
Presented at PSE Workshop held in 1st IEEE International Conference on e-Science and Grid Computing, Melbourne,
Dec. 5, 2005

A Distributed Problem Solving Environment (PSE) for Scientific Computing

Shigeo Kawata1), Hideaki Fuju1), Hideaki Sugiura1), Yuichi Saitoh1), Yoshikazu Hayase2),
Takayuki Teramoto3), Takashi Kikuchi1), Hitohide Usami4), Hiroyuki Kanazawa5), Motohiro

Yamada5), Yutaka Miyahara5), Masahide Fujisaki5)
1) Graduate School of Engineering, Utsunomiya University 7-1-2 Yohtoh, Utsunomiya 321-8585,

Japan,kwt@cc.utsunomiya-u.ac.jp
2) Department of Electronic Control Engineering, Toyama National College of Maritime Technology,

1-2 Ebie Neriya, Shinminato, Toyama, 933-0293, Japan
3) Department of Electronics and Computer Engineering, Tsuyama National College of Technology

Numa 624-1, Tsuyama, 708-8509, Japan
4) National Institute of Informatics, Center for Grid Research and Development, Jinbocho Mitsui-

building 14F(NAREGI), 1-105, Kanda-Jinbocho, Chiyoda-ku, Tokyo 101-0051, Japan
5) Computational Science and Engineering Center, Fujitsu Limited, Mihama-ku, Chiba 261-8588,

Japan

Abstract

A distributed Problem Solving Environment (PSE) is
proposed to help users solve partial differential equation
(PDE) based problems in scientific computing. The
system inputs a problem description and outputs a
program flow, a C-language source code for the problem
and also a document for the program. Each module is
distributed on distributed computers. The PSE contains
all the information of the problem, PDEs, discretization
scheme, mesh information, equation manipulation results,
designed program structure, variable and constant
definitions and program itself. Therefore the
documentation support module generates a document for
the generated program and the problem itself in the PSE.
The module liaison module generates an adapter module
among the distributed PSE modules. The job execution
service module deploys programs generated or prepared
on distributed computer resources and helps users run the
programs on the distributed computers. The concept of
the distributed PSE extends the potential of conventional
PSE systems.

1. Introduction

Recently studies on Problem Solving Environment
(PSE)[1-13] for partial differential equation (PDE) based
problems have been extensively explored in order to
support engineers, scientists, students and so on to

compute or simulate their own problems on distributed
computers. Computer analyses and simulations have been
performed to design products, study scientific issues and
more, and have been recognized as the third method
following theoretical and experimental methods. One of
the major objectives in PSE researches is to help users
compute or simulate their problems without heavy tasks,
for example, without complete knowledge[10, 11] for
computations or without a full programming[1-12]. In this
sense the PSE provides an infrastructure for software for
computational engineering and science.

In PSE for PDEs, one of problems, which should be
solved, is to develop huge PSE systems, including
reusability of legacy PSE softwares. In order to solve this
problem in PSE, a module-based PSE is proposed[14];
each PSE module solves a part of PSE tasks, for example,
problem description interface, discretization, scheme
suggestion module, program flow designer, program
generator, data analyzer, visualizer, and so on. If each
module can be developed independently and works
cooperatively and smoothly to solve one PSE job, the
heavy work of PSE development may be drastically
relaxed.

On the other hand, in High-Performance Computing
(HPC) and simulations in science and technology,
distributed computer systems including GRID systems
[15, 16] are now popular and provide a flexible and cost-
effective environment. The distributed computer system
may be in a complex environment of heterogeneous
computer hardware and software. However, it is quite

difficult for users to know the detail structure of the
distributed computer system they use. In a realistic and
useful distributed environment users should be supported
by assistant software [15], so that users can use the
distributed computer systems smoothly and effectively
without detail knowledge of the distributed computer
system itself.

In this paper a new distributed PSE, called D-NCAS,
is proposed in order to support users to generate a
computer program and to work on distributed computer
systems. The PSE system inputs a problem information
including discretization and computation schemes, and
outputs a program flow, a C-language source code for the
problem and also a document for the program and for the
problem. On a host computer a user inputs his/her
problem, and the host navigates the user to solve the
problem. The distributed PSE for PDEs consists of
several modules: a problem description module, a
discretization one, an equation manipulation one, a
program design one, a program generation one,
documentation support module, a module liaison module
and a job execution service module. Each module is
distributed on distributed computers, and all the
information is described by the Extensible Markup
Language (XML)[17] including the Mathematical
Markup Language (MathML) [18]. Each distributed
module communicates with the host module by using
XML documents, so that outputs from each module are
visualized. Independent modules which are developed by
other engineers or users for one of the functions specified
above can be also used after adjustments to the distributed
PSE interface, if necessary. Therefore the concept of the
distributed PSE extends the potential of conventional PSE
systems.

The PSE contains all the information of the problem
itself, PDEs, discretization scheme, mesh information,
equation manipulation results, designed program structure,
variable and constant definitions and program itself.
Therefore the documentation support module also
generates a document for the generated program and the
problem itself in the PSE.

 The module liaison module generates an adapter
module among the distributed PSE modules. The adapter
module generated by the module liaison system inputs
output data from preceding modules and/or external
modules, and connects the data to the input data for the
next module.

The job execution service module deploys programs
generated or prepared on distributed computer resources
and help users run the programs on the distributed
computers. The PSE tells users which computers are
available and appropriate for their specific application
software by using hardware and software information
specified. Then the users deploy their software on the
distributed computer systems. The PSE may open a new
flexible high performance computing environment.

2. Target Issues of PSE

The present research target issues of the PSE include
the followings: (1) Computer-assisted program
generation should be supported. (2) Simple and easy
execution of users’ application programs on distributed
computers. (3) Simple and easy deploy of users’ programs
onto the distributed computer environment.

Based on the PSE presented in this paper, users may
work smoothly on a distributed computer system: users
obtain simulation programs generated by the PSE, also
need not have precise information about hardware
location behind the PSE, and execute their software
without difficulties. The job execution service module in
the distributed PSE holds all the information about the
distributed computer system and manages all the
information relating to hardware, software installed, job
execution, network and the location of computation
results .

3. A Distributed PSE

In our distributed PSE all the modules are distributed
on network-linked computers. The information for the
distributed modules and the computers are registered in a
host computer. Newly developed modules by some users
or scientists or so can be also registered in the host PSE
server. The distributed PSE host server has the registered
information for the modules oriented to one specific
purpose, and users can obtain the information for each
module and can select one of the modules to perform one
task in all the PSE process. The schematic diagram for the
distributed PSE is shown in Fig.1.

At the beginning of problem solving process a user
inputs his/her problem information and computation
scheme information into the host PSE server. All the
information is described by XML, and is visualized to the
user.

The communication is accomplished through an
interface using WWW server and Applet. The PSE server
sends an information described by XML to a module, and
the module performs the task. The module sends the result
based on the input XML information back to the PSE
server. The result is visualized so that the user can check
if the result is appropriate. After successive processes,
finally the PSE generates a designed program flow and
then a C program. Figure 2 shows the network structure
employed in the PSE. The program generation PSE
module provides a workflow shown in Fig.3, and the user
follows the workflow navigation for a problem generation.

4. Problem Solving in Distributed PSE
4.1 PSE modules for program generation support

In a problem description XML document the

followings are specified: dimension in space, PDEs,
constants, variables, variable definition points in space
and time, initial and boundary conditions, discretization
scheme, and space mesh definition. Because all the
information is described by XML, the information is
treated as tree-type information. Figure 4 shows a part of
an example input problem description in XML, and the
XML document is visualized to the user as shown in Fig.5.
The PDEs and boundary conditions are also described by
the Math-ML (a subset of XML) as shown in Fig. 6. In
the XML document for problem description, a user inputs
information for dependent and independent variables,
constant factors, in addition to the definition in a space
mesh and a time mesh for variables. Based on the
information with the mesh information and the
discretization scheme information, the PDEs are
discretized and manipulated in order to obtain a matrix or
a final form of each discretized PDEs. First we present
example results of PDEs discretization by finite
difference method (FDM).

The input problem information includes PDEs and a
discretization scheme specified by a user. An FDM/FEM
module transforms a PDEs XML document to another
XML document for discretized PDEs, based on the input
information.

An Example discretization is presented in the
followings: an example PDE for diffusion problem is
Eq.1.

Web Browser
User 1

Java Applet
WWW
Server

Distributed PSE
Server

Server_skeleton

Data_proxy

Mod_Control2

Data_skeleton

Module2

Data_proxy

Mod_Control1

Data_skeleton

Module1

Horb

ModuleServer1 ModuleServer2

Data Base

Web Browser
User 2

Horb

ServerObj3

Horb

....

ServerObj3

ServerObj3

Fig. 2. Structure of distributed PSE Network

Problem Description
& Computation Scheme

Information

User

Designed Program
Flow & C Program

PSE
Server

Module A1

Module Server A

:

Module A2

Module A3

Module B1

Module Server B

:

Module B2

Module B3

Module C1

Module Server C

:

Module C2

Module C3

Fig. 1. Overview of the distributed PSE

Problem Description XML Document

PDEsVariable information

C-language Source Code
for the Problem

Ditributed PSE Server

XML

User

Discretization Process

Discretization
Module

Dimension in Space Variable Definition
Point in Space & Time

Initial Condition
Boundary ConditionDiscretization Scheme

Variable information

Module Servers

Problem Flow
Description XML Document

Basic Program Skeleton

XML Encoding
Module

XML
Program Flow

Module

Input

Visualized

Output

Manipulate Process
Manipulate

Module
XML

Fig. 3. Distributed-PSE work flow

02

2

2

2

=
∂
∂+

∂
∂+

∂
∂

y
TA

x
TA

t
f (1)

When a user chooses the Euler explicit scheme, the first
term is discretized as follows:

dt
ff

t
f i

n
i

n

i

−=
∂
∂ +1

 (2)

where the superscript of 'n' is a time index , the subscript
of 'i' is space index and 'dt' shows the time-step size. The
second and the third terms are discretized as shown in Eq.
3, depending on the user’s specification. In this case the
central difference scheme is employed.

2
11

2

2 2
dx

TTT
x
T i

n
i

n
i

n

i

−+ +−=
∂
∂ (3)

where 'dx' is the mesh size. Figure 6 shows a problem
information described by an XML document for this
example. The following example shows an advection
equation, where the advection term is discretized by the
Upwind difference scheme.

0=
∂
∂+

∂
∂

x
fu

t
f (4)

where 'u' is a velocity of a convective material, for
example, fluid. In this case the second term in Eq.4 may
be transformed to Eq.5

dx
ffuu

dx
ffuu

x
fu i

n
i

ni
n

i
n

i
n

i
ni

n
i

n

i

−−
+−+

=
∂
∂ +− 11

22
 (5)

Figure 7(a) shows the variable definition points of 'f ' and
'T ' in Eq. 1 on a mesh. Figure 7(b) shows an visualization
example for Eq.1 using the XML document. The XML
and Math-ML documents are visualized in a web browser
by using the software "techexplorer"[19]. The
discretization result is also shown in Figure 7(c).

The PSE problem input module sends an input

information described in XML to the FDM/FEM module,
and the module performs the discretization and equation
manipulation tasks. Then the FDM/FEM module sends
the result written in the XML document back to the PSE
host.

The program-generation PSE modules also help users
generate MPI-based parallel simulation programs based
on partial-differential equations (PDEs). The D-NCAS
capability explores possibilities to visualize and steer the
parallel program design process. At present D-NCAS
supports a domain decomposition in a design of a parallel
numerical simulation program, and the domain
decomposition is designed or steered by users through a
visualization window. After designing the domain
decomposition, the parallel program itself is also designed

<?xml version="1.0"?>
<reln dimension="2">

<eq/>
<apply>

<plus/>
<apply solvaType="ForwardDifference">

<plus/>
<apply>

<partialdiff/>
<bvar>

<ci attachment="n"
defineType="independence"
relation="time"
uniform="true">t</ci>

</bvar>
<fn>

<ci defineType="dependence"
idefinition="0"
irelative="0" jdefinition="0"
jrelative="0">f</ci>

</fn>
</apply>

</apply>
<apply solvaType="CentralDifference">

<plus/>
<apply>

<times/>
　　　　　　　　．．．．．．

Discretization Scheme

Variable Information

Discretization Scheme

Fig. 6. A Problem Information for FDM in XML

Fig. 5. Visualization of an XML Problem
Information using an XSL Style Sheet Fig. 4. An example problem description XML

document

<?xml version="1.0" encoding="SHIFT_JIS"?>
<?xml-stylesheet type="text/xsl" href="fdmXSL.xsl"?>

<informationFDM>
 <header>
 <title>Thermal Diffusion Problem</title>
 <dimension>2</dimension>
 </header>
 <mesh_condition>
 <time>
 <factor>t</factor>
 <time_type>uniform</time_type>
 <times sec="100"/>
 <timestep sec="0.01"/>
 </time>
 <space>
 <space_type>uniform</space_type>
 <i_coordinate imin="0" imax="20"
istep="0.1">
 x</i_coordinate>
 <j_coordinate jmin="0" jmax="10"
jstep="0.1">

and generated in NCAS, and the designed parallel
program is visualized and steered by a PAD diagram.

In D-NCAS, MPI functions are employed for message
passing, and a SPMD (single program multiple data)
model is supported. The visualization and steering
capabilities provide users a flexible design possibility of
parallel programming．

The parallel program generation module of D-NCAS
inputs PDEs, boundary and initial conditions, parallel
program information for a domain decomposition, CPU
number employed, and mesh information. All the
processes are visualized and steered in order to meet the
user’s requirement. Figure 8 shows an example of the
visualization for a generated program by a PAD diagram.

At the same time the program generation module also

generates a document for the generated program as shown
in Fig. 9, because the D-NCAS component keeps all the
the information from the abstract problem description,
equations and so on as described above.

4.2 Module Liaison for a distributed PSE

In our distributed PSE (D-NCAS) all functions from

an input problem description to a C program generation
and a document generation are divided into separate
functions. They are assigned to specific modules
distributed on network-linked computers. The

Main function in a parallel programMain function in a parallel program

Solver for Temperature

Solver for Temperature

Main function in a parallel programMain function in a parallel program

Solver for Temperature

Solver for Temperature

Fig. 8. Example visualization of a main part of
a designed parallel program by using a PAD
diagram in the parallel program generation

component in the PSE toolkit.

First term of LHS
Second term of LHS
Third term of LHS
First term of RHS
Second term of RHS

Discretization Scheme
Term Scheme

First term of LHS
Second term of LHS
Third term of LHS
First term of RHS
Second term of RHS

Discretization Scheme
Term Scheme

Fig. 9. Example of a document generated by the
parallel program generation component in the

PSE server. This module contains the input
information of abstract problem input information,
for example, PDEs, problem area, variables, etc.

Therefore the document is also generated with the
MPI-based parallel program from the higher level

information.

(a) (b)

(c)

i

j

f T

x

y

Fig. 7. a) Variable definition positions in one
mesh, b) a visualized example basic equation

and c) a discretization result.

information for the distributed modules and the computers
is registered in a host computer, that is, a module register
PSE server. New modules developed by users can also be
registered in the host module register PSE server. Users
input their problem information into the PSE server
through the PSE WEB server. The PSE server sends the
information described in XML to the next module, and
the module performs the task. The module sends the
result based on the input XML information back to the
PSE server. After successive processes, finally the PSE
server gets a designed program flow and then a C
program. Figure 10 shows the structure of the module
liaison module.

Each module of the distributed module-based PSE
may be developed by different users. Although this
feature makes the PSE flexible and expandable as
discussed in Introduction, the input/output data type and
order may be different from those of other modules. If
they do not fit to those for other modules, the problem
solving process can not be accomplished.

Our module liaison system provides the data adapter
to convert the input/output data to the data fitted to those
for the next module. As long as the input/output data are
described by XML and their information including the
data type and the data order are known, the module
liaison system produces a data adapter to connect the
modules in the distributed PSE. In order to know the
input/output data information, in this paper we assume
that each module has an example set of the input/output
data information described by XML, besides a complete
document for the data input/output. Without the full
information of the input/output data one can not use the
module in a problem solving process. Therefore this
assumption is reasonable.

Figure 11 shows the interface of the module register
PSE server. The module register PSE server contains the
module information, including the input/output data
information, the location of the document and the module
location URL (Uniform Resource Locator), and it also has
the information of user-designed workflows to solve a
problem. Through the WEB page shown in Fig.11 users
find the available module list. The users connect the
selected modules, and design the workflow for their
problem solving tasks.

At the module registration phase, the module
information of the module class name, its method name
and arguments are registered together with the data
input/output information, the module location, etc. The
module information is described by WSDL (web service
description language). When the module is registered to
the module register PSE server and is deployed on
distributed computers, the WSDD (web service
deployment descriptor) file is also used as a usual web
service.

In a distributed PSE a new module may be added or a
legacy module may be updated by individual
users/developers. If the module liaison system helps
users connect the modules and provides adaptors among
the modules based on the input/output data information of
the modules, the module liaison system elevates the
module-based distributed PSE capability further.

Figure 12 shows a concept of the data adapter module,
generated by the module liaison system. The preceding
modules output data and the next module may input the
data together with an external data in general. Each
module has the input/output data information including
example input/output data XML files and a document for
the data.

HTTP

Module Register PSE Server

User

WEB Browser

SOAP

Module
Liaison
System

Data Input
module

C-Program
Design &

Generation
Module

ADAPTER
Equation

Manipulation
Module

Discretization
Module

Module
Generation

HTTP

SOAPSOAPSOAP

Fig. 10. A module liaison system

Fig. 11. Interface of the module register PSE
server

4.3 Job execution service module PSE

The scientific computing tends to require high
performance computers, which may be distributed locally
or globally. At present network linked distributed
computer systems including Grid systems are widely
available for researchers and engineers. However, it is
difficult for researchers to obtain detail information on
distributed hardware and software resources, which may
be a large system, consisted of many computers. When
the users work on the distributed resources, the users need
to find computing resources, data analysis servers and
data storage servers. The job execution management
including these functions is essentially important for
scientific computing on the distributed resources.

The job execution service module does not need any
special Grid middleware to construct it, and the client can
use this system by accessing the Web page for the job
execution service system.

The job execution service module consists of dynamic
system management servers, execution servers and data
servers. The dynamic system management server is
duplicated in order to keep the system robust, and has an
assistant management server. The dynamic system
management server has a function of the job execution
system management, including software deployment,
program compilation, job execution, job status retrieval
and computing data retrieval. This system does not
require special middleware such as Globus or UNICORE
or GLite or etc. Users access the web page on the
dynamic system management server, and the clients
submit jobs. After the submitted job finishes, the dynamic
system management server collects the information from
other distributed computers. The dynamic management
server and its assistant server move dynamically to new
servers, if the present servers become busy. The dynamic
system management server also demands the execution
server to transfer the result data to the optimal data server.
The dynamic system management server copies the
computing data and sends the compressed computing data
to another optimal data server in order for a robust data
storage system. The clients can deploy their programs,

execute jobs and retrieve the result data by accessing only
the web page in the dynamic system management server.
This job execution management server also has a function
of automatic system construction, so that the users can
manage the setup of the job execution management
system easily on their closed distributed computers.

5. Conclusions

In this paper we presented the distributed PSE of D-

NCAS to help users work on distributed computers. The
role and viability of the PSE in the distributed computer
system are demonstrated. The PSE server provides a
smooth and flexible environment in the HPC on the
distributed computers. The distributed PSE supports
generation of simulation program and its documentation
for PDEs-based problems, and also supports the job
execution task on a distributed computer environment.
The job execution service module in the distributed PSE
encapsulates the complex information of distributed
system so that on the PSE users can perform HPC as if
distributed computers are under users’ hand. The
distributed PSE may open a new environment for HPC
world.

Acknowledgements

This work was partly supported by the NAREGI
(National Research Grid initiative) project in Japan. The
authors would like to express their appreciations to Prof.
K. Miura (the leader of the NAREGI project), Dr.
Motohiro Yamada, Dr. Yutaka Miyahara, Prof. yoshio
Tago, Prof. Yukio Umetani and Dr. Hiroyuki Kanazawa
for their fruitful discussions on this subject.

References

Client

SSL

MPI execution server

Dynamic system
management

server

Dynamic
assistant server

Web browser

Job submission, Acquisition of result data etc.

Synchronization Job execution and
data servers

Job execution service system

Fig. 13. Structure of the job execution service
system

Next Module or
New Module

Legacy modules

Input
Data

Adaptor

Data
Conversion

External Data

Legacy modulesLegacy modules
or New Module

Output
Data

Fig. 12. Adapter generated by the module liaison
system. The adapter converts the output data
from preceding modules and may combine the
external data to produce the input data to the

next module.

 [1] C.Boonmee and S.Kawata, “Computer-Assisted Simulation
Environment for Partial-Differential-Equation Problem, 1. Data
Structure and Steering of Problem Solving Process”, Trans. of
the Japan Society for Computational Engineering and Science,
Paper No. 19980001, 1998.

[2] C.Boonmee and S.Kawata, “Computer-Assisted Simulation
Environment for Partial-Differential-Equation Problem: 2.
Visualization and Steering of Problem Solving Process”, Trans．
of the Japan Society for Computational Engineering and
Science, Paper No． 19980002, 1998．

[3] S.Kawata, C.Boonmee, A.Fujita, T.Nakamura, T.Teramoto,
Y.Hayase, Y.Manabe, Y.Tago and M.Matsumoto, “Visual
Steering of the Simulation Process in a Scientific Numerical
Simulation Environment –NCAS- ", Enabling Technologies for
Computational Science, edited by E.Houstis and J.Rice, Kluwer
Academic Pub., 2000, pp. 291-300.

[4] E.Gallopoulos, E.Houstis, and J.R.Rice, “Future Research
Directions in Problem Solving Environments for Computational
Science”, Technical Report CSRD Report No.1259, Report of a
workshop on Research Direction in Integrating Numerical
Analysis, Symbolic Computer, Computational Geometry, and
Artificial Intelligence for Computational Science, Washington
DC., April 11-12, 1991.

[5] Y.Umetani, "DEQSOL A numerical Simulation Language
for Vector/Parallel Processors", Proc. IFIP TC2/WG22, 5, 1985,
pp. 147-164.

[6] Y.Hirayama, J.Ishida, T.Ota, M.Igai, S.Kubo, S.Yamaga,
"Physical Simulation using Numerical Simulation Tool
PSILAB", The 1st Problem Solving Environment Workshop, pp.
1-7, 1998.

[7] J.R.Rice and R.F.Boisvert, "Springer Series in
Computational Mathematics 2", Solving Elliptic Problems Using
ELLPACK, Springer-Verlag, New York, 1984.

[8] H.Fujio and S.Doi, "Finite Element Description System,as a
Mid-Layer of PSE", Proceedings of Conference on Computation
Engineering and Science, Vol.3, No. 2, 1998, pp. 441-444.

[9] T.Okochi, C.Konno, and M.Igai, "High Level Numerical
Simulation Language DEQSOL for Parallel Computers", Trans.
of Information Processing Society of Japan, Vol.35, No.6, 1994,
pp. 977-985.

[10] E.N.Houstis, and J.R.Rice, "Parallel ELLPACK, a
development environment and problem solving environmentfor
high performance computing machienes", edited by In
P.Gaffney and E.N.Houstis, Programming Environments for
Hihg-Level Scientific Problem Solving, North-Holland,
Amsterdam, 1992, pp. 229-241.

[11] M.Kubota, T.Kawai, "Automatic Distributed System
Simulator Using Nature’s Algorithm on Highly Parallel
Computers", Int. Conf. On Supercomputing in Nuclear
Applications, Mito, March 1990.

[12] A.Fujita, T.Teramoto, T.Nakamura, C.Boonmee, S.Kawata,
"Computer-Assisted Parallel Program Generation System P-
NCAS from Mathematical Model-Visualization and Steering of
Parallel Program Generation Process-", Trans．of the Japan
Society for Computational Engineering and Science, Paper No．
20000037, 2000.

[13] K.Hoshi, "Development of A Problem Solving
Environment for Science and Engineering", The 1st Problem
Solving Environment Workshop, 1998, pp.13-18

[14] S.Kawata, A.Fujita, S.Machide, T.Hirama, K.Yoshimoto,
"Computer-Assisted Simulation System NCAS and a Future
PSE", Proc. the 2nd Problem Solving Environment (PSE)
Workshop, 1999, pp.89-94,

[15]Global Grid Forum. http://www.gridforum.grg/

[16] T. Teramoto, T. Nakamura, S. Kawata, S. Matide, K.
Hayasaka, H. Nonaka, E. Sasaki and Y. Sanada, “A Distributed
Problem Solving Environment (PSE) for Partial Differential
Equation Based Problems”, Trans. Jpn. Soc. Comp. Sci. Eng.,
Paper No. 20010018, 2001. Available: http://save.k.u-
tokyo.ac.jp/jsces/trans/trans2001/No20010018.pdf

[17]W3C Extensible Markup Language.
http://www.w3.org/XML/

[18]W3C Math Home. http://www.w3.org/Math/

[19]techexplorer, "IBM techexplorer Hypermedia Browser",
http://www.ibm.com/software/network/techexplorer/

