SAT; is placed prior to
SAT5 in the SAQ of user j.

2) Fairness guarantee — Exploiting the SAH, one can maxi-
mize the fairness by prioritizing the access requests from
the least served users. In a similar way, one may avoid
selfish users occupying excessive spectrum bands by first
counting their number of access requests in the SAH and
then adjusting their next SAQ priority.

IV. END-TO-END LATENCY ANALYSIS

Following the CBT architecture proposed in Sect. II, in this
section we derive an analytic expression of the end-to-end
latency under CBT, as well as under its benchmark LBT. The
end-to-end latency is determined as the average delay from
a secondary user’s access request generation to its successful
access, to be formally defined with a proper network model
in the following subsections.

user 3

user 2

£1(1) = t1(2):r1‘1(3) f(2) = tl(l):tl(‘s)

local consensus

Fig. 3: An example of the consensus algorithm in CBT. For the
SAT generated by user 1, it is propagated to users 2—3—1—2—3.
Afterwards, each user j independently computes its local consensus
timestamp #; ().

A. Network model

The network under study consists of a number n of sec-
ondary users that are sharing the frequency-time resource with
primary users. During a unit time span, set as u time slots,
a number n,, < n of the secondary users request their spec-
trum access. Assuming the primary user traffic information
is known from a database server as done in [15]-[19], these
secondary users can access up to a number n, of vacant
resource blocks during the unit time span.

For the sake of convenience, we consider each user access
consumes a single resource block, and focus only the case
n, < n, with a uniformly randomly selected secondary user,
referred to as a typical user. The typical user generates its
access request at time to € (ip, (¢ + 1)u] with ¢ > 0. For
CBT, the typical user’s end-to-end latency Tcpr incorporates
the consensus delay. For LBT, on the contrary, the end-to-end
latency Typr includes all the back-off delays until the first
successful access.

B. LBT Latency

The end-to-end latency under the benchmark LBT scheme is
evaluated as follows. We consider a large number of secondary
users having limited listening coverages, leading to collisions
due to their hidden node problem [4], [5] and simultaneous
spectrum access attempts. Each access collision consumes a
constant back-off delay set identically as the unit time span,
i.e., pu time slots. Assuming that each secondary user uniformly
randomly selects its access resource block out of the total n,
blocks, the typical user avoids any collision with probability
(1 —1/n,)" 1

Due to the backed-off secondary uses, at t = 74, an average
number 7, ; of secondary users attempt spectrum access. Its
sequence [i,;| is an increasing sequence that satisfies the
following relation.

My it1 = Ny + Mg (1 -(1- 1/nv)ﬁ”_l) , (1)

where the initial value equals 7, ; = n,.

According to the fixed-point theorem [28], if n, satisfies
the condition

1

TS T A= 1my)log(1 — 1ny)’
then as ¢ — oo, [7,;] converges to a certain fixed point 7,
that is the smallest root of the equation z(1 — 1/n,)*~! —
n, = 0. In this case, for some i, ;y1, the access success
probability becomes (1 — 1/n,,)"i+1~1 By supposing that
the number of access failure follows a geometric distribution
with the parameter given by the access success probability, the
typical user’s average aggregate back-off delay until the first
access success is given as

1 o
Tipr=|— 1) pt 3
LBT <(1 Ly) pt g 3)

where 11/2 comes from the average waiting time for the first
access attempt after the generation of an access request.

On the other hand, if n, does not satisfy the condition (2),
then [7, ;] diverges as ¢ — oo. It implies that the number of
collisions keep increasing over time, and eventually any sec-
ondary user access becomes unavailable. Finally, combining
this with (2) and (3), we obtain the typical user’s end-to-end
latency under LBT as:

2)

w1 if (2
TipT = {(1—1/7%)"'"1 2 1 2) 4

00 otherwise.

C. CBT Latency

Assuming the delays incurred by the local consensus time
stamp calculations addressed in Sect. II-C are negligibly small,
the consensus latency for the typical user is given by the delay
brought by the typical user’s disseminating its SAT to all the
other secondary users. For the SAT dissemination, we consider
a push gossip algorithm [29], where the SAT is transmitted
to a randomly chosen target user, regardless of whether the
target user has already received the SAT or not. During the
SAT dissemination process, we neglect their interference and
collisions in that the gossip algorithm can easily mitigate the
concurrent transmissions within a small region.

With the push gossip algorithm at time ¢ > ¢, our focus is
to derive the dissemination delay ¢ — ¢ such that the average
number n4(t) of users who received the typical user’s SAT
becomes the entire n — 1 users. To this end, following [30],
[31], ns(t) is given by a logistic difference equation:

ng(t+ 1) = ng(t) + pns(t) (1 - ”n(t)> . 5)
where ¢ denotes the number of receivers that can be concur-
rently connected to a single transmitter; e.g., ¢ = 1 implies
a one-to-one pairwise communication, while ¢ > 1 indicates
one-to-many broadcast communication. Applying the inverse
of the Euler’s approximation, (5) in discrete time domain is
recast as the following differential equation in continuous time

domain:
d ns(t) > 7 ©)
n

Gl = om0 (1-

with the initial condition ns(¢p) = 1. By solving (6), we obtain

)

- n
14 (n—1)e—¢t-to)’

ns(t)

In (7), it reads lim;_, o, n5(t) = n, thus asymptotically guar-
anteeing the termination condition in Sect. II-C. In order to
derive non-asymptotic delay, we suppose the dissemination of
an SAT becomes completed at ¢ if a fraction v = n,(t)/n < 1
of the users receive the SAT, where the target gossip success
proportion -y is set as the value close to 1, e.g., 0.999. Then,
the corresponding dissemination delay ¢ — ¢y of the typical
user’s SAT equals

t—tozllog (1—!—(77—1)'y> (8)

Note that (8) is the SAT dissemination delay. As addressed
in Sect. II-C, this does not guarantee to achieve the consensus,
which requires one additional round of the dissemination.
Incorporating this, we finally obtain the end-to-end latency
under CBT:

Tcept =

2n, 1+ (n-1)y]
o (ST)5 o

2
where the first multiplication term n,. in (9) is because there
exist n, spectrum access requesting secondary users for every
u time slots. The term p/2 comes from the average waiting
time of the SAQ.

V. SIMULATION RESULTS

In this section we numerically evaluate the effectiveness of
the proposed CBT. A random push gossip protocol is used for
CBT in all simulations and we assume that all communications
during gossip algorithm is pairwise, i.e., ¢ = 1. All simulation
results are the averaged output of 10,000 iterations.

Fig. 4 describes the time required to disseminate a SAT to
the secondary users, i.e., gossip delay, versus the fraction of
secondary users who received SAT. The number of secondary
users is fixed n = 1,000 and only a single SAT is generated
in the network, If the fraction v = 0.99, it means that 990
secondary users received the SAT. First of all, the figure shows
that the gossip algorithm analyzed in IV-C is precise in some
degree, when v < 0.996. On the other hand, if v > 0.996,
the gap between the simulation and analysis increase and the
analysis of gossip delay tends to diverge eventually. From
the simulation, the gossip delay of a complete gossiping, i.e.,
~v =1 is around 14.5. The delay is almost same as the gossip
delay obtained by analysis when v = 0.999. Therefore, we fix
v = 0.999, i.e., the 99.9% of the secondary users successfully
exchange all the SATs during p time slots, in the rest of the
experiments.

Fig. 5 shows the latency performance comparison between
LBT and the proposed CBT protocol, with respect to the
number of secondary access requests in g time slots, that is n,..
The latency is normalized by p = 1,000, 5,000 and 10, 000,
and the number of secondary users and the number of vacant
resource blocks in every p time slots is fixed to n = 1,000
and n, = 100, respectively. Note that . is closely related to
the ratio between the size of SAT and the information size

16 T '
—©—Gossip simulation
- X--Gossip analysis h

157

Gossip delay
IS

w

0.992 0.998 1

0.994
Gossip success proportion,

0.996

Fig. 4: Gossip delay versus the gossip success proportion.

communicated via a single access by a primary or secondary
user. Clearly, the normalized latency of LBT is independent
of u, however, the normalized latency becomes smaller as p
increases in the proposed CBT. For p = 5,000 and 10, 000, the
normalized latency of CBT is small compared to that of LBT.
On the other hand, when p = 1,000, LBT outperforms CBT,
which means that the consensus process in CBT requires more
than 1,000 time slots. However, the latency of LBT increases
exponentially as n, increases and near n, = 34, there is
a crossing point and CBT outperforms LBT. For n, > 36,
the normalized latency of LBT diverges, since from (4), LBT
cannot serve more than 36 secondary accesses in p time slots
due to collisions between the secondary access requests.

Fig. 6 shows the latency performance comparison between
LBT and CBT, with respect to the number of secondary users
in the network. In order to show the case when there exists a
crossing point on the latency performance of LBT and CBT as
the number of secondary users increases, we fix the numbers
n, = 10 and ¢ = 2,500 in this experiment. In the figure,
it is shown that the normalized latency of CBT increases
logarithmically with respect to the increase of the number of
secondary users, while the latency of LBT remains unchanged
and unaffected by the increase of the secondary users. This is
because the required time for a consensus process in CBT
is largely dependent on the number of participating users in
the consensus process, while LBT does not have this kind of
process. This scalability issue will be discussed in the later
section and in the future works.

VI. DISCUSSION

In order to further improve the proposed CBT spectrum
etiquette architecture, this section describes (i) how many users
are need to participate in, (ii) how to exchange their SATSs, and
(iii) how to calculate the consensus timestamps, as follows.

A. Consensus Participation — Direct vs. Representative

Reaching a consensus with many users are more tolerant
to the various attacks compared to reaching a consensus with
small number of users. However, if there is too many nodes in
the consensus process, it will cause a critical latency problem,

2 T T
LBT simulation
LBT analysis
—©—CBT simulation
1.6 [|- x--CBT analysis

T T
LBT latency diverges

1.8

Normalized latency

1 =10,000

0 5 10 15 20 25 30 35 40 45
of secondary access requests, n

Fig. 5: Latency normalized with p = 1,000, 5,000 and 10,000
versus the number of secondary access requests in u time slots for
LBT and the proposed CBT.

0.62 T T
LBT simulation
LBT analysis

0.615 —-©—CBT simulation
- X--CBT analysis

o
o

0.605

Normalized latency

.
.
.
0.6¢ .
K

595
100 200 300 400 500 600 700 800 900
of secondary users, n

1000

Fig. 6: Latency normalized with x = 2,500 versus the number of
secondary users for LBT and CBT.

since the time required to reach a consensus increases as
the number of nodes increases. Hopefully, if there are a set
of nodes, so called representative nodes, that can operate a
consensus process as a representative, the secondary users
can have a common result on the spectrum scheduling in a
short period time. In other words, depending on how many of
the representative nodes are chosen, there will be a trade-off
between the consensus latency and the security performance.
Therefore, for a given required condition for latency and
security, we will investigate and discuss about the optimal
number of representative consensus nodes in our future works.

B. Gossip Protocol — Push vs. Pull

The gossip algorithm considered in this paper is push
gossip. In push gossip, the users who have the gossip message
randomly selects the receivers and pushes the message to
the target. As the time goes by, the number of users who
does not have the message will become smaller, however,
disseminating speed of the gossip message will slow down
since the receivers are randomly selected among all the users
and the portion of the users who have not yet got the message
becomes smaller. On the other hand, in pull gossip, the

users who have the message makes use of a side information
obtained from the users who have not yet got the message.
In other words, the users who have not yet got the message
requests the gossip message from the message holders. This
makes the message holders to disseminate the message by
choosing the random users among the smaller set of users.
Howeyver, in order to deliver the side information, it costs extra
communication resources. Therefore in order to implement an
efficient gossip algorithm in our structure, mixing two types
of gossip algorithm can be one solution. For example, at the
beginning, the gossip message holders use push gossip to
disseminate the message. After some time, the disseminating
speed will be slowed down and then the gossip algorithm can
be changed to pull gossip to speed up the dissemination.

C. Consensus Timestamp Calculation — Mean vs. Median

In the previous section, we assumed that all the secondary
users are honest. However, in the real world environment,
a selfish secondary can be even more selfish so that they
cheat during the consensus process. For example, Alice and
Bob generate SAT, and SAT,, respectively, at time t = 0
and SAT, is verified by Bob, Carol and David at ¢ = 2.
Meanwhile, SAT}, is verified by Carol and David at ¢t = 1 and
if Alice is a cheater and selfish so that she wants to put her
transaction into the queue before that of Bob, she can simply
delay verifying SAT;, and stamp time at, say ¢ = 98. Then
the computed average timestamp of SAT, and SAT; will be
2 and 50, respectively, which puts SAT, in a higher priority.

Meanwhile, rather than taking the average timestamp as the
representative value for the distributed consensus, using the
median timestamp in the consensus process is more tolerant
to Byzantine attacks. In the above example, if the median
timestamp is taken to decide access priority of the users, then
Bob accesses before Alice since the median timestamp of
SAT, and SAT} is 2 and 1, respectively, which is tolerant
to the selfish attack by Alice.

VII. CONCLUSION

This paper proposes a CBT spectrum etiquette based on
the distributed spectrum ledger technology. We introduced the
structure and mechanism of CBT and also analyzed it from a
technical point of view. Specifically, a latency performance is
compared with the conventional LBT and showed that under
high secondary traffic environment, the proposed CBT per-
forms better since it avoids collisions via distributed consensus
based spectrum scheduling.

ACKNOWLEDGMENT

This work was supported in part by the Academy of Finland
project CARMA, and 6Genesis Flagship (grant no. 318927), in
part by the INFOTECH project NOOR, in part by the Kvantum
Institute strategic project SAFARI, and in part by the Korea
Electric Power Corporation (grant no. R17XA05-63).

(1

[2

—

[3]

[4]

[5]

[6

=

[7]

[8]

[9

[10]

(11]

[12]

[13]

[14]

[15]

[16]
(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

“Cisco 5G Vision Series: Licensed, Unlicensed, and Access-
Independent Networks,” Cisco Whitepaper [Online]. Available:
https://www.cisco.com/c/dam/en/us/solutions/collateral/service-
provider/ultra-services-platform/5g-vision-series.pdf.

N. Rupasinghe and 1. Giiveng, “Licensed-Assisted Access for WiFi-LTE
Coexistence in the Unlicensed Spectrum,” in Proc. GLOBECOM Wksp.,
Austin, TX, USA, Dec. 2014.

J. Hong and W. Choi, “Throughput Characteristics by Multiuser Di-
versity in a Cognitive Radio System,” IEEE Transactions on Signal
Processing, vol. 59, pp. 3749-3763, Aug. 2011.

G. Bianchi, L. Fratta, and M. Oliveri, “Performance Evaluation and
Enhancement of the CSMA/CA MAC Protocol for 802.11 Wireless
LANS,” in Proc. PIMRC, Taipei, Taiwan, Oct. 1996.

E. Ziouva and T. Antonakopoulos, “Csma/ca performance under high
traffic conditions: throughput and delay analysis,” Computer communi-
cations, vol. 25, no. 3, pp. 313-321, 2002.

Y. Song, K. W. Sung, and Y. Han, “Coexistence of Wi-Fi and cellular
with listen-before-talk in unlicensed spectrum,” IEEE Communications
Letters, vol. 20, no. 1, pp. 161-164, 2016.

H. Ko, J. Lee, and S. Pack, “A Fair Listen-Before-Talk Algorithm for
Coexistence of LTE-U and WLAN,” IEEE Trans. Veh. Technol., vol. 65,
pp. 10116-10120, Dec. 2016.

A. E. Leu, M. McHenry, and B. L. Mark, “Modeling and Analysis
of Interference in Listen-Before-Talk Spectrum Access Schemes,” ACM
IJENM, vol. 16, pp. 131-147, Mar. 2006.

P. Popovski, J. J. Nielsen, C. Stefanovic, E. de Carvalho, E. G. Strom,
K. F. Trillingsgaard, A. Bana, D. Kim, R. Kotaba, J. Park, and R. B.
Sgrensen, “Wireless Access for Ultra-Reliable Low-Latency Communi-
cation (URLLC): Principles and Building Blocks,” IEEE Netw., vol. 32,
pp. 16-23, Mar. 2018.

M. Bennis, M. Debbah, and V. Poor, “Ultra-Reliable and Low-Latency
Wireless Communication: Tail, Risk and Scale,” [Online]. Available:
https://arxiv.org/abs/1801.01270.

J. Park, D. Kim, P. Popovski, and S.-L. Kim, “Revisiting Frequency
Reuse towards Supporting Ultra-Reliable Ubiquitous-Rate Communica-
tion,” in Proc. IEEE WiOpt Wksp. SpaSWiN, Paris, France, May 2017.
L. Baird, “The Swirlds Hashgraph Consensus Algorithm: Fair, Fast,
Byzantine Fault Tolerance,” Swirlds Tech Report SWIRLDS TR2016-01
[Online, Accessed: 10-Aug-2018]. Available: http://www.swirlds.com/
developer-resources/whitepapers.

S. Lagen and L. Giupponi, “Listen Before Receive for Coexistence in
Unlicensed mmWave Bands,” in Proc. IEEE WCNC, Barcelona, Spain,
Mar. 2018.

J. Kim, S.-W. Ko, H. Cha, S. Kim, and S.-L. Kim, “Sense-
and-Predict: Harnessing Spatial Interference Correlation for Oppor-
tunistic Access in Cognitive Radio Networks,” [Online]. Available:
https://arxiv.org/abs/1802.01088.

M. M. Sohul, M. Yao, T. Yang and J. H. Reed, “Spectrum Access
System for the Citizens Broadband Radio Service,” IEEE Commun.
Mag., vol. 53, pp. 18-25, Jul. 2015.

M. Souryal, “Citizens broadband radio service,” 2014.

M. M. Sohul, M. Yao, T. Yang, and J. H. Reed, “Spectrum access
system for the citizen broadband radio service,” IEEE Communications
Magazine, vol. 53, no. 7, pp. 18-25, 2015.

M. Matinmikko, H. Okkonen, M. Palola, S. Yrjola, P. Ahokangas and
M. Mustonen, “Spectrum Sharing Using Licensed Shared Access: The
Concept and its Workflow for LTE-Advanced Networks,” IEEE Wireless
Commun., vol. 21, pp. 72-79, Apr. 2014.

K. Buckwitz, J. Engelberg, and G. Rausch, “Licensed shared access (Isa)
— regulatory background and view of administrations,” in Proc. 9th Int.
Conf. Cognitive Radio Oriented Wireless Networks and Communications
(CROWNCOM), pp. 413-416, June 2014.

S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” [On-
line]. Available: https://bitcoin.org/bitcoin.pdf.

H. Kim, J. Park, M. Bennis, and S.-L. Kim, “On-Device Federated
Learning via Blockchain and its Latency Analysis,” [Online]. Available:
https://arxiv.org/abs/1808.03949.

L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals
Problem,” ACM Trans. Program. Lang. Syst., vol. 4, pp. 382—401, July
1982.

M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” OSDI,
vol. 99, pp. 173-186, 1999.

J. Sousa, A. Bessani, and M. Vukoli¢, “A Byzantine Fault-Tolerant
Ordering Service for the Hyperledger Fabric Blockchain Platform,”
[Online]. Available: http://arxiv.org/abs/1709.06921v1.

[25]

[26]

[27]
[28]
[29]
[30]

[31]

S. Popov, “The Tangle,” Ver 1.4.3 [Online]. Available:
https://iota.org/IOTA_whitepaper.pdf.

C. LeMahiieu, “Nano: A Feeless Distributed Cryptocurrency
Network,” [Online, Accessed: 10-Aug-2018]. Available:
https://nano.org/en/whitepaper.

J. Jonsson and B. Kaliski, “Public-Key Cryptography Standards (PKCS)
#1: RSA Cryptography Specifications ver. 2.1,” RFC 3447, Feb. 2003.
V. A. Zorich and R. Cooke, “Mathematical Analysis I. 2004.”

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip Algorithms:
Design, Analysis and Applications,” in Proc. INFOCOM, Miami, FL,
USA, Mar. 2005.

N. T. J. Bailey, The Mathematical Theory of Infectious Diseases and its
Applications. Griffin, 1975.

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic Algorithms for
Replicated Database Maintenance,” in Proc. ACM PODC, Vancouver,
BC, Canada, Aug. 1987.

