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Abstract—It is widely accepted that the lease duration of
spectrum bands sold through auctions plays a crucial role in
affecting spectrum utilization. Shorter lease duration increases
the frequency of spectrum auctions. Within the scenario studied
in this paper, frequent spectrum auctions increases the chances
of the spectrum bands being allocated to those operators who
can utilize it the best. However, if the lease duration is too
short it will not incentivize enough operators to join the market
and hence lead to lower competition which in turn deteriorates
spectrum utilization. In spite of the importance of lease duration
in affecting spectrum utilization, there is no formal study dealing
with optimizing the duration of a spectrum lease. This paper
presents the first mathematical model to study the effect of
lease duration on spectrum utilization under certain market
scenario. In such a market scenario, revenue of an operator is
the measure of its spectrum utilization. Based on our model, we
formulate an optimization problem and develop algorithms to
solve the optimization problem for two special cases. Using these
algorithms, we numerically study how the optimal characteristics
vary with different market parameters.

Index Terms—Spectrum License, Lease Duration, Spectrum
Utilization, Operators’ Revenue, Optimization

I. INTRODUCTION

With the rapid growth of wireless services and devices,

the wireless data traffic is increasing. Cisco’s forecast [1]

shows that there will be a 7-fold increase in global data traffic

from 2016 to 2021. There is only a finite amount of wireless

spectrum that can be used to support the growing wireless

data traffic. There are various reports [2], [3] that show that

many licensed spectrum bands are underutilized, leading to

inefficient use of spectrum bands. It is widely accepted that

the legacy policy of static spectrum allocations is a major

cause of inefficient spectrum utilization [4]. In static spectrum

allocation, spectrum bands are leased on a long-term basis

which can lead to spectrum hoarding [5]. The exorbitant cost

of such long-term spectrum leases forms a barrier for smaller

companies to enter the spectrum market. Such reasons reduce

market competition and hence may lead to inefficient spectrum

utilization. In the past decade, there have been several research

directions to combat the issue of spectrum under-utilization,

most of which can be classified under the umbrella term

spectrum sharing.

This material is based upon work supported by the National Science
Foundation under grant numbers CNS-1422153 and CNS-1456887, as well as
by a FiDiPro Fellow award from Business Finland (MOSSAF) and Academy
of Finland 6Genesis Flagship (grant 318927).

Although spectrum sharing can vastly improve spectrum

utilization, the implementation and administration of static

spectrum allocation is much easier compared to spectrum

sharing. For static spectrum allocation, it is widely accepted

that the duration of spectrum lease is a critical factor which

affects spectrum utilization. In the recently proposed 3-Tier

Spectrum Sharing Framework [6], lease duration for “Priority

Access Licenses (PAL) tier” was an important topic of debate.

Many academic research works on spectrum sharing start

by pointing out that long lease duration of static allocation

leads to under-utilization of spectrum [7], [8]. In spite of the

importance of lease duration, there is no formal study dealing

with optimizing the same.

In this paper, we present a mathematical model to study

the optimal duration of spectrum leases when channels are

allocated for exclusive use. Based on our model, we formulate

an optimization problem whose objective is to maximize

spectrum utilization. In our model, the revenue of an operator

is the measure of its spectrum utilization. This holds under

certain market scenarios which we justify in Section II-A. The

optimization problem has only one scalar decision variable, the

lease duration. Shorter lease duration increases the frequency

of spectrum auctions. Within the scenario studied in this

paper, frequent spectrum auctions increase the chances of

the spectrum bands being allocated to those operators who

can utilize it the best. However, if the lease duration is too

short it will not incentivize enough operators to join the

market and hence lead to lesser competition which in turn

deteriorates spectrum utilization. This argument suggests that

the optimization problem should have non-trivial solution.

We explicitly point out that the aim of this work is not to

design optimal lease duration mechanisms, because doing that

requires certain private information about an operator which

may not be possible. Rather, we simply aim to mathematical

model and analyze the effect of lease duration on spectrum

utilization if private information was available.

There have been several active areas of research related to

spectrum licences, such as pricing [9], auction design [10],

flexible licensing [11], enforcement [12], etc. To the best of

authors’ knowledge, there is no mathematical study to un-

derstand the impact of lease duration of spectrum licenses on

spectrum utilization. Perhaps, there is no similar mathematical

study even in other synergistic areas such as electricity markets

and cloud computing. However, there are few works in the



spectrum sharing literature that consider the effect of certain

“duration aspects” on the overall performance of the system.

[13] considers a market of only two service providers with a

common customer base. Time is divided into intervals. At the

beginning of every interval, an auction is conducted which

redistributes the available bandwidth based on the bids of

individual service providers. The ratio of the customer demand

reaching each service provider is governed by evolutionary

game theory. The authors use simulations to conclude that

shorter allocation interval corresponds to better spectrum uti-

lization. In [14], the authors model various factors that a

secondary service provider considers when buying spectrum

resources from primary service providers. The authors design

a utility function for the secondary service provider which

suggests that longer contract duration is better. In [15], the

primary user leases its bandwidth to secondary users for a

fraction of time in exchange for cooperation (relaying). If

the fraction of time is too small, it will not compensate

for the overall cost of transmission (including relaying) and

hence the secondary users may not agree to cooperate. For

opportunistic spectrum use, optimal spectrum sensing time

is an area which received wide attention from the spectrum

community [16], [17]. There are few works in economic

journals that consider the problem of optimizing contract

duration for welfare analysis [18], [19]. The fundamental idea

governing these works is a tradeoff between opportunity cost

and transaction cost. The definitions of transaction cost and

opportunity cost change with the market setting, like housing

property market [20], priority service market [21], etc.

The paper outline and key contributions can be summarized

as follows. In Section II-A we present a system model which

can be used to study the effect of lease duration on spectrum

utilization. Though simple, our model captures key aspects

of spectrum leasing: 1) Improved spectrum utilization with a

decrease in lease duration. 2) Improved spectrum utilization

with more competition. 3) Why a smaller operator may prefer

shorter lease duration. These aspects are discussed in detail

in Section II-C. We are the first to propose such a system

model to study optimal lease duration. This constitutes the

first contribution of the paper.

We formulate the optimization problem in Section II-B.

The optimization problem has one scalar decision variable, the

lease duration. Yet, it is not trivial because is reminiscent of

combinatorial optimization. To elaborate, the key idea behind

the optimization problem is to use lease duration as a control

knob that implicitly decides which wireless operators enter the

market. This constitutes the second contribution of the paper.

We design algorithms to solve the optimization problem

for two special cases in Section III. Since the optimization

problem has a combinatorial nature, the number of candidate

solutions may be exponential in the number of operators in

the market. The design of the optimization algorithm relies on

the result that for the two special cases studied in this paper,

the number of candidate solutions is linear in the number of

operators in the market. Designing the optimization algorithm

is the third contribution of the paper. The final contribution
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Fig. 1. Pictorial representation of certain critical elements of our system
model. There are three operators, i.e. n = 3. In the tth time slot, all the
operators charge p (t) to serve a unit of customer demand. Hence, the revenue
of the kth operator is xk (t) = p (t) dk (t). The channel is allocated to
Operator 1 in the 1st and the 4th epoch (w (1) = w (4) = 1), Operator 2
in the 2nd epoch (w (2) = 2) and Operator 3 in the 3rd epoch (w (3) = 3).

of the paper is the numerical results presented in Section

IV. We use our optimization algorithm to study the optimal

characteristics, i.e. optimal lease duration and optimal value

of the objective function, as a function of market parameters.

II. PROBLEM FORMULATION

We start by presenting our system model in Section II-A.

To develop a tractable system model, we make various as-

sumptions which are then justified with appropriate reasons.

By making these assumptions, we abstract away from several

complexities which allows us to focus solely on the impact

of lease duration on spectrum utilization. In Section II-B, we

use the system model to formulate an optimization problem to

maximize spectrum utilization. In doing so, we introduce the

objective function and the revenue function, which capture

spectrum utilization and the revenue of an operator, respec-

tively. Finally, we study the properties of the objective and

the revenue function in Section II-C which reveal various

important aspects that can be captured by our system model.

A. System Model

We consider a time slotted model where a time slot is

denoted by t ∈ {1, 2, . . .}. Let T denote the lease du-

ration. The word epoch denotes an entire lease duration.

Hence, the time slots corresponding to the mth epoch is

t ∈ [(m− 1)T + 1 , mT ] where m ∈ {1, 2, . . .}. There are n
operators indexed k = 1, 2, . . . , n. There is only one channel

which is allocated to one of these operators, in the beginning

of every epoch, for exclusive use.

In our model, the revenue generated by an operator is

a measure of its spectrum utilization. This can be justified

by first relating spectrum utilization of an operator with its

customer demand and then relating customer demand with

the operator’s revenue. The justification is as follows: First,

the amount of customer demand served by an operator is

a measure of its spectrum utilization. Even though channel

throughput is the most commonly used measure of spectrum



TABLE I
A TABLE OF FREQUENTLY USED NOTATIONS.

Notation Description

t tth time slot.

T Lease duration.

xk (t) Revenue of the kth operator in tth time slot.

µk
Mean of the revenue process of the kth operator,
E [xk (t)] = µk ; ∀t

σk

Standard deviation of the revenue process of the kth operator,
√

E
[

(xk (t)− µk)
2

]

= σk ; ∀t

ak
Autocorrelation coefficient of the revenue process of the kth

operator. We have ak ∈ (0, 1).
Rm

k MERR of the kth operator.

Tk

Minimum lease duration to satisy the MERR of the kth

operator if it was alone in the market. We have Tk =
Rm

k

µk

.

S Set of interested operators.

s Number of interested operators. We have s = |S|.

Rk (T )
Revenue function of the kth operator as a function of lease
duration T .

Rk (S, T )
Revenue function of the kth operator as a function of set of
interested operators S and lease duration T .

R (s, T )
Revenue function of an operator as a function of number of
interested operators s and lease duration T . It only applies
for a market that is homogeneous in in µk , σk and ak .

U (T ) Objective function as a function of lease duration T .

U (S, T )
Objective function as a function of set of interested operators
S and lease duration T .

U (s, T )
Objective function as a function of number of interested
operators s and lease duration T . It only applies for a market
that is homogeneous in µk , σk and ak .

utilization, there are studies like [22], [23] that used other met-

rics as a measure of spectrum utilization. Second, according to

Bertrand and Cournot competition models [24], [25], with two

or more operators, the market reaches perfect competition and

all operators sell at the same price. Similar results are shown to

hold in [26], [27]. Since all operators sell at the same price, an

operator with a higher revenue serves more customer demand

and hence utilizes its channel better (see Figure 1). The kth

operator’s revenue at time slot t is xk (t) if the operator has

the channel and 0 otherwise. We assume that xk (t) is a first

order Gaussian autoregressive process [28], [29],

xk (t+ 1) = akxk (t) + εk (t) ; ∀t ≥ 1 , k (1)

where ak ∈ (0, 1) is the autocorrelation coefficient and

εk (t) is an iid Gaussian random process with mean µε
k

and standard deviation σε
k, i.e. εk (t) ∼ N (µε

k, σ
ε
k) , ∀t. It

can be shown that xk (t) is a stationary Gaussian random

process [30] with mean µk and standard deviation σk, i.e.

xk (t) ∼ N (µk, σk) , ∀t where

µk =
µε
k

1− ak
; σk =

σε
k√

1− a2k
(2)

Concerning channel allocation, our model considers that

there is an oracle which can see the future revenues of

all the n operators (see Figure 1). In the mth epoch, the

oracle allocates/leases the channel to the operator with the

highest total revenue in the mth epoch;
mT∑

t=(m−1)T+1

xk (t).

The cost of leasing the channel is chosen to be a constant.

This allocation strategy can be justified as follows. First, this

strategy is insightful because it yields an upper bound on

spectrum utilization as we are assuming full knowledge of

future revenues. Such bounds may be very close to the true

performance [31], [32]. Second, it decouples our model from

any specific auction mechanism. For the same reason, the cost

of leasing a channel is chosen to be a constant rather than

being dependent on operators’ bids. This is consistent with

prior works, e.g., [33].

To enter the market, the kth operator has to invest in infras-

tructure development. In order to get a return on infrastructure

development cost and the cost of leasing a channel, the kth

operator wants to make a minimum expected revenue Rm
k in

an epoch. The kth operator will not enter the market if the

lease duration does not satisfy its minimum expected revenue

requirement (MERR). As it will become clear in Section II-B

and II-C, the revenue of an operator depends on the value of

µk, σk, ak and Rm
k of all the operators in the market. Our

model assumes that an operator has full information of µk,

σk, ak and Rm
k of all the operators using which it decides

whether to enter the market or not. A similar assumption is

made in prior works, such as [34] and references therein, for

mathematical tractability.

Table I lists the notations used throughout this paper. Other

notations used in this paper are standard.

B. The Optimization Problem

As mentioned in Section II-A, an operator will only enter

the market if its MERR is met. Let S (T ) ⊆ {1, 2, . . . , n} be

the subset operators who enters the market if lease duration

is T . The oracle allocates the channel among the operators in

set S (T ) according to the channel allocation strategy,

w (m) = arg max
k∈S(T )

T∑

t=1

xk ((m− 1)T + t) (3)

where w (m) denotes the index of the operator who is allocated

the channel in the mth epoch. Figure 1 shows an example of

such a channel allocation strategy.

Let Rk (T ) denote the expected revenue of the kth operator

in an epoch if the lease duration is T . Rk (T ) is called

the revenue function of the kth operator. Since xk (t) is a

stationary process, the revenue function of the kth operator

is equal in every epoch, i.e. Rk (·) does not depend on m.

Therefore, we can just consider the 1st epoch to derive an

expression for Rk (T ). We have,

Rk (T ) = E

[
T∑

t=1

xk (t) |Ik = 1

]
P [Ik = 1] + 0 · P [Ik = 0]

= E

[
T∑

t=1

xk (t) |Ik = 1

]
P [Ik = 1] (4)

where Ik is an indicator variable which is 1 if the kth

operator is allocated the channel and 0 otherwise. In (4),

E

[
T∑

t=1
xk (t) |Ik = 1

]
is the net expected revenue of the kth

operator in an epoch if the channel is allocated to the kth



operator. The net expected revenue of the kth operator in an

epoch is 0 if the channel is not allocated to the kth operator.

Proposition 1. If channel allocation is governed by (3) and,

µS
i (T ) = µiT (5)

σS
i (T ) =

√
T − ai

(
2− 2aTi + aiT

)

(1− ai)
σi (6)

fi (θ, T ) =
1√

2πσS
i (T )

exp

(
−
(
θ − µS

i (T )
)2

2σS
i (T )

2

)
(7)

Fi (θ, T ) =
1

2

(
1 + erf

(
θ − µS

i (T )√
2σS

i (T )

))
(8)

where erf (·) is the error function, then the revenue function

of the kth operator, where k ∈ S (T ), is

Rk (T ) =

∞∫

−∞

θ




∏

j 6=k,j∈S(T )

Fj (θ, T )


 fk (θ, T ) dθ (9)

Proof: Please refer to Appendix A for the proof.

According to our system model, the kth operator will

enter the market only if Rk (T ) ≥ Rm
k . Hence, a necessary

condition (not sufficient) S (T ) must satisfy is,

S (T ) = {k : Rk (T ) ≥ Rm
k } (10)

A few remarks are in order. First, note that Rk (T ) is

dependent on S (T ) (see (9)) which in turn is dependent on

Rk (T ) (refer to (10)). Second, the term
∏

j 6=k,j∈S(T )

Fj (θ, T ) of

(9) clearly shows that the revenue of the kth operator depends

on other operators in the market. In particular, Fj (θ, T ) and

S (T ) depend on µj , σj , aj and Rm
j (see (8), (5), (6) and

(10)). Therefore, an operator needs the knowledge of µj , σj

, aj and Rm
j of all the operators in the market in order to

calculate its expected revenue in an epoch and hence decide

whether to enter the market or not.

Our objective is to maximize the net expected revenue V
(equivalent to net expected spectrum utilization) in optimiza-

tion horizon T ≫ T . Assume that T is a multiple of T , i.e

T = MT where M is an integer. Mathematically,

V =

M∑

m=1

E

[
T∑

t=1

xw(m) ((m− 1)T + t)

]
(11)

In (11), E

[
T∑

t=1
xw(m) ((m− 1)T + t)

]
denotes the ex-

pected revenue in the mth epoch where the expecta-

tion is over the random process xk (t) and the random

variable w (m). Given that xk (t) is stationary, the term

E

[
T∑

t=1
xw(m) ((m− 1)T + t)

]
is independent of m. In other

words, the net expected revenue is equal in all epochs. Hence,

(11) can be simplified to

V = ME

[
T∑

t=1

xw(1) (t)

]
= T

E

[
T∑

t=1
xw(1) (t)

]

T
(12)

Equation 12 shows that maximizing V is equivalent to

maximizing
E

[
T∑

t=1
xw(1)(t)

]

T
. This holds even if T is not a

multiple of T provided T ≫ T . The objective function of

our optimization problem is

U (T ) =

E

[
T∑

t=1
xw(1) (t)

]

T
(13)

=

∑
k∈S(T )

E

[
T∑

t=1
xk (t) |Ik = 1

]
P [Ik = 1]

T
(14)

=
1

T

∑

k∈S(T )

Rk (T ) (15)

Equation 14 is obtained using the law of iterated expectation

over all possible w (1) in (13). Equation 15 is obtained by

observing that E

[
T∑

t=1
xk (t) |Ik = 1

]
P [Ik = 1] is equal to

Rk (T ) (see (4)). Finally, our optimization problem is

OP1

{
max
T

U (T ) = 1
T

∑
k∈S(T )

Rk (T ) (16)

In OP1, we can implicitly control S (T ) by choosing a

suitable T . A significant part of OP1 is to find the optimal

combination of interested operators S (T ) that maximizes the

objective function U (T ). The number of combinations of

S (T ) is exponential in n. Therefore, OP1 is reminiscent of

combinatorial optimization which makes it non-trivial even

though it is a scalar optimization problem in T .

C. Properties of the Objective and the Revenue Function

We start this section by introduction two new functions,

Rk (S, T ) =
∞∫

−∞

θ




∏

j 6=k,j∈S

Fj (θ, T )


 fk (θ, T ) dθ (17)

U (S, T ) = 1

T

∑

k∈S

Rk (S, T ) (18)

Rk (S, T ) and U (S, T ) are the expected revenue of the kth

operator in an epoch and the value of the objective function,

respectively, if the lease duration is T and the set of interested

operators is S . Although S is not an independent variable,

these functions are helpful in proving few properties of the

revenue and objective function. Also, they are used in Section

III to design optimization algorithms for OP1. If the market

is homogeneous1 in µk, σk and ak, i.e. µk = µ, σk = σ and

ak = a for all k’s, then (17) and (18) simplifies to,

R (s, T ) =

∞∫

−∞

θF (θ, T )
s−1

f (θ, T ) dθ (19)

U (s, T ) =
s

T
R (s, T ) (20)

1The market may be heterogeneous in Rm
k

.
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Fig. 2. Typical trends of the Objective and the Revenue Function. In (a) and
(b), {1, 2} and {1, 2, 3} are the values of S, the set of interested operators,
where 1, 2 and 3 are indices of the operators. In (c), 1, 2 and 3 are the values
of s, the number of interested operators.

where s = |S| is the number of interested operators. Unlike

(17), the functions R (s, T ), F (θ, T ) and f (θ, T ) of (19) does

not have any subscript because the market is homogeneous.

For the same reason, the revenue and the objective function

depend only on the number of operators s in the market. In

the following, we discuss few properties of these functions.

Property 1. U (S, T ) is monotonic non-increasing in T .

Property 2. U (S, T ) is monotonic non-decreasing in S , i.e.

U (S, T ) ≤ U (S⋃ {a} , T ) where a /∈ S .

Property 3. R (s, T ) is monotonic non-decreasing in T .

Property 4. R (s, T ) is monotonic non-increasing in s if s ≥ 2.

Proofs of these properties are deferred to [35] due to

page limitation. Figure 2 is a pictorial representation of these

properties. Figure 2.a. depicts Property 1 and 2. The objective

function U (S, T ) decreases with increase in T (both red and

blue curves decrease). This is because with frequent spectrum

allocation (or shorter lease duration), we are selecting the best

operator more often. Also, the objective function increases

as the set of interested operators S grows (black curve is

above the red curve). Qualitatively, as S grows, competition

increases, which in turn leads to better spectrum utilization (or

higher value of objective function). Properties 1 and 2 extend

to U (s, T ) because it is a special case of U (S, T ).
For a heterogeneous market, the revenue function R (S, T )

does not have any monotonic properties like the objective

function. A typical shape of the revenue function of Operator-

1 when there are two interested operators, Operator-1 and

Operator-2, is shown in Figure 2.b. Such a case arises when

Operator-1 has a lower mean than Operator-2, i.e. µ1 < µ2.

In such a case, the revenue function of Operator-1 will start

decreasing after a certain lease duration. This is because

as T increases,

T∑
t=1

xk((m−1)T+t)

T
→ µk due to the law of

large numbers. Therefore, based on (3), the operator with

the higher mean (Operator-2) will be allocated the channel

most of the time. This shows that not all the operators prefer

long lease duration. In a market that is homogeneous in µk,

σk and ak, the revenue function R (s, T ) have monotonic

properties. Figure 2.c. depicts Property 3 and 4. The revenue

function increases with increase in T (both red and blue curve

increases) because the operators can make more revenue in an

epoch as lease duration increases. Also, the revenue function

decreases with increase in number of interested operators s
(black curve is above the red curve). This is because the

probability of an operator being allocated a channel decreases2

with increase in s.

III. OPTIMAL SOLUTION OF THE OPTIMIZATION PROBLEM

In our model, an operator is fully characterized by four

parameters: mean revenue µk, standard deviation of revenue

σk, autocorrelation constant ak and the MERR Rm
k . In this

section, we concentrate on solving OP1 for two cases. First,

in a homogeneous market where all the operators have the

same parameters, i.e. µk = µ, σk = σ, ak = a and Rm
k = Rm

for all k’s. Second, a special case of heterogeneous market

where µk = µ, σk = σ and ak = a for all k’s. However, the

MERR Rm
k can vary with operator.

A. Homogeneous Market

In a homogeneous market, all the operators have the same

revenue function (see (19)) and the same minimum expected

revenue. Hence, for a given lease duration T , either all the

n operators are interested; i.e. S (T ) = {1, 2, . . . , n}, or

none of the operators are interested, i.e. S (T ) = ∅. If none

of the operators are interested, then the objective function

U (T ) = 0. Therefore, we have to satisfy all the operators in

order to maximize the objective function. With a little abuse

of notation, let R (T ) = R (n, T ) and U (T ) = U (n, T ). In

a homogeneous market, OP1 simplifies to

OP2





max
T

U (T ) = n
T
R (T )

subject to:

R (T ) ≥ Rm

Since U (T ) is monotonic non-increasing in T (Property

1), the optimal lease duration T ∗ is the least T satisfying

the constraint R (T ) ≥ Rm. Since R (T ) is monotonic non-

decreasing in T (Property 3), the optimal lease duration T ∗

must satisfy

R (T ∗) = Rm (21)

Given that R (T ) is monotonic in nature, (21) can be solved

using binary-search or newton-raphson method to find the

optimal lease duration T ∗. Finally the optimal value of the

objective function is

U∗ = U (T ∗) =
n

T ∗
R (T ∗) =

n

T ∗
Rm (22)

B. Heterogeneous Market: Special Case

As the market is homogeneous in µk, σk and ak, the revenue

function of all the operators are equal and is given by (19).

However, the MERR Rm
k can vary with operator. In such a

market, if kth operator is interested in joining the market, then

so are other operators whose MERR is less than Rm
k . This

is a critical observation which can be formalized as follows.

Without any loss of generality, let Rm
j ≥ Rm

i ; ∀j > i. Let

[s] = {1, . . . , s} be the set of first s operators.

2In a market that is homogeneous in µk , σk and ak , the probability of an
operator being allocated a channel is simply 1

s
.



Algorithm 1: Optimization Algorithm for the Special

Case of Heterogeneous Market

Input : Mean µ, Standard Deviation σ, Autocorrelation

coefficient a, MERR Rm
k ; ∀k

Output: Optimal Lease Duration T ∗

1 Set T ∗ = 0 and U∗ = 0.

2 Sort the operators in ascending order of Rm
k .

3 Set T k =
Rm

k

µ
; ∀k = 1, . . . , n. Also, set Tn+1 =∞.

4 Set s = 1.

5 for k ← 1 to n do

6 repeat

7 Compute T̃ such that R
(
k, T̃

)
= Rm

s .

8 if T̃ < T k+1 then

9 Set Ũ = s

T̃
R
(
s, T̃

)
.

10 if Ũ ≥ U∗ then

11 Set T ∗ = T̃ and U∗ = U∗.

12 end

13 Set s = s+ 1.

14 end

15 until s ≤ k and T̃ < T k+1

16 end

Proposition 2. If the market is homegenous in µk, σk and ak,

then S (T ) ∈ Ω where,

Ω = {[s] : s = 1, . . . , n} (23)

Proposition 2 is important because it reduces the number of

combinations of S (T ) from exponential to linear in n. Based

on Proposition 2, we designed Algorithm 1 to find the optimal

lease duration T ∗ and optimal value of objective function U∗

for the special case of heterogeneous market. In rest of this

section, we explain the working of Algorithm 1.

If [s] is the set of interested operators, then according to

(20), the value of the objective functions is Ũ = s

T̃
R
(
s, T̃

)

where T̃ is the lease duration such that S
(
T̃
)

= [s]. Ũ is

calculated in line 9 of Algorithm 1. For [s] to be the set of

interested operators, it is enough to ensure that the MERR

of the sth operator is satisfied. If [s] is the set of interested

operators, then the revenue function of an operator is given by

(19). Therefore, to satisfy MERR of the sth operator, T̃ must

satisfy R
(
s, T̃

)
≥ Rm

s . Recall, Ũ decreases with increase

in T̃ (Property 1) and R
(
s, T̃

)
increases with increase in T̃

(Property 3). Therefore, to maximize Ũ , we can set T̃ such

that R
(
s, T̃

)
= Rm

s . To this end, we have maximized Ũ for

a given [s]. But we don’t know for which [s] the value of Ũ
will be maximized. This is because as s increases:

Statement 1: Ũ increases (Property 2).

Statement 2: T̃ increases which in turn decreases Ũ (Prop-

erty 1). Increase in T̃ with increase in s can be explained

as follows. As s increases, R
(
s, T̃

)
decreases (Property 4).

Therefore, to satisfy R
(
s, T̃

)
= Rm

s , we need a larger T̃ .

Statements 1 and 2 show that an increase in s has opposing

affects on Ũ . Therefore, we calculate the maximum Ũ for each

[s] and then choose the maximum among them. This is done

in lines 10 and 11 of Algorithm 1.

Setting T̃ such that R
(
s, T̃

)
= Rm

s will always not ensure

that [s] is the set of interested operators. Let T k =
Rm

k

µ
as

calculated in line 3 of Algorithm 1. T k is the minimum lease

duration to satisfy the MERR of the kth operator if it was alone

in the market. If T̃ satisfyingR
(
s, T̃

)
= Rm

s is such that T̃ ≥
T s+1, then the (s+ 1)

th
operator would also be interested

in entering the market. If the (s+ 1)
th

operator enters the

market, the revenue function of an operator is R
(
s+ 1, T̃

)
.

Now using Property 4,

R
(
s+ 1, T̃

)
≤ R

(
s, T̃

)
= Rm

s ≤ Rm
s+1 (24)

Inequality 24 shows that if R
(
s, T̃

)
= Rm

s and T̃ ≥ T s+1,

then MERR of neither the sth operator nor the (s+ 1)
th

operator will be satisfied. Hence, [s] will not be the set of

interested operators. Instead for [s] to be the set of interested

operators, T̃ should be set such that MERR of sth operator is

satisfied even if (s+ 1)
th

operator enters the market. This can

be done by setting T̃ such that R
(
s+ 1, T̃

)
= Rm

s . If such

a T̃ ≥ T s+2 , then we have to loop until we find a T̃ such that

R
(
k, T̃

)
= Rm

s and T̃ < T k+1. This is implemented using

the for and repeat-until loop of Algorithm 1. We guarantee the

existence of such a T̃ by setting a dummy variable Tn+1 =∞
(refer line 3 of Algorithm 1). Please note that the equation

R
(
k, T̃

)
= Rm

s in line 7 of Algorithm 1 can be solved using

binary-search or newton-raphson method because R
(
k, T̃

)

is monotonic increasing in T̃ (Property 3). Finally, the output

of Algorithm 1 is the optimal lease duration T ∗.

IV. NUMERICAL RESULTS

In this section we use the optimization techniques from

Section III to numerically study the effect of market pa-

rameters on optimal lease duration T ∗ and optimal value of

objective function U∗. Market parameters are the mean µ,

standard deviation σ, time constant3 τ (where autocorrelation

coefficient a = exp
(
− 1

τ

)
), number of operators n and MERR

Rm
k . Default numerical parameters are µ = 1, σ = 1,

τ = 500 and n = 10. These parameters are used unless

otherwise stated. We divide the study of homogeneous market

and special case of heterogeneous market into two subsections.

A. Homogeneous Market

In a homogeneous market, Rm
k = Rm ; ∀k. We use Rm =

100 unless otherwise stated.

3Higher time constant implies higher autocorrelation.
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Fig. 3. Plots showing the variation of optimal characteristics T ∗ and U∗ in
a homogeneous market as a function of: (a) Mean µ (b) Standard deviation
σ (c) Time constant τ and (d) Number of operators n.

Effect of mean µ with constant MERR Rm: As µ increases,

an operator will earn more revenue in a given time slot.

Therefore, it will take less time to generate the MERR Rm.

Hence, optimal lease duration T ∗ decreases as shown in Figure

3.a. (red solid line). Since U∗ is inversely proportional to T ∗

according to (22), U∗ increases with increase in µ. This is

also shown in Figure 3.a. (black solid line).

Effect of mean µ with varying MERR Rm: In this numerical

study, Rm = αµ where α > 0 (chosen as 100) is a constant.

This numerical study answers the following question: “If the

operators have higher µ but also have higher Rm, then is it

better or worse for the value of U∗?”. This is not trivial to

answer because an increase in µ and Rm have opposing affects

on U∗. As shown in Figure 3.a. (red and black dashed lines),

both T ∗ and U∗ increases with increase in µ. Please note that

the relation between T ∗ and U∗ can’t be explained using (22)

because Rm is not a constant. To conclude, if the operators

have higher µ, they will improve U∗ even though their MERR

is higher.

Effect of standard deviation σ: As shown in Figure 3.b.,

U∗ increases with increase in σ. This can be explained as

follows: If an operator is allocated the channel, then there is

a high probability that the operator’s revenue is more than the

mean. This probability increases with increase in σ because the

operator’s revenue fluctuates more around the mean. Hence U∗

increases with increase in σ. As U∗ increases, T ∗ decreases

according to (22).

Effect of time constant τ : Autocorrelation defines the self-

similarity of a random process. As autocorrelation increases,

an operator with higher revenue at current time slot will have

higher revenue at a later time slot. This has two consequences.

First, the operator who is allocated the channel will take less

time to generate the MERR Rm. Hence, with increase in τ ,

0 1000 2000 3000 4000 5000 6000
T

0
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1.5

U
(T

)

Fig. 4. A typical shape of objective function U (T ) for a particular instance
of Rm

k
. Rm

k
’s are choosen independently at random from the uniform

distribution U (100, 600).

optimal lease duration T ∗ decreases which leads to increase in

U∗ according to (22). This is shown in Figure 3.c. Second, the

objective function becomes less sensitive to lease duration, i.e.

it will not decrease increase significantly if the lease duration

is higher. This is also shown in Figure 3.c. where sensitivity,

defined as ∂U
∂T

∣∣
T=T∗

, becomes less negative as τ increases.

Effect of number of operators n: As the number of operators

increases, the probability that a given operator is allocated

the channel decreases. Therefore, to satisfy the MERR, the

operators have to generate more revenue in an epoch when

they are allocated the channel. Hence, optimal lease duration

T ∗ increases as shown in Figure 3.d. Now we will explain

the effect of n on U∗. According to (22), U∗ = n
T∗

Rm. As

n increases, U∗ increases. However, with increase in n, T ∗

increases which leads to decrease in R∗. Because of these two

competing factors, U∗ first increases and then decreases with

increase in n. If the number of operators models the amount

of competition in a market, this numerical study shows a well

known fact: “neither too high nor too low competition is good

for overall performance”.

B. Heterogeneous Market: Special Case

We start this section by plotting a typical objective function

U (T ) for the special case of heterogeneous market. For such

a market, U (T ) = s
T
R (s, T ) (see (20)) where s is a function

of T . Assuming that Rm
k ’s are sorted in ascending order, s for

a given T can be computed as follows:

1) Find k such that T k ≤ T < T k+1 where T k =
Rm

k

µ
.

2) Clearly, operators with index greater than k are

not interested. The set of interested operators S =
{i : i ≤ k ; R (k, T ) ≥ Rm

i }. Hence, s = |S|.
A typical plot of U (T ) is shown in Figure 4. The discontin-

uous and non-smooth nature of U (T ) clearly demonstrates that

OP1 is not a trivial optimization problem even for the special

case of heterogeneous market. Figure 4 contains three arrows

showing the intervals where U (T ) = 0. The interval denoted

by the green arrow is obvious because the lease duration in

this interval is too short to satisfy MERR of any operator even

if they were alone in the market. For the intervals denoted by

the red arrows, the lease duration is long enough to satisfy

the MERR of few of the operators if they were alone in the
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Fig. 5. A numerical study demonstrating the use of lease duration as a
control knob that decides which operators enter the market. There are n = 5
operators. MERR of the first four operators is 300 while that of the fifth
operator is R. We study the effect of R on the optimal characteristics U∗,
T ∗ and s∗ = |S∗| where S∗ is the optimal set of interested operators.

market. However, if they were in the market together, MERR

of none of the operators are satisfied. As a result, none of the

operators are interested. This discussion shows that a large T
may not just decrease the objective function but can effectively

decrease revenue function of an operator.

Next, we conduct a numerical study to demonstrate the

idea of using lease duration as a control knob that decides

which operators enter the market. This is shown in Figure

5. There are 5 operators. MERR of the first four operators

is 300 while that of the fifth operator is R. In Region 1,

an increase in R increases T ∗ which in turn decreases U∗.

Though U∗ decreases, it is still more than the optimal value of

the objective function possible with just four operators. Hence,

T ∗ is such that all the five operators are interested (s∗ = 5).

As R increases further, the decrease in U∗ is substantial.

Hence, in Regions 2 and 3, MERR of the fifth operator is

not satisfied (s∗ = 4) by decreasing T ∗. T ∗ in Region 2 is

greater than that in Region 3. This can be explained using the

same logic as in Section III-B. Let T̃4 and T̃5 be the solution

to R
(
4, T̃4

)
= 300 and R

(
5, T̃5

)
= 300 respectively. T̃4

(T̃5) is the lease duration to satisfy MERR of the first four

operators if the first four operators are interested (all the five

operators are interested). In Region 2, T̃4 ≥ T where T = R
µ

.

Hence, if lease duration is set as T̃4, MERR of none of the

operators will be satisfied making the value of the objective

function 0. Therefore, in Region 2, lease duration is set as T̃5.

In Region 3, T̃4 < T , and hence lease duration is set as T̃4.

Definitely, T̃4 ≤ T̃5 (refer to Property 3 and 4).

For our next numerical study, we compare the performance

of Algorithm 1 with a suboptimal algorithm SUBOP which

maximizes the objective function after satisfying MERR of

all the n operators. Our setup is as follows. Lets define two

clusters/sets Cl = [100, 600] and Ch = [1300, 1800]. Rm
k ’s are
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Fig. 6. A numerical study showing the effect of clustering on the mean optimal
characteristics. For each (dc, pc) pair, the mean optimal characteristics has
been averaged over 1000 instances of Rm

k
. In (b) % increase is equal to

U∗
−U∗

s

U∗

s

· 100 where U∗

s is the suboptimal value of the objective function

obtained using SUBOP.

chosen independently. Rm
k lies is Ch and Cl with probability

pc and (1− pc) respectively. Depending on whether Rm
k lies

in Cl or Ch, its value is decided at random from the uniform

distribution U (100, 600) or U (1300, 1800) respectively. As

pc tends to either 0 or 1, Rm
k ’s tends to lie mostly in Cl or

Ch respectively. When most of the Rm
k ’s lies in one cluster,

the scenario is similar to an homogeneous market because

the Rm
k ’s are very close to each other. As discussed in

Section III-A, in a homogeneous market, the MERR of all

the operators needs to be satisfied in order to maximize the

objective function. Therefore, the performance of SUBOP

and Algorithm 1 are similar as pc tends to either 0 or 1. Both

Figure 6.a and 6.b shows this trend. As pc tends closer to 0
or 1, the mean optimal number of interested operators tends

to n = 10 and the mean percentage increase of Algorithm 1

compared to SUBOP is almost 0. However, if pc is not too

high, nor too low, the market becomes more heterogeneous. In

a heterogeneous market, it may not be optimal to satisfy the

MERR of all the operators (as shown in Figure 6.a). Therefore,

Algorithm 1 outperforms SUBOP as the market becomes

more heterogeneous (as shown in Figure 6.b).

V. CONCLUSION

The duration of a spectrum lease is a critical parameter that

influences the efficiency of spectrum utilization. In this paper,

we study a market scenario where an operator’s revenue is a

measure of its spectrum utilization. To study the effect of lease

duration on spectrum utilization, we present a simple system

model which captures interesting properties of spectrum mar-

ket. Based on the system model, we formulate our optimization

problem whose key idea is to use lease duration as a control

knob that implicitly decides which wireless operators enter

the market. We design optimization algorithms to solve the

optimization problem for two special cases. We then use the

optimization algorithm to numerically study the variation of

optimal characteristics as a function of market parameters.

To conclude, we lay the mathematical foundation to optimize

the duration of spectrum lease in order to maximize spectrum

utilization.

Our immediate future work will be to design optimization

algorithms for a general heterogeneous market which is chal-

lenging because it may not be possible to reduce the size



of the set of interested operators like we did in Proposition

2. Generalization of our system model to multiple channel

case and capturing transaction costs involved with channel

reallocation forms other avenues of our future work. Other

extensions to this work involve: (a) Including variance in our

system model to capture risk aversion of the operators. (b)

Including second price auctions in our system model to capture

the variable market-dependent price of a spectrum lease.

APPENDIX A

PROOF OF PROPOSITION 1

We start with (4) to derive an expression for Rk (T ).

Consider the term E

[
T∑

t=1
xk (t) |Ik = 1

]
of (4). We have,

E

[
T∑

t=1

xk (t) |Ik = 1

]

=
∑

θ

θP

[
T∑

t=1

xk (t) = θ|Ik = 1

]

=
∑

θ

θ

P

[
Ik = 1|

T∑
t=1

xk (t) = θ

]
· P
[

T∑
t=1

xk (t) = θ

]

P [Ik = 1]
(25)

Equation 25 is obtained using Bayes’ Theorem. If channel

allocation is governed by (3), then the event Ik = 1 is

equivalent to
⋂

j 6=k,j∈S(T )

T∑
t=1

xk (t) ≥
T∑

t=1
xj (t) where

⋂
is the

AND operator. Hence, the term P

[
Ik = 1|

T∑
t=1

xk (t) = θ

]
of

(25) can be written as

P

[
Ik = 1|

T∑

t=1

xk (t) = θ

]

= P




⋂

j 6=k,j∈S(T )

T∑

t=1

xk (t) ≥
T∑

t=1

xj (t) |
T∑

t=1

xk (t) = θ




= P




⋂

j 6=k,j∈S(T )

T∑

t=1

xj (t) ≤ θ




=
∏

j 6=k,j∈S(T )

P

[
T∑

t=1

xj (t) ≤ θ

]
(26)

Equation 26 holds because that revenue process of any two

operators are not correlated and are hence independent. Using

(4), (25) and (26) we get,

Rk (T ) =
∑

θ

θ




∏

j 6=k,j∈S(T )

P

[
T∑

t=1

xj (t) ≤ θ

]

·P
[

T∑

t=1

xk (t) = θ

])
(27)

Let fi (θ, T ) and Fi (θ, T ) be the probability density func-

tion and cummulative distribution function of random vari-

able
T∑

t=1
xi (t) respectively. Therefore, P

[
T∑

t=1
xi (t) = θ

]
=

fi (θ, T ) dθ and P

[
T∑

t=1
xi (t) ≤ θ

]
= Fi (θ, T ) which when

substituted in (27) yields (9). Now we have to find expressions

for fi (θ, T ) and Fi (θ, T ). Note that
T∑

t=1
xi (t) is a Gaussian

random variable. This is because xi (t) is a Gaussian and the

sum of Gaussian is a Gaussian. Hence, fi (θ, T ) and Fi (θ, T )
are completely characterized by the mean µS

i (T ) and variance

σS
i (T ) of

T∑
t=1

xi (t) as given by (7) and (8) respectively.

Finally, we have to find expressions for µS
i (T ) and σS

i (T ).
We have,

µS
i (T ) = E

[
T∑

t=1

xi (t)

]
=

T∑

t=1

E [xi (t)] = µiT (28)

For a first order AR process as governed by (1), xi (t) can

be expressed as

xi (t) = atixi (0)+
t−1∑

p=0

at−1−p
i εi (p) (29)

Equation 29 can be easily proved using mathematical in-

duction. Also,

T∑

t=1

xi (t) =

T∑

t=1

(
atixi (0)+

t−1∑

p=0

at−1−p
i εi (p)

)
(30)

= xi (0)

T∑

t=1

ati+

T∑

t=1

t−1∑

p=0

at−1−p
i εi (p)

= xi (0)

T∑

t=1

ati+

T−1∑

p=0

T∑

t=p+1

at−1−p
i εi (p) (31)

= xi (0)
ai − aT+1

i

1− ai
+

T−1∑

p=0

1− aT−p
i

1− ai
εi (p) (32)

Equation 30 is obtained using (29). Equation 31 is ob-

tained by changing the order of summation. Now, σS
i (T ) =√

Var

[
T∑

t=1
xi (t)

]
where,

Var

[
T∑

t=1

xi (t)

]

= Var

[
xi (0)

ai − aT+1
i

1− ai
+

T−1∑

p=0

1− aT−p
i

1− ai
εi (p)

]
(33)

=

(
ai − aT+1

i

1− ai

)2

Var [xi (0)]

+

T−1∑

p=0

(
1− aT−p

i

1− ai

)2

Var [εi (p)] (34)



=

(
ai − aT+1

i

1− ai

)2

σ2
i+

T−1∑

p=0

(
1− aT−p

i

1− ai

)2

(σε
i )

2
(35)

=
T − ai

(
2− 2aTi + aiT

)

(1− ai)
2 · (σ

ε
i )

2

1− a2i

=
T − ai

(
2− 2aTi + aiT

)

(1− ai)
2 σ2

i (36)

Equation 33 is obtained from (32). Equation 34 holds

because εi (p) are independent random variables. Equations

35 and 36 follows from the definition of σε
i and σi as given

by (2) and the paragraph before it. Finally, (28) and (36) are

same as (5) and (6) respectively. This completes the proof.
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