
Please do not remove this page

High Performance Cluster Computing Using
Component-Oriented Distributed Systems
Murthy, Venu
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/High-Performance-Cluster-Computing-Using-Component-Oriented/99
21859152901341/filesAndLinks?index=0

Murthy, V. (2005). High Performance Cluster Computing Using Component-Oriented Distributed Systems.
Proceedings of the International Conference on E-Science and Grid Computing.
https://doi.org/10.1109/E-SCIENCE.2005.50

Published Version: https://doi.org/10.1109/E-SCIENCE.2005.50

Downloaded On 2024/04/27 13:07:18 +1000
© 2005 IEEE
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/High-Performance-Cluster-Computing-Using-Component-Oriented/9921859152901341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/High-Performance-Cluster-Computing-Using-Component-Oriented/9921859152901341
http://doi.org/doi:https://doi.org/10.1109/E-SCIENCE.2005.50
https://researchrepository.rmit.edu.au

High Performance Cluster Computing using
 Component-oriented Distributed Systems

V. K. Murthy
School of Business Information Technology

RMIT University, Melbourne 3000, Victoria , Australia
 kris.murthy@rmit.edu.au

Abstract

 Component oriented distributed computing uses a
collection of different types of components to achieve
high performance in solving a problem by identifying
each component as an object. The usefulness of the
transactional paradigm in Component Oriented
Programming (COP) is explained. We also describe a
simplified version of COP (a master-slave-like
computation) that is suitable for high performance
cluster computing and indicate how to implement this
paradigm using MPI.

1. Introduction

 One of the fundamental themes of software
engineering is the reuse or sharing of the parts of
software already available. In early days of computing,
this took the form of subroutines which provided code
reuse in application. The subroutine libraries then
provided code sharing across applications. Then the
development of object oriented method permitted not
only code reuse but also tailorable code via inheritance,
encapsulation and polymorphism. The advent of the
Client/server model then permitted sharing data across
different platforms, while remote procedure call (RPC)
enabled us to share code across platforms. Currently
distributed object technologies such as CORBA and
DCOM permit sharing tailorable code across platforms
[14,15,18-20]. The notion of reuse, sharing and
tailorability of codes and data across platforms led to the
natural evolution of stand alone objects called “
components” that are platform and language
independent so that they can be plugged and played
across networks, applications, languages , tools and
operating systems.
 Component technology is evolving as a key
technology in Software engineering aiding the
development of very complex software that can be tested

and maintained easily. It is also playing an important
role in various areas of research and development for
advanced software, particularly in object oriented
programming, Object oriented data and knowledge bases
(OODKB) and object oriented software engineering
[3,4,14,15,16,18-21]. The diversity of these areas
suggests that there are underlying basic principles and
issues that are common to a wide range of component-
based software development. This paper addresses these
basic principles and the issues involved in developing
efficient software based on component oriented systems
and seamless programming with heterogeneous
components.
 In object oriented computing (OOC) a problem is
modelled as a set of cooperating objects, and is solved
by exchanging messages among objects. In concurrent
programming (CP) , a problem is modelled as a set of
cooperating processes. Therefore OOC and CP have a
similar structure; objects correspond to processes and
message passing corresponds to inter-process
communication. A process is not a self-contained
module. In order to facilitate modular programming,
object oriented programming combines the object and
process into an integrated unit (of data and procedures)
which is self contained; hence called a component (C).
A component oriented program (COP) is interpreted as a
collection of interacting components that steps through a
program and manipulates data. Each component
maintains its own share of data and has its own program
piece to manipulate it. That is each component combines
datastructure and functionality. The components are
active and behave like actors in a movie, each following
its own script and interacting with other components. A
function call is separated into two tasks: a message
passing to a component and the component executes in
response a required procedure. The selection of a
method to a message is called binding. By modelling a
program as a set of cooperating heterogeneous
component programs we can obtain portability across
platforms and interoperability across operating systems

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 21:53 from IEEE Xplore. Restrictions apply.

and languages. This paradigm uses the technical skills
arising from the three major areas in computer science:
object-oriented methodology, concurrent programming
[1, 3, 6, 7, 8, 17- 21], and the transactional / workflow
paradigm.

2. Distributed Systems and Components

 Distributed systems are essentially multi-tier client
server systems in which the number of clients and
servers are potentially very large and the distinction
between the client and server becomes diffuse, each
playing the dual role. In addition, the distributed
systems offer directory services that enable objects to
locate other objects, transactions and related business
services. Therefore, it is convenient to define a
distributed system in the most general way as one made
up of components with the following properties
[14,15,17-21]:
1.Marketable object: A component is a marketable entity
which is a self contained, shrink-wrapped object.
2.Grain size: It is not a complete application; yet it can
perform a set of limited tasks within an application
domain and can be combined with other components to
form a complete application. In this sense the grain size
can vary from a fine grained object such as a C++ object
to a medium grained object like a Graphic User Interface
(GUI) control.
3.Building Block: It can be used like a building block
that can be chiselled and used in a variety of ways to
achieve unpredictable combinations for different
applications.
4.Well-specified Interface: The interface exposes the
component to the external world and hence should be
well specified using an interface definition language
(IDL). The interface defines the protocol of
communication between two separate components of a
system. The interface describes what services are
provided by a component and the protocol for using
those services.
5. Toolability: It permits tailorability (chiselling) and
provides facilities for drag and drop and other visual
assembly techniques.
6. Event Notification: It has the capability to notify an
event to the external world, if some interesting event
arises.
7. Configuration and Property management:
Components have states. Property is a well defined
attribute that can be read in order to modify the state of
the component.

8. Scripting: Interface can be controlled via scripting
languages.
9.Metadata: Contains information about itself:
interfaces, properties, events, quality of services and
contracts- that is its claims as to what it can be used for.
10. Interoperability: It can be invoked as an object
across address spaces, languages, operating systems and
tools. It is a system independent software entity.
11.Communication Topology: The components are
connected by a communication network of a well-
defined static / dynamic topology
12. Heterogeneous and recursive: In particular, we do
not want any restriction on the nature of the component
or its grain size of functionality - they can be different
computers or software objects; that is they are
heterogeneous.
13. Multi-threadedness and Serializability [9]: Since a
component server can be accessed by multiple clients at
a time it is essential that the component has the
capability to start new thread of execution for each new
client. Otherwise the response time can be very poor for
many applications involving internet or E-Commerce
services [10].
14. Persistence: In the database context we require to
have persistence of the state.
15. Security: It must protect itself and its resources from
outside intrusion, provide access controls, authentication
of itself and its clients, and maintain audit trails.

3. Components are chiselled Objects

 It is important to remember that components are
chiselled out of objects that are not bound to a particular
platform or a computer language. They are specifically
designed for distributed applications. This inherent
object infrastructure permits the components to be
autonomous self-managing and collaborative
(competitive or cooperative). In the discussion below we
can therefore use components and objects
interchangeably.

3.1. Definitions of objects

1. The state variables of an object are the variables
which represent the internal persistent state of the object.
2. An object accepts a message which matches some
message pattern and satisfies the corresponding
constraint.
3. When a message arrives, message patterns and
constraints are examined. After accepting the message

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 21:53 from IEEE Xplore. Restrictions apply.

the object executes a sequence of actions described in
the corresponding behaviour description part (script).

3.2. Properties of objects

 The Concurrent objects (CO) have the following
important properties:
1. They can react autonomously to changes in internal
state and to events in its environment.
2. They are capable of executing multiple activities
concurrently, including event detection.
3. They respond to detected events asynchronously.
4. Persistence: means that the state of the object should
survive a session in which it was generated.
5. They can return values as a reply to a message
received. The reactive capability of an active object is
specified in terms of production rules or event-condition
action rules. An event determines when the rule should
be fired, the conditions whether the action should be
executed and the action part determines how the object
should respond.
6. Every message sent by an object arrives at the
destination in a finite time and gets stored as a unique
queue in a buffer associated with that destination object.
7. There is no global clock. However, timestamps are
assumed to be generated and the clocks are synchronized
using cause-effect relationship among objects while
passing messages [1], [9], [17-20].

4. Components and Transactional Paradigm

 The transactional paradigm (TP) has the following
features:
 1. In concurrent object programming, the rule
conditions are matched and rule actions are performed
on each object locally as well as on the external objects.
The state of computation consists of a collection of
named values in an active set of objects, where the
names correspond to variables and the values are
assigned from the problem domain. A state maps the
variable to its corresponding value. The initial state
specifies the initial condition of the problem, while the
final state specifies the result. The rule actions activate
each object through a set of internal actions and acts on
the external objects through message passing. The
internal and external actions should have the four
properties - called ACID properties: Atomicity
(indivisibility and either all or no actions or carried out),
Consistency (before and after the execution of a
transaction), Isolation (no interference among the
actions), Durability (recovery under failure and

achieving consistency). The transactional approach
provides for the ACID properties [1,9, 21].
2. Also TP provides for cooperation among competing
actions or processes, by resolving conflicts among the
objects due to data dependence and resource
dependence.
3.We can deal with both passive objects and active
processes and achieve a very complex set of
computations using the syntactic model of the
transaction.
4.The serializability notion to ensure total temporal
order is well-defined and so concurrent (or partially
ordered) operations can take place using the well-known
concurrency control techniques - such as locks,
timestamps to indicate priority and obsolescence.
5. The logic of transactional paradigm takes into account
the side effects due to performing action x before and
doing action y after. That is action x serves as
precondition for action y, and realizing action y is a post
condition for action x. In practical terms, it sets up an a
priori consistency and this ensures serializability of
transactions in component based systems.
6.The notion of serializability is essentially concerned
with the conflict equivalence of an interleaved schedule
to a serial schedule (namely, the conflicting actions in
the non- rolledback transactions are performed in the
same temporal order). Hence it ensures a priori
consistency in a competitive environment .
7.Also TP provides for reccovery when there is a failure.

5. Components and Condition-Event System

 The Condition- event system (C-E System) [7] with
the syntax:
ON event IF (precondition) DO (action) occupies a
prominent place in component-oriented computations.
Each object uses a script that consists of a set of rewrite
rules consisting of a left-hand-side expression (LHS)
and a right-hand side- actions (RHS). Given any
message string that matches the LHS, the corresponding
RHS actions are implemented. Thus we may carry out
many different operations. The C-E system within an
object operates in three-phase cycles: matching,
selecting and execution. The cycle halts when a
termination condition is reached . The task of match
phase is similar to query matching - that is unification of
the rules with the database. This phase returns a conflict
set that satisfies the conditions of different rules. In the
select phase we select those compatible rules after
conflict resolution. In the execution phase all selected
rules are fired and actions are implemented.

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 21:53 from IEEE Xplore. Restrictions apply.

5.1. Achieving different types of parallelism

 In component oriented programming (COP) we can
achieve parallelism thus:
1. Concurrent multiple activation of independent
objects: Although the message transmission is
sequential, when the receiver objects are different the
activation of the receiver objects can overlap in time.
2.While messages are sequentially received , a message
can be sent simultaneously to several objects.
3.Parallelism between the actions of an object which
sends a request message and the actions of an object that
receives a message can be permitted depending upon the
context.
4.The nature of internal production rules, events and
actions determine whether an object reacts
deterministically, nondeterministically or
probabilistically [12,13]. This enables us to assign
probabilities for applying the rule, assign strength to
each rule by using a measure of its past success,
introduce a support for each rule by using a measure of
its likely relevance to the current situation.
 The above four factors provide for competition and
cooperation among the different rules. Also, the
introduction of probabilistic choices in an object system
would provide a computational model (such as the
genetic algorithm) to simulate evolutionary biological,
chemical and physical systems based on intermittent
feedback from the environment and understand how
intelligent behaviour can emerge from probabilistic
interactions between many objects.

6. Formalizing Component-Oriented Systems

 We now formalize a Component-oriented system
(COS): A COS is a -tuple: (O,T, s(0)) where :O is a
finite set of m objects; T is a finite set of global
transactions; s(0) is the initial state. Every object O(j) is
characterised by a pair (V(j) ,Op(j)) where V(j) is the set
of all possible values for the object (its domain) and
Op(j) is the set of local operations that can be performed
on that object O(j). Each operation Op(j) is a partial
function taking input values from the domain and
outputting values from the domain V(j), thus changing
the O(j) to a new state. The set of all possible state
values is called the phase space of O(j) and its elements
are called phase space elements(pse) of O(j) .
 A global transaction (called External transaction or
EXTRAN) T(ij) is defined as a transaction between two
objects O(i) and O(j) ; this consists of a message sent

from O(i) to execute a desired transaction in O(j); this
message is received by O(j) . O(j) has a behaviour
specified by: Pre(T(ij)), G(j), C(j), Post (T(ij)), where
Pre() and Post() are respectively the pre and post states
that are active before and after the transaction T(ij). G(j)
is a guard of O(j) and C(j) is the command function
consisting of operations that map values to values in
local domains (note that the operations used in G(j) and
C(j) are assumed to be defined) and sending messages.
Thus the script specifies what message O(j) can accept
and what actions it performs when it receives the
message while in state Pre(T(ij)) to satisfy the post
condition post(T(ij)). The Extran T(ij) can trigger in
O(j) numeric, symbolic or database computations;
hence, it provides for "Heterogeneous Computing". Each
Extran T(ij) triggers a set of serializable computations in
O(j) either in a total order or in a partially order
depending upon whether parallelism , concurrency and
interleavings are possible locally within O(j). If the
object O(j) is "made up" of subobjects , we may have to
execute a long transaction consisting of nested local
transactions (called internal transaction - INTRAN).
After executing Intran the system reaches a new state s'
from old state s such that : s' = s - pre(T(ij)) ∪ post
T(ij), using the command set C(j). It is possible to
systematically derive a COP using a set of rules [5,8,11,
21].

7. Transactional Execution

 In COP the state of computation consists of a
collection of named values in an active database, where
the names correspond to variables and the values are
assigned from the problem domain. A state maps the
variable to its corresponding value. The initial state
specifies the initial condition of the problem, while the
final state specifies the result. The rule actions activate
the database D through an internal transaction
(INTRAN) and acts on the external objects through an
external transaction (EXTRAN) . In order to execute
these transactions concurrently they must satisfy the
following conditions:
1.The set of objects accessed by any two different
EXTRAN are pairwise- disjoint.
2. The set of local states used by two different INTRAN
are pairwise disjoint.
Condition 1 is well-known for those familiar with
database transaction handling;
Condition 2 arises from the mutual exclusion of
processes used in concurrent programming.

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 21:53 from IEEE Xplore. Restrictions apply.

8. Performance Analysis of COP

The performance of a COP depends upon the choice a
suitable topological sort among the objects that
minimizes a certain objective. The usual scheduling
objectives depend on the completion times of the jobs in
the schedule, which also depends on the availability of
resources.
 For improved performance of a COP we must
consider the optimal scheduling problem of a set of
inter transactions on a set of objects where transactions
are executed, and also a set of additional resources -
such as registers/ cache that are required during their
execution. A topological sort of a conflict multigraph
provides only an abstract partial order among the
different transactions that result in a serializable COP.
Since it is not unique, we need to choose that topological
sort which is optimal and allocate transactions to objects
in such a way to minimize traffic and computation time.

9. Simplified COP

 We proposed a very general component-oriented
programming paradigm which includes many different
computational features. In practice, many of these
features can be suppressed and the structure of a COP
and the corresponding protocols can be greatly
simplified to suit a common application area using the
following features :
1. Each component has a well defined metadata and
contract for a given application.
2. Each object can be active or inactive.
3. Initially all objects are inactive except for a specified
one (called the seeding object), which initiates the
protocol (computation).
4. An active object can do local computation, send and
receive messages and can spontaneously become
inactive.
5. An inactive object becomes active if and only if it
receives a message.
6. Each object may retain its current state or revise its
state as a result of receiving a new message . If it revises
its state, it communicates its revised state to other
concerned objects.

10. Using MPI for COP

 MPI [6,18] is a standard message passing interface for
parallel applications and library programming. The CO
programming paradigm outlined here can be
implemented using MPI. The basic content of MPI is

point to point communication between pairs of objects
and collective communication within groups of objects.
These respectively correspond to Extran and Intran in
our formalism. Also MPI contains advanced message
passing features .The Extran features can be realised
using the various point to point message passing
routines with the basic operations send and receive.
Here each object can execute its own code in SIMD
(single instruction multiple data mode) or MIMD
(multiple-instruction multiple data mode) or SPMD
(single program multiple data mode) that is an extension
of SIMD and a restriction on MIMD.The collective
routines can realise all Intran features that provides for
barrier synchronization, broadcast, gather, scatter , and
reduction operations (prefix operations such as- max,
min, sum, product, exor) that can perform a parallel
reduction operation over every group of processes. Also
since MPI provides for topological structure for process
groups (within an object), we can use this approach to
map processors to local processes with a specified
topology. In the current MPI version there is no facility
for global serialization. The timestamping technique can
be incorporated to ensure global serialization and also
rollback for recovery in the MPI.

11. Scalability, Performance and Problem
Domain Knowledge

 We illustrate the use of component-based
computation and scalability for the Generalized matrix
inversion which is very important for a wide variety of
applications. We can achieve supercomputer
performance for matrix inversion of large rectangular
matrices. However. for most problems, it is essential to
have the problem-domain knowledge for achieving best
performance, as illustrated below, where the knowledge
of the conditioning number of the matrix is essential.
For rectangular matrices (mxn) or singular matrices , we
can define a Moore-Penrose generalized inverse X
satisfying all of the four properties: AXA =A; XAX =

X; (AX)t = AX; (XA) t = XA, where A t is the
transpose of A. Moore-Penrose inverse is denoted by

A+which is unique.If A is nonsingular A += X = A -1

and is unique. Here we use the matrix squaring

algorithm [2] to find the rank of A and also find A+.

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 21:53 from IEEE Xplore. Restrictions apply.

11.1. Matrix Squaring Algorithm

 This algorithm computes both the generalized inverse

A+ as well as the rank of a rectangular real matrix A
(m x n) using successive squaring of the associated
matrix T which is an (m+n) x (m+n) matrix given by:

P Q

0 I

T =

where P= (I-bA*A) and Q= bA*, where A* is the
complex conjugate transpose of A and b is a relaxation
parameter in the range 0 < b < 2/ (maximum
eigenvalue of A*A.A suitable choice for b is 1/trace (
A*A) where trace (A*A) denotes the sum of diagonal
elements of A*A .Starting with T(0)= T , and T(i+1) =

T2(i), by successive squaring we obtain:

M N

0 I
T(k) =

 .

Here N = A +, rank (A) = n - Trace (M) and T(k) =

T2k
.

The number of iterations (squarings) k reflects the
amount of computational work needed. This is
dependent upon the condition number of A [2].

11.2. Matrix G-Inversion in a Component
Cluster

 In order to carry out the G-Inversion using the above
algorithm in a cluster of workstations, we will use the
master/slave organization of the components. The task
of the Master is to distribute the matrix T to slave
components and to get back from them the squared
matrix. The slaves essentially have the contract to
perform the matrix-vector multiplication .The protocol
for the Master and Slave algorithm is given below:
Master:
1. Create Slave components (slaves).
2. Send matrix T to all the slaves
3. Send two consecutive columns of T to each slave
(This speeds up the process, since a slave can start doing
the next multiplication instead of waiting).
4. Receive a column of the squared matrix SQ(T).
5. Send a new column of T to the slave which has sent
the column of SQ(T).

6. Repeat steps 4 and 5 until whole matrix has been sent
and whole SQ(T) has been received.
7. Repeat Steps 1 to 6 replacing T by SQ(T), k times,
until T(k) is computed.
8. Issue termination message to Slaves.

Slave:
1. Receive matrix T from master.
2. Receive two columns of T from the Master.
(The earlier column is multiplied by T; while following
column is held in the message buffer of the component)
3. Multiply T by a column of T, to obtain a column of
SQ(T).
4. Send Column SQ(T) to Master.
5. Repeat Steps until the Termination message is
received from the Master.
The overlapping of processing and communication is
achieved by sending two columns at one time from
master so that the slave can begin computing one
column and after sending the result can compute the
product of T with the other column. any new column
arriving would be stored in the buffer.

Computing SQ(T) :
Let us assume that there are P+1 components
(processors) in the cluster made up of one Master and P
Slaves. First let us compute the work load for
computing SQ(T) of an NxN matrix T. The master
processor sends the matrix T to all processors and then
sends each column of T to each of the P processor to
compute a matrix-vector product; the products are then
sent back to the master. Communication time is needed
for broadcasting the matrix T initially to all the
processors and then sending each slave processor one
column of T and getting back the result columns of
SQ(T). That is totally we need messages to transmit N
columns two times, and use (N**2)/P inner products
distributed in P processors. In the sequential case we
need time (N**2) c where c is the time for computing
inner products of two vectors. Thus the ratio of time for
sequential to parallel computation is
E (SQ(T)) = (N**2)c /[(B(T) + 2t N+ (c.N**2 /P)] .
Here B(T) is the time needed to send T to all processors,
t is the time for transmission of a column of T.
Assuming that B(T)= tN, we get
 E (SQ(T)) = (N**2)c / [3tN+(c .N** 2 /P) =
P/ [1+ 3Pt / c.N].
To get maximal efficiency close to P, we need the
second term in the denominator to be significantly less
than 1; that is : t < < cN/ 3P.

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 21:53 from IEEE Xplore. Restrictions apply.

Since Nc is equivalent to the time for computing N inner
products (or computing one column of the result), the
time for transmission of a column t must be much less
than the time to compute each column of the product
matrix. If c= 10**-5, N=32, Nc= 3.10**-4, and P= 4
then we need t < 10**-5. As N increases we get more
efficiency. For small N, and small P , if P = N and t = c
efficiency may fall to P/4. In fact, the sequential
computation can be faster for small N and t/c > 1. For
a large N , small P < N and t (transmission time) << c
(computation time for innerproduct we can get near full
efficiency for squaring a matrix T.

Computing G-Inverse by Recursive SQ(T).
We need the following total work for computing T(k) =

T2k
:

1. (k-1) transmissions for sending T(1),... T(k-1).This
uses up a
 total time (k-1) tN where t is the transmission time for a
column.
2. (k-1)N column transmission time to Slaves using a
time (k-1)tN,
where t is the transmission time for a column.
3. kN column return transmission time from Slaves
using a
time ktN
4. Also we compute (k-1). N **2 inner products using a
total time c. (k-1)N**2
 where c is the time for computing inner products of two
vectors.
 In the Sequential computation case we need (k-1) c. N
**2 time for computing the inner products. In the case
of master-slave computation we have a speed-up
 E (G-Inv) =[(k-1)c N**2] / {(k-1)tN+ktN+ [c(k-
1)N**2] /P}= P/[1+3Pt/c.N], for k >>1. Thus the
scalability carries over to G-Inversion (Successive
squaring) if t < < cN/ 3P and we get maximal efficiency
close to P. Note that for k=2 we get the expression for
E(SQ(T)).

12. Concluding Remarks

 Component oriented programming has the following
features:
1.Provides for high concurrency, easy tailoring and
maintenance.
2.Provides for the application of locality principle in
program construction. Formal specification and
refinement calculus can be used to provide for the
choice of appropriate granularity of transactions and the
level of parallelism [9, 21]. Due to the availability of

object-object communications we can specify a
communication network that is isomorphic to program
communication and provide for the most efficient
mapping topology.
3. Provides a general-purpose paradigm for
programming.
4.Provides for Collective communications and
computations.
5. Provides for Heterogeneous computing [6,18].
6. MPI/CORBA: The current version of MPI [6], [18]
does not guarantee global serializability. The timestamp
method could be incorporated to enhance its usefulness.
Also CORBA and Java applications can be used.
7. Agent based Systems: At the next higher level ,the
more powerful member in the hierarchy of programming
paradigms is the agent-based paradigm where agents are
specialised components that are mobile and autonomous.
This will be described elsewhere.

13. References

[1] P.A.Bernstein, V.Hadzilacos, and N. Goodman,
Concurrency Control in Database Systems, Addison Wesley,
Reading, Mass., 1987.
[2] L. Chen, E.V. Krishnamurthy, and I. Macleod,
“Generalized matrix Inversion and rank computation by
successive matrix powering”, Parallel Computing Vol. 20,
297-311, 1994.
[3] R.K.Ege, Programming in an Object oriented Environment,
Academic Press, New York, 1992.
[4] K.Futasugi and S.Matsuoka, Object Technologies for
Advanced Software,,Lecture Notes in Computer
Science,Vol.1049, Springer Verlag, New York, 1996.
[5] R.F.Gamble, G.C.Roman, W.E.Ball, and H.C.
Cunningham, : Applying formal verification methods to rule-
based systems, International J. Expert Systems Research
Applications, Vol.7(3), pp.203-237,1994.
[6] W.Gropp,E.Lusk and A.Skjellum, Using MPI, M.I.T Press,
Cambridge, Mass., 1995.
[7] T.Ishida, Parallel, Distributed and multiagent Production
Systems,Lecture Notes in Computer Science,Vol .890,
Springer Verlag, New York, 1991.
[8] B.Jonsson, Compositional Specification and verification of
distributed systems, ACM Trans. Programming languages and
Systems, Vol.16, pp.259-303, 1994.
[9] E.V.Krishnamurthy and V.K.Murthy, Transaction
Processing Systems, Prentice Hall, Sydney, 1992.
[10]D.A. Menasce and V.A..F.Almeida, Scaling for E-
Business, Prentice Hall, New Jersey, 2000
[11] C. Morgan, Programming from Specification, Prentice
Hall, Englewood Cliffs, New York, 1994.

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 21:53 from IEEE Xplore. Restrictions apply.

[12] V.K.Murthy and E.V.Krishnamurthy, Probabilistic
Parallel Programming based on multiset transformation, Future
Generation Computer Systems, Vol.11, pp.283-293, 1995.
[13]V.K.Murthy and E.V.Krishnamurthy, Gamma
programming paradigm and heterogeneous computing, Proc.
Hawaii Intl. Conf. on System Sciences (Software Technology
Track), HICSS-29, 273-281, IEEE Computer Society Press,
USA, 1996.
 [14] R.Orfali ,D.Harkey and J.Edwards, Client server/Survival
Guide,, John Wiley,New York,1999.
[15]A.Orso, M.J.Harrold and D.Rosenblum,Component
Metadata for software Engineering tasks, pp.130-144 in
Engineering distributed objects, LNCS Vol.1999, Springer
Verlag, New York, 2000
[16] M.Raynal, Networks and Distributed Computation, M.I.T.
Press, Cambridge, Mass., 1988 .
[17]J.L.Rosenberger, Teach yourself CORBA ,Sam’s
Publishing Co., Indianapolis, 1998.
[18] M.Snir, S.W.Otto et al.,,MPI: The complete Reference,
M.I.T.Press, Cambridge, Mass, 1996.
[19] A.W.Brown,Large Scale component-based development,
Prentice Hall, New Jersey, 2000.
[20] A.W. Brown, An overview of components and component
-based development, Advances in Computers, Vol. 54, pp. 1-
34, Academic Press, New York, 2001.
[21] V.K. Murthy, Computing with heterogeneous
components, to appear.

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 21:53 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

