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Abstract—With the proliferation of IoT devices, researchers
have developed a variety of IoT device identification methods with
the assistance of machine learning. Nevertheless, the security of
these identification methods mostly depends on collected training
data. In this research, we propose a novel attack strategy named
IoTGAN to manipulate an IoT device’s traffic such that it can
evade machine learning based IoT device identification. In the
development of IoTGAN, we have two major technical challenges:
(i) How to obtain the discriminative model in a black-box setting,
and (ii) How to add perturbations to IoT traffic through the
manipulative model, so as to evade the identification while not
influencing the functionality of IoT devices. To address these
challenges, a neural network based substitute model is used to
fit the target model in black-box settings, it works as a discrimi-
native model in IoTGAN. A manipulative model is trained to add
adversarial perturbations into the IoT device’s traffic to evade the
substitute model. Experimental results show that IoTGAN can
successfully achieve the attack goals. We also develop efficient
countermeasures to protect machine learning based IoT device
identification from been undermined by IoTGAN.

Index Terms—Internet of Things, Device Identification, IoT
Security, Machine Learning, Generative Adversarial Network

I. INTRODUCTION

The Internet of Things (IoT) refers to the network of phys-

ical devices that are embedded with sensors, chips, operating

systems and other technologies, collecting and exchanging

data over Internet [1]. The popularization of universal com-

puter chips and the ubiquity of wireless networks enable the

revolution to transform traditional devices into smart devices

as a part of the IoT. These IoT devices can be extensively de-

ployed for different purposes including consumer (e.g., smart

home, health care), commerce (e.g., transportation, manufac-

turing, agriculture), and military (e.g., battlefield equipment,

autonomous reconnaissance). However, the heterogeneity of

these devices also imposes security challenges to the manage-

ment of IoT networks.

For a network containing different kinds of IoT devices, it is

vital to identify the type of each IoT device before applying

fine-graded security policies. Other than managing different

kinds of IoT devices locally by the entity which the devices

belong to, knowing the type of the device can enable a global

management for security purpose from the level of the whole

network, in order to permit or prohibit IoT device’s specific

behavior. For example, in a military base, the network should

keep the geographical information confidential and forbid the

surveillance camera transferring video data to the outside.

Another example is that an organization may have different

permissions for its personnels to access different smart devices

(e.g., the maintenance staff can adjust the air conditioner unit;

the security guard can view the monitor video; and any person

should be able to control the smart bubble). More importantly,

IoT device identification can facilitate detecting vulnerable IoT

devices and preventing malicious rogue IoT devices.

Researchers have proposed various methods for IoT device

identification. A simple way is using identifiers (e.g., MAC

addresses, IP addresses, Bluetooth ID, Zigbee ID) to identify

IoT devices. However, various identifier spoofing attacks [2],

[3] have been exploited to deceive the identification. It is

necessary to develop new methods that can avoid using these

identifiers for IoT device identification. Recent progresses

including using statistical features which can reflect the be-

havior of a specific IoT device are developed for identification

[4]. However, due to the limitation of mathematical model

specific analysis, it is hard for these methods to keep a steady

accuracy rate when applying to different real-world scenarios.

Moreover, these methods usually introduce a high overhead

and fail when the traffic is encrypted.

To overcome these weaknesses, researchers have intro-

duced multiple machine learning based methods to assist

IoT device identification or network traffic fingerprinting [5]–

[14]. Specifically, these machine learning based methods can

successfully identify IoT devices even when the identifier is

spoofed, meanwhile they can achieve a high accuracy rate

no matter whether the traffic is encrypted. These methods

can be usually formalized as feature-based machine learning

classification problems. k-Nearest Neighbors (k-NN), Support

Vector Machine (SVM), Random Forest and Neural Networks

are the most frequently used approaches to build the machine

learning model. Through learning on traffic features on packets

(e.g., packet size, header information, even encrypted content

in data payload [15] ) or flows (e.g., packet interval, packet

count in a time window), these machine learning models

can achieve an accuracy rate as high as 99% in IoT device

identification.

Nevertheless, machine learning based IoT device identifica-

tion methods are designed with the aim for high performances,

but lacks any security guarantee. We discover that there exists

a subtle attack surface that can undermine the machine learn-

ing based IoT device identification. Specifically, these methods

rely on learning from the features which are obtained from
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network traffics completely or partly controlled by IoT devices.

Thus, a rogue IoT device can maliciously alter its network

traffic to evade the machine learning based identification. In

this research, we aim to investigate current machine learning

based IoT device identification methods, reveal the potential

attacks, and derive corresponding countermeasures to protect

the IoT device identification from been undermined.

To this end, we develop an attack strategy, named IoTGAN,

which can efficiently disturb the machine learning based

IoT device identification. IoTGAN is inspired by Generative

Adversarial Network (GAN) [16] and it allows rouge IoT

devices to manipulate its traffic to camouflage themselves from

been identified. We implement IoTGAN as a practical system

to launch this attack. However, IoTGAN can not be simply

implemented by directly using GAN. Two major technical

challenges must to be addressed to achieve the malicious goal

of evading IoT device identification: (i) How to obtain the

discriminative model in black-box settings, and (ii) How to

add perturbations to IoT traffic through the manipulative model

(i.e., the generative model in GAN) to evade the identification

while not influencing the functionalities of IoT devices.

In addition to the attack strategy design and analysis, we de-

velop an effective defense approach, named Device Profiling,

to protect the machine learning based IoT device identification

from been undermined by IoTGAN. Device Profiling utilizes

the raw wireless signals emitted from IoT devices, which

exhibits inherent hardware features and cannot be manipulated

by IoT devices, to mitigate the effect of IoTGAN.

We conduct experiments on real-world IoT devices with

different machine learning based identification methods to

evaluate the effectiveness of IoTGAN. The experimental re-

sults show that IoTGAN can evade all the identification

methods with a successful rate higher than 90%. We also

conduct experiments to evaluate the defense approach and

observe that the attack successful rate significantly drops to

nearly zero after the deployment of Device Profiling.

The remainder of this paper is as follows. In Section II,

we introduce preliminaries. In Section III, we investigate the

existing machine learning base IoT device identification meth-

ods, and state our attack strategy of IoTGAN. In Sections IV

and V, we introduce the two core technical contributions in

the implementation of IoTGAN. We discuss potential coun-

termeasures to improve security in Section VI and present the

experiment results in Section VII. Finally, we conclude the

paper in Section VIII.

II. PRELIMINARIES

We introduce the preliminaries in this section, including the

architecture of IoT and general IoT devices.

A. IoT Architecture

Organizations like The IEEE Standards Association, Inter-

national Electrotechnical Commission, and American National

Standards Institute are working on developing the standards for

IoT. Generally, IoT follows a multi-layer architecture.

• Physical layer: This layer includes the low level hard-

ware components, such as sensors, actuators and RFIDs.

IoT relies on these essential components to perform the

fundamental functionalities (e.g., monitor the environ-

ment, collect information, manage operations).

• MAC/link layer: This layer connects different devices

to a network, thus to enable transmitting or exchange

of the data which is collected from physical layer. The

connectivity can be achieved through different kind of

protocols, including WiFi, NFC, Bluetooth, ZigBee and

cellular networking.

• Network layer and above: The network layer and above

connect IoT devices together via networking and provide

application-level services to the end user. There are more

than hundreds of applications in the IoT ecosystems, such

as smart home, smart transportation, and smart city.

B. IoT Devices

An IoT network may be connected with heterogeneous de-

vices for different applications. We introduce the mainstream

IoT products in current marketplace, with the application do-

main they belong to and the adopted communication protocols

in Table I. We can find that WiFi and bluetooth are commonly

used in smart home applications. While applications of smart

transportation and smart city prefer cellular networks for long

distance connection.

TABLE I
MAINSTREAM IOT PRODUCTS.

Name Application Communication Protocol

Google Nest

Smart Home

Bluetooth, WiFi

Apple AirTag Bluetooth, UWB, NFC

Amazon Echo Bluetooth, WiFi, Zigbee

Samsung SmartThings WiFi, Zigbee, Z-Wave

Drone
Smart

WiFi, Cellular, Telemetry

Smart car
Transportation

Bluetooth, WiFi, Cellular

Rail detector LoRa, Cellular

Smart trash

Smart City

WiFi, Zigbee

Weather station WiFi, LoRa, Cellular

Smart street light Cellular

Gunshot detector WiFi, Cellular

III. EVADING ML-BASED IOT DEVICE IDENTIFICATION

To evade identification, it is essential for the attacker to

have the knowledge of the target machine learning models.

Therefore, in this section, we first investigate existing machine

learning based IoT device identification methods, then we

introduce the attack model to achieve the adversarial goal.

A. Existing IoT Device Identification Methods

Remote service creates a subtle attack surface to infer the

identity of different IoT devices. As most IoT devices request

remote service via the RESTful APIs, which adopt the uniform

interface to improve the visibility of interactions, the attackers

are able to learn their identities by exploring unique features



extracted from uniform headers of the service request. The

work in [5] shows that the ML classifiers (i.e., SVM, and

Logistic Regression) can reach high accuracy when the header

features are considered (e.g., port numbers, domain names, and

cipher suites).

Nevertheless, modeling remote service requests may not

always yield sufficient information for accurate device identi-

fication, especially when the device is communicating with

an anonymous service provider. More information can be

gathered by learning the traffic/data flow patterns during the in-

teraction. In particular, multiple works have been done to learn

the spatial and temporal patterns of traffic/data flow to improve

the identification accuracy. The work in [6] has collected and

characterized the statistical attributes of traffic traces over 20

types of IoT devices and achieved a detection rate of 95%. The

work of [7] models the periodic communication traffic using

fingerprints extracted from frequency domain and adopts the

k-NN classifier with the detection rate of 98.2%. The authors

in [8] automate the process of feature extraction via genetic

algorithm and deploy various machine learning algorithms

(i.e., DecisionTable, J48 Decision Trees, OneR, and PART) to

increase the detection rate. The authors in [11] develop a multi-

stage meta classifier that explores the flow-level attributes

to further improve the classification accuracy based on the

network traffic analysis. Deep learning models (e.g., CNN and

RNN) have also been applied to achieve the fine-grain device

identification. The work in [12] converts the network payloads

into image representation to fully capture the traffic details and

achieves over 99% overall average detection accuracy. The

authors in [13] propose a hybrid supervised and unsupervised

deep learning approach to enable the refined classification for

both known and unknown device types.

Important Features Used in IoT Device Identification: Fea-

ture extraction is a key component in machine learning to

have an accurate device identification. Here we summarize the

most commonly used features in IoT device identification and

place them into two categories: (1) Remote service features,

including service request interval, service volume, service

type (e.g., NTP, DNS, Storage), service domain name, and

service active/sleep cycles. (2) Network packet/flow features,

including local port, remote port, local address, remote ad-

dress, encryption algorithm, packet size, packet interval, and

communication protocol.

B. Attack Model

Machine learning based IoT device identification systems

usually are hosted on the network administration side. For the

attacker, the target system is a black box without disclosing the

knowledge of the model internal structure and features used for

identification. In this research, we aim to develop a camouflage

attack that can help IoT devices to evade the machine learning

based identification in a black-box setting. Though the black-

box setting makes it more challenging to launch the attack,

it will promote the attack to be more practical for real-world

scenarios.

Specifically, we proposed a system, named IoTGAN, to

achieve this attack goal. IoTGAN is inspired by GAN [16].

GAN is comprised by two models: the discriminative model

and the generative model. The generative model is trained

to generate new samples by adding noise to the input data,

while the discriminative model is used to distinguish between

generated samples and real samples. Following a two-player

minimax game, the generative model will be continually

updated until the game achieves equilibrium.

As Figure 1 shows, IoTGAN includes the discriminative

model and the manipulative model. The discriminative model

has the same functionality as in GAN to help improve the

manipulative model until the manipulated IoT device traffic

can evade the identification. While the manipulative model

works as the generative model in GAN to manipulate the

traffic of IoT devices by adding perturbations. In next two

sections, we introduce our core technical contributions in the

implementation of IoTGAN: (i) How to obtain the discrim-

inative model in a black-box setting, and (ii) How to add

perturbations to IoT traffic through the manipulative model

to evade the identification without affecting the functionality

of IoT devices.
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Fig. 1. The architecture of IoTGAN.

IV. OBTAINING THE DISCRIMINATIVE MODEL IN A

BLACK-BOX SETTING

In this section, we introduce our design of the discriminative

model in IoTGAN. The discriminative model should have

the same population distribution as the target IoT device

identification model, i.e., for the same input, it should have the

same identification results. We aim to make it practical and

can be broadly applied to a generic situation (i.e., a black-box

setting in which the attacker has no knowledge of the target

system). In what follows, we first present a general formula

of IoT device identification. Then, we design our algorithm to

obtain the discriminative model.

According to the literature, IoT device identification algo-

rithms are either statistical or machine learning based methods

given users’ traffic features. We denote the target black-box

identification algorithm as a multi-class classifier M . The

inputs of M are K traffic features of a IoT device denoted

as H = {h1,h2, ...,hK}, where hi is the ith traffic feature

of the device. Accordingly, the identification results S can be

written as

S = M(H). (1)



The output is the identified IoT class denoted as S = {Si}, i ∈
[1, 2, ..., N ], where N is the total classes of IoT devices that

can be identified. The identifier aims to estimate the likelihood

probability P (S|H), which is the probability of the IoT class

S given the traffic input H . As shown in Figure 2, our goal

is to establish a substitute model, namely, M̂ , adapted to the

input-output relation of the target black-box model M , such

that M̂ and M have the same identification results for the

same group of IoT devices. This problem in fact falls into

the area of model transferability [17] in machine learning.

When labeled training datasets are collected from the same

population distribution of the target black-box model, it is

feasible to train a substitute model even when it has different

internal structures [18]. Without loss of the generality, we

adopt multi-layer full-connected neural network to learn the

target black-box identifier. Sigmoid function is applied at

the last layer and the class associated with the maximum

probability will be selected as the output.

A. Training Data Collection

Due to the broadcast nature of wireless communications,

we assume an attacker can eavesdrop on the traffic of IoT

devices and observe the identification results from the network

administrator. We then extract the features from the IoT traffics

and treat them as the inputs for the substitute model M̂ .

The identification results from the network administrator will

be treated as the output. As discussed, the attacker has no

knowledge of traffic features used in the black-box model. To

address the issue, we surveyed existing ML based IoT device

identification methods and build a feature pool that contains

all common traffic features used in these models. The feature

pool will be used as the start point of model training.

B. Substitute Model Training

Our model training takes two steps, 1) to obtain a substitute

model that can yield the same results as the target identifier,

2) to mitigate the performance overhead by selecting a refined

subset from the feature pool.

The process to obtain the accurate substitute model can

be stated as finding an M̂ that minimizes the empirical loss

L over the training dataset. Specifically, the process can be

formulated as

M̂ = argminL(S, Ŝ) = argmin
M̂

L(S, M̂(H)), (2)

where Ŝ is the predicted identification result yielded by the

substitute model M̂ given input H. The obtained substitute

model will work as the discriminative model in IoTGAN.

The first step focuses on building an accurate substitute

model, but it may incur considerable amount of computational

overhead as hundreds of features are used in model training.

To this end, IoTGAN carefully shrinks the parameter space

by selecting a refined subset where only features that indeed

affect accuracy will be maintained from the pool. In particular,

we adopt a weight training algorithm to obtain weights for all

features in the pool. Then, we create the subset by selecting
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Fig. 2. Obtaining a substitute model as the discriminative model in IoTGAN.

top L weighted features and retrain the labeled data. In order

to determine the optimal size of the subset, we further define

a metric Performance Gain to evaluate the prediction results

of the substitute model given different values of L.

Performance Gain =
(rc − rp)/rc − (cc − cp)/cc

(cc − cp)/cc
.

where rc and rp represent the accuracy rate for current and

previous subset size of L respectively, and cc and cp denote the

computational overheads for current and previous subset size

of L respectively. In particular, the computational overhead is

defined as the time required to identify the class of IoT device

using the substitute model. A positive Performance Gain

indicates that the accuracy grows faster than the computation

overhead with the increasing size of the subset. In IoTGAN,

L is chosen empirically according to the performance gain.

Specifically, we aim to keep a refined feature subset that

can obtain a substitute model with high accuracy rate but

at the same time impose negligible time overhead on device

identification.

V. MANIPULATING THE TRAFFIC OF IOT DEVICE TO

EVADE IDENTIFICATION

In this section, we design the manipulative model in IoT-

GAN. The manipulative model is used to manipulate IoT

device’s traffic such that the discriminative model can not

successfully identify the IoT devices. As we introduced in

aforementioned content, the discriminative model in IoTGAN

is a substitute model of the target identification model, there-

fore IoTGAN just needs to manipulate IoT device traffic to

evade the obtained substitute model. In particular, the manip-

ulate model is trained following the strategy of training the

generative model in GAN. This training procedure minimizes

the probability of correct identification in the discriminative

model. The training process of the manipulative model in

IoTGAN is shown in Algorithm 1.

The manipulative model takes IoT device traffic h and a

noise s as input. The noise is a vector of traffic features.

Specifically, we only consider to manipulate the features that

do not affect the functionality of IoT devices. For example,

the content in data payload of a packet will not be changed

to avoid disturbing the communication of IoT devices. As

most features used in IoT identification (e.g.,service request



Algorithm 1: Training process of the manipulative model in

IoTGAN.

Input : Original IoT device traffic feature vector H

Output: Trained manipulative model
1 while not satisfy (2) do
2 Learning on original traffic H;

3 Update the substitute model M̂ ;

/* Obtain the substitute model. */

4 while Not converging do
5 Initialize the multiplier factor r;
6 Set the adversarial perturbation s = rh;

/* Get the perturbation. */

7 Generate the manipulated traffic h
′ = Gθ(h, rh);

8 Label h′ using the substitute model M̂ ;
9 Update the manipulative model’s parameter set θ.

/* Train the manipulative model. */

interval, service volume, local port, remote port) does not

associate with the content of a message, it is feasible to fool the

discriminative model by manipulating the traffic features. In

IoTGAN, the manipulative model G generates the manipulated

traffic h
′ by

h
′ = Gθ(h, rh), (3)

where r = {r1, r2, ..., rn} is the multiplier factor for gen-

erating noise s, n is the number of elements in h. For

i ∈ 1, 2, ..., n, ri is 0 if the corresponding feature may

influence the functionality of IoT device; otherwise, ri a

random number sampled from a uniform distribution of [0,

0.1]; and θ is the parameter set of G. Since we consider

the discriminative model as a multi-class identifier, we cannot

simply adopt existing training procedure of GAN which only

works for the classifier with binary decisions. In this paper, we

propose a refined training process with two operation modes

1) device misidentification, 2) identity spoofing.

A. Device Misidentification

In device misidentification, the attacker aims to manipulate

the traffic features such that the discriminative model will

mislabel the given datasets. The process to achieve the purpose

is to find a manipulative model G that can maximize the

empirical loss L between the original and modified outputs

over the training dataset. Specifically, the process can be

formulated as

Gθ = argminL(Ŝ, ŜGθ
) = argmax

Gθ

L(M̂(H), M̂(Gθ(h, rh))),

(4)

where ŜGθ
is the predicted identification results of M̂ given

the modified input Gθ(h, rh). After training, the attacker can

hide the identify of IoT devices from been identified by the

network administrator.

B. Identity Spoofing

The misidentification can hide the identify of different IoT

devices but cannot camouflage them as any specified classes

for malicious purpose. For example, a surveillance camera

may want to pretend as a device with no sensitive data to

circumventing the rigorous export control policy. Towards

this objective, identity spoofing aims to generate modified

features that can fool the target model and yield the specified

identification outputs designated by the attacker.

The process of identify spoofing can be formulated as

finding a manipulative model G to minimize the empirical loss

L between the specified class and outputs given the modified

training dataset. Specifically, it is described as

Gθ = argmin
Gθ

L(Sspoof , M̂(Gθ(h, rh))), (5)

where sspoof is the class specified by the attacker. After

training, the attacker is able to deceive the discriminative

model and pretend as any type of IoT device.

VI. COUNTERMEASURES

As discussed in Section III, traffic based features can be

subtly manipulated by IoT devices to evade machine learning

based IoT device identification. To defend against IoTGAN,

we aim to identify different IoT devices using features that

cannot be easily manipulated. The proposed classifier is com-

plementary to existing IoT identification methods and can be

easily integrated with them to improve identification accuracy.

We observe that raw wireless signals emitted from different

IoT devices can exhibit inherent hardware features that cannot

be forged by common users. In particular, manufacturing

imperfection existing in IoT devices may impose a substantial

change on the transmit signal waveforms, yielding unique

features for device identification. We also note that wireless

signals experience distinct channel distortions when they travel

through different propagation paths [19]–[21]. We aim to take

advantage of these nonlinear characteristics of radio channels

to fingerprint different devices at various locations.

Specifically, we propose a method named Device Profiling

to distinguish different IoT devices. The method includes two

components: 1) feature profiling, which statistically describes

the nonlinear characteristics of the transmit signals from IoT

devices; 2) device fingerprinting, which builds a neural net-

work based multi-stage classifier to learn the feature patterns

for accurate and efficient device identification, even when the

traffic based features are manipulated.

In feature profiling, we profile different IoT devices us-

ing features extracted from radio frequency signals in four

perspectives: amplitude attenuation, phase shift, frequency

offset, and arrival angle. In particular, amplitude attenuation

and phase shift can be extracted from channel estimation at

the receiver. Both features indicate the channel distortions

caused by the internal hardware imperfection and the distinct

prorogation paths. Frequency offset can be estimated by the

maximum likelihood algorithm to derive the frequency devia-

tion caused by transmitters’s internal imperfections. The arrival

angle can be measured via the multiple-input and multiple-

output (MIMO) technique and exhibits the location-specific

information of propagation channels.

In device fingerprinting, we build a multi-stage classifier

which combines CNN and multi-class decision tree for accu-

rate and efficient device identification. The input of the clas-



TABLE II
THE IDENTIFICATION RATE FOR DIFFERENT TARGET MODELS AND TRAINED DISCRIMINATIVE MODELS.

Model
Target Model Discriminative Model

Training Dataset Test Dataset Training Dataset Test Dataset

Random Forest 97.62% 97.32% 96.36% 97.10%

Decision Tree 92.20% 93.25% 92.12% 90.89%

SVM 97.89% 96.58% 96.50% 95.52%

k-NN 93.11% 92.33% 90.12% 91.56%

Neural Networks 98.56% 98.86% 98.00% 97.92%

sifier is the profiled features and the channel state information

estimated at the receiver, while the output is the mapping

results of different IoT devices (i.e., a possibility associated

with each specific device is generated to indicate how likely

the input belongs to the device). In particular, the CNN is

used to learn the subtle differences between different IoT

devices that cannot be fully captured by the features extracted

in feature profiling. The multi-class decision tree breaks down

the whole dataset into different levels and make decisions step

by step, in that way we only travel through the branches with

high possibility, reducing the unnecessary searching space.

Unlike traditional link signature based identification [22],

[23], where a location-specific metric is extracted from radio

channels to localize devices at different positions, the proposed

approach considers both internal hardware imperfection and

external location-specific features to distinguish devices with

different identities (e.g., types, locations). In addition, the deep

learning based classifier is expected to better fuse different

features and achieve a higher accuracy.

Our experiment shows that the propose Device Profiling can

achieve fast and accurate IoT device identification even in the

presence of the manipulated traffic flows.

VII. EXPERIMENTAL EVALUATIONS

In this section, we evaluate the attack performance of

IoTGAN and the defense effectiveness of Device Profiling.

A. Experimental Setup

The dataset used in evaluation is obtained from UNSW

IoT Trace Data [24]. The dataset is collected in real-world

environment deployed with 28 different IoT devices. These

IoT devices include smart cameras (e.g., Samsung SamrtCam,

Belkin camera, TP-Link Cloud camera, and Ring door bell),

smart hubs (e.g., Amazon Echo, Samsung Smart Things),

smart switches (e.g., Belkin motion detector, and TP-Link

smart plug) and healthcare devices (e.g., Withings Smart scale,

Blipcare blood pressure meter). In the evaluation, we split the

IoT trace dataset into two parts. The first part contains 80%

of the data as the training dataset, while the remaining 20% is

used as the test dataset. In order to validate the performance of

IoTGAN, we adopt several typical machine learning based IoT

device identification models as the target black-box models,

including Random Forest [25], Decision Trees [5], SVM [5],

k-NN [7], and Neural Networks [13].

B. The Evaluation of IoTGAN

We following the references to implement the five typical

machine learning based IoT device identification models. Then

we use the UNSW IoT Trace Data to train and test these

models. We use a metric named identification rate to evaluate

the performance of IoTGAN, it is defined as

Identification Rate =
Correct Identification Count

Total Identification Count
.

The evaluation results for the five target machine learning

based IoT device identification models without the attack of

IoTGAN is shown in the left two columns of Table II. We

can observe that all these five typical identification models

can achieve a high identification rate larger than 92% for IoT

device identification. For the Neural Networks based model,

the identification rate can even achieve 98.86%.

The evaluation results of Table II indicate that the five

selected typical identification models are able to successfully

identify IoT devices when there is no malicious interference.

Therefore, they can work as good baselines to evaluate the

effectiveness of IoTGAN. If their identification rates are sig-

nificantly dropped under the attack of IoTGAN, our proposed

attack strategy will be proved effective in camouflaging IoT

devices.
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Fig. 3. The identification rates for the discriminative model.

1) The Evaluation of Discriminative Model: We train dis-

criminative models and manipulative models for all five target

models with the UNSW IoT Trace Data. The same training



and test datasets are used to obtain the discriminative models.

Since discriminative models are the substitutes of the target

identifiers, they should have the similar identification rate. The

right two columns of Table II demonstrate the performance of

the discriminative models. As shown, our substitute models

can achieve similar identification rate as the target ones.

The results indicate that our proposed training process can

effectively learn the target identifiers and generate the same

identification results.

Figure 3 shows the identification rates of the discriminative

models as the number of epochs increases. As shown, the

discriminative models for all target identifiers can reach the

stability after 40 epochs and approach an identification rate

higher than 90%. In particular, the discriminative model for

random forest identifier can achieve a high identification rate

of 92.10% after 40 epochs.

2) The Evaluation of Manipulative Model: We then use

IoTGAN to attack these target models and calculate the new

identification rate for both the training dataset and test dataset.

We first mount the attack of the device misidentification

to reduce the identification rate of the target model. The

evaluation results are shown in Table III. We can observe that

IoTGAN is able to decrease the identification rates to almost

zero for all five target models. This indicates that IoTGAN

can successfully manipulate the IoT traffic to evade machine

learning based IoT device identification.

TABLE III
THE IDENTIFICATION RATE FOR DIFFERENT MACHINE LEARNING BASED

IOT DEVICES IDENTIFICATION MODELS UNDER THE ATTACK OF IOTGAN.

Model Training Dataset Test Dataset

Random Forest 0.15% 0.13%

Decision Tree 0.05% 0.06%

SVM 0.11% 0.08%

k-NN 0.21% 0.23%

Neural Networks 0.08% 0.06%

Next, we launch the attack of identity spoofing to camou-

flage IoT devices with specified types. In UNSW IoT Trace

Data, we have four main types of IoT devices (i.e., smart

cameras, smart hubs, smart switches and healthcare devices.).

We conduct an experiment of the identify spoofing among all

these types of IoT devices and evaluate their performance.

In particular, we define a metric named Spoofing Rate that

indicates the successful rate of the spoofing attack. It is

described as the ratio between the count of successful spoofing

identifications and the total count of identifications,

Spoofing Rate =
Successful Spoofing Identification Count

Total Identification Count
.

Table IV demonstrates the performance of the identify

spoofing. As shown, we can achieve more than 90% successful

rate when spoofing the IoT identify between smart camera ⇔
smart hub; smart camera ⇔ healthcare device; smart hub

⇔ healthcare device; smart switch ⇔ healthcare device.

Such results indicate that the attack can effectively hide the

identity of IoT devices and designate them new specified ones.

However, we also find two exceptions (i.e., smart camera

⇔ switch, smart hub ⇒ switch) that can only achieve the

spoofing rate around 70%. This may because the traffic pattern

of the smart camera is quite different from the smart switch

that can hardly be spoofed. Specifically, the smart camera

usually enables a real-time video transmission that demands a

high bandwidth and privileged wireless channel. On the other

hand, the data from the smart switch is relatively static and

sparse that only occupies a very limited bandwidth. Due to

the nature difference of the traffic pattern between the camera

and switch, it’s hardly to hide some trivial features without

affecting its functionalities.

C. The Evaluation of Device Profiling

We implement the Device Profiling following the design

in Section VI. It mainly includes two components: the fea-

ture profiling, which uses the nonlinear characteristics of the

transmit RF signals for IoT device profiling; and the device

fingerprinting, which build a neural network based multi-stage

classifier to learn the feature patterns for accurate and efficient

device identification even when the traffic based features are

manipulated. The system is built with Intel WiFi Wireless

Link 5300 802.11n MIMO radio tool [26] to collect data.

Device Profiling is deployed in a real-world environment with

different IoT devices (e.g., Eufy security camera, Eufy smart

lock, and Ecobee thermostat) for evaluation. We then use

IoTGAN to attack this Device Profiling system. The evaluation

results is shown in Figure 4
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Fig. 4. The identification rates for Device Profiling in the scenario: (1) without
the attack of IoTGAN, and (2) under the attack of IoTGAN.

From Figure 4, we can see when there is no attack of

IoTGAN, Device Profiling can achieve an identification rate

around 98%. When IoTGAN is deployed to launch attacks,

there is nearly no effect on the identification rate of Device

Profiling when the epoch of training the manipulative model

is less than 30. This indicates that the generative model needs

approximate 30 epochs of training to approach the stable

state. After that, the Device Profiling can still maintain an

identification rate around 95%. Therefore, we can conclude



TABLE IV
THE SPOOFING RATE FOR DIFFERENT TYPES OF IDENTITY SPOOFING ATTACK (camera ⇔ hub INDICATES THE IDENTIFY SPOOFING BETWEEN THE

SMART CAMERAS AND SMART HUBS. camera ⇒ hub INDICATES THE ATTACKER AIMS TO CAMOUFLAGE THE IDENTIFY OF SMART CAMERA TO THE

SMART HUB.)

Identity Spoofing camera ⇔ hub camera ⇔ health camera ⇔ switch hub ⇔ health hub ⇔ switch switch ⇔ health

Model ⇐ ⇒ ⇐ ⇒ ⇐ ⇒ ⇐ ⇒ ⇐ ⇒ ⇐ ⇒

Random Forest 92.11% 91.59% 85.12% 89.13% 77.12% 68.31% 91.13% 90.12% 91.87% 75.63% 90.34% 91.31%

Decision Tree 93.19% 92.21% 90.23% 89.35% 70.79% 69.21% 89.23% 92.49% 92.85% 71.25% 91.13% 92.95%

SVM 89.17% 91.75% 89.72% 91.89% 72.65% 70.12% 92.54% 92.13% 90.15% 69.92% 93.56% 92.79%

k-NN 91.57% 91.12% 88.21% 90.92% 68.15% 69.78% 91.45% 90.68% 89.74% 70.54% 91.51% 90.36%

Neural Networks 93.67% 93.98% 89.10% 87.88% 73.64% 71.23% 91.65% 93.68% 91.20% 71.99% 92.55% 93.79%

that Device Profiling can successfully defend against the

attacks launched by IoTGAN.

VIII. CONCLUSIONS

In this paper, we investigate the security of machine learn-

ing based IoT device identification methods. We propose a

novel attack strategy named IoTGAN to manipulate the IoT

devices’ traffic such that it can evade machine learning based

IoT device identification. In IoTGAN, a substitute model is

designed to fit the target identification model in a black-box

setting, and a manipulative model is trained to add adversarial

perturbation into IoT devices’ traffic to evade the substitute

model. Experimental results show that IoTGAN can effectively

disrupt device identification. We also develop countermeasures

complementary to existing methods to further protect machine

learning based IoT device identification.
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