
Installing and Configuring Application Software on the LHC Computing Grid

Roberto Santinelli, Flavia Donno
CERN, Geneva, Switzerland

Roberto.Santinelli@cern.ch, Flavia.Donno@cern.ch

Abstract

The management of application software is major

scientific and practical challenge for designers of
large-scale production Grids. The LHC Computing
Grid is unique in the sense that coupling between
application scientists and the resource providers is
extremely loose, thus adding even more complexity to
the software management problem. After an analysis of
the requirements for a Grid software management
service from users’ and site administrators’
perspective, we give an overview of the solution
adopted by the LHC Grid infrastructure to support
High Energy Physics experiments, highlighting
features and current limitations. Tank&Spark is our
proposed solution based on P2P technology that
extends the LHC Grid application software system and
tackles some of its limitations. Tank&Spark can be
used as a stand-alone service also in other Grid
infrastructures. Here we illustrate the design,
deployment and preliminary results obtained.

1. Introduction

The problem of application software installation and
configuration in Grid-aware computing facilities is not
trivial. This is due to several reasons: large number of
sites at which the software has to be promptly
maintained; different ownership and hence
configurations and policies at the sites; hardware and
software heterogeneity of the systems. The Grid
middleware is generally installed by system
administrators at a site level via customized tools
which can be coupled with or decoupled from the
central system management facility. This allows for
basic self-contained applications, such as an
executable that runs under a specific flavor/version of
Linux, to be executed on a Grid.

In a more complex situation, a scientist wants to
execute her domain specific application code on the
Grid. In such a case, if the application has a modest

size and is self-contained (no external library
dependencies), it can be shipped with the request for
execution to a computing resource and then removed
once it has terminated. However, in most cases,
dependencies on external packages and specific system
configuration (such as support for MPI, compiler
versions, etc.) might generate problems. One can think
that the execution environment needed to run an
application can be specified within the job description
so that the Grid can find the appropriate resources.
However, the schema describing either the resources or
the application requirements might not be sufficient as
to allow the Grid system to correctly match
requirements and resources availability, therefore
ensuring a correct execution environment to the
application.

If the applications needed by the user are of
considerable size (tens of Gigabytes), it is quite
inefficient and sometimes even not possible (not
enough storage available on the computing node) to
ship the application together with the user request.

To overcome the issues described above a Virtual
Organization (VO) can then provide special resources
to run VO specific applications. On such resources an
appropriate execution environment is guaranteed to
VO users, either by ensuring an appropriate system
environment or by making available pre-installed VO
specific software applications.

 An important requirement in order to allow for a
correct execution environment is to guarantee that the
software provided is well configured and validated, i.e.
it runs smoothly and produces the expected results.

 It is quite reasonable for a site to satisfy specific
network or system configuration requirements imposed
by a VO. However, if a site supports more than one
VO, it is impractical if not impossible for an
administrator to install, configure and validate VO
specific software while keeping up with software
releases and installation requirements. Often many
releases of the same package (libraries, object and
source files, and other auxiliary files) need to coexist.
Site administrators might not be familiar with all VO

mailto:Roberto.Santinelli@cern.ch
mailto:Flavia.Donno@cern.ch

software requirements and release procedures. For this
reason “privileged” users within a VO are sometimes
identified and made responsible for managing
application software in a Grid. To achieve this, such a
VO software manager requires adequate tools that
allow for triggering software installation on Grid,
managing VO disk space and software versions,
planning for software upgrade and removal, publishing
site and software status related information, etc. From
a site administrator’s point of view what is described
above becomes a source of concern in terms of site
security, local policies to be respected, maintenance
scheduling and related problems, etc.

Therefore, many issues need answers and solutions,
such as:
• Establishing a mechanism that allows for

scheduling a software installation process when
appropriate.

• Ensuring adequate disk and space management.
• Failure and conflict resilience.
• Resolving software dependency issues.
• Handling concurrent installation processes.
• Satisfying pre-requisites before the application

software installation is triggered.

The above is a non-exhaustive list of issues that has

to be considered when designing a service for
managing application software installation and
configuration on the Grid.

In the LHC Computing Grid (LCG) [1]
infrastructure created to support High Energy Physics
experiments, we have been trying to tackle this
problem for quite some time.

In this paper we provide an analysis of the
requirements for a Grid application software
management service from users’ and site
administrators’ perspectives. We give an overview of
the solution adopted by the LHC Grid infrastructure to
support High Energy Physics experiments,
highlighting features and current limitations. Then we
present Tank&Spark, our proposed solution based on
P2P technology that extends the LHC Grid application
software system and tackles some of its limitations.
Tank&Spark allows for centrally triggering and
controlling software installations at many remote sites.
It is very flexible and has been designed to use plug-
ins for authentication, authorization, storage
management and back-end databases. Therefore, it is a
generic service that can be used on a generic Grid
infrastructure with few adaptations.

This paper is structured as follows. In Section 2 we
give an overview of the LCG infrastructure, describe
the solution adopted for application software

management and the feedback received. In Section 3
we list the requirements collected from users and site
administrators in the attempt to design an adequate
solution for LCG. In Section 4 we illustrate our
proposed solution currently under test and give some
implementation details. Preliminary results using the
new software installation service are given in section
5. A summary on related and future works and
conclusions are presented at the end of this article.

2. The LHC Computing Grid

The Large Hadron Collider (LHC) is being
currently being built at CERN near Geneva. Four main
experiments (ALICE, ATLAS, CMS and LHCb) with
a total of some 6,000 physicists coming from several
hundred universities or laboratories from around the
world will be involved in the analysis of the data that
will be generated by the collision of accelerated
particles to understand the early times of the universe.
When it begins operations in 2007, the LHC machine
will produce roughly 15 Petabytes of data annually and
will be operational for about 15 years. The data from
the LHC experiments will be distributed according to a
four –tiered model. A primary backup will be recorded
on tape at CERN, the "Tier-0" centre of LCG. After
initial processing, this data will be distributed to a
series of Tier-1 centers, large computer centers with
sufficient storage capacity for a large fraction of the
data, and with round-the-clock support for the Grid.

The mission of the LCG project is to build and
maintain a storage and analysis infrastructure for the
entire high-energy physics community that will use
this machine.

Figure 1: The LCG Infrastructure

The infrastructure consists of a large number of
geographically distributed resources and services made
accessible to users organized in Virtual Organizations.

It currently consists of 191 sites, with 15,486 CPUs
and 9 PB of storage. Figure 1 gives an overview of the
geographical distribution of LCG resources.

2.1. The LCG Middleware

The LCG middleware is based on software supplied
by several other projects to manage authentication and
authorization, job submission and management and
data distribution and access. These projects include
Globus [2], Condor [3], the Virtual Data Toolkit [4],
the European DataGrid project[5], the gLite toolkit [6]
and other services developed by LCG experts.

2.1.1. Authentication and Authorization.
Authentication services are provided by Globus and
based on the X.509 Grid Security Infrastructure (GSI)
[7]. User credentials of limited lifetime (proxies) can
be automatically renewed through a Proxy Service
(PS).

LCG has developed special bridge services to allow
users with a valid proxy to obtain a Kerberos token as
well to access special AFS areas.

The Virtual Organization Management Service
(VOMS) allows for the definition of roles in the
extended user proxy. If a Grid service is interfaced to
the VOMS, then a particular user role gets honored or
the user is mapped to a privileged special account
enabled locally for specific operations.

2.1.2. Job Management. The Job Management
Service, better known as Workload Management
System (WMS), is responsible for the management and
monitoring of user jobs submitted from a special Grid
gateway client known as User Interface (UI). Resource
status and characteristics are published in the LCG
Information System (BDII). The Resource Broker
(RB) machine is responsible for: matching job
requirements to resources; scheduling jobs for
execution through Condor-G to an appropriate batch
queue known as Computing Element (CE); tracking
the status of jobs; retrieving the job output. The
Worker Nodes (WNs) are computing machines behind
the CE in charge of executing the job.

2.1.2. Data Management. The Data Management
System (DMS) provides services for data movement
and replication and for cataloging of file locations.
Client applications and APIs available on the UI and
the WNs allow user jobs to manage data in the Grid.
Data is stored on Storage Elements (SE), which can
provide disk or tape based storage back-ends. The
GridFTP protocol is the most commonly used for data
transfer.

2.1.3. Information System. The Information System
or BDII stores information about resource status and
characteristics, middleware and application software
available at a site and their correspondent releases.
This is the place where a site publishes information
about the VOs supported locally and the local
configuration of system services (outbound
connectivity, MPI support, resources hardware
characteristics and their power, etc.). Information is
published following a specific schema that goes under
the name of GLUE [8].

2.1.4. The VO Box. Recently, a new service has
been introduced in LCG, the VO Box. This Service
allows VOs to install, run and control specific long-
lived VO agents which execute in a secure and
controlled environment. The VO Box allows a direct
login via gsissh for special users of the corresponding
VO and the registration of a proxy for an automatic
renewal. The VO Box has been provided to allow for
VO specific services that the LCG middleware does
not yet provide, such as a Data Subscription Service
that allows a site to subscribe for receiving a subset of
the data produced at another site, as soon as it becomes
available. We will describe how this service is being
used to improve the Application Software Installation
and Management Service in LCG.

2.2. LCG Application Software Installation
and Management Service

In LCG Gigabytes of VO specific software or
frequently changing user applications need to be pre-
installed, configured and validated before a user job is
executed at a site.

In Table 1 we report the space requirements and
frequency of updates of application software for the
LHC experiments.

Exp. Space

requirements
Frequency
of updates

Concurrent
releases

Alice 1-2 GB 3/month 3

ATLAS 6 GB 4-6/month 3

CMS 2 GB 6/month 3

LHCb 1-2 GB 4/month 2

Table 1: Space requirements, frequency of updates
and number of concurrent supported releases per LHC
experiment.

 Following the requirements imposed by the
experiments, in LCG Experiment Software Managers
(ESM) are designated people with privileges for

completely managing software for a specific VO on a
per site basis. Each experiment selects one or more
ESMs. The ESM is the person in charge to install,
configure, validate and update the software of the
experiment at each site.

An ESM can also publish univocally identified
software tags in the Information System to announce
the availability of a specific software version at a site.
Via the published tag users can then select sites to run
their jobs.

The X.509 certificate subject of an ESM is mapped
to a local account with special write privileges in
designated experiment areas.

 The experiment software is first packaged into a
software specific bundle and moved to one of the SEs
belonging to the site where the software will be
installed via the Grid DMS. The software can be
installed on the local farm using a local cache on the
SE. Since the SE and the WNs are on the same local
area network no inbound/outbound network
connectivity requirement from the WNs is imposed by
the system. The bundle contains scripts to validate the
installation, i.e. to verify that the installation has been
executed with success and the software produces the
expected results.

 The ESM directs an installation job to the site
using the WMS from a UI. Once arrived on the WN,
the job installs the software at a location specified by
the value of the variable VO_<EXP>_SW_DIR. The
content of this variable is essential to determine the
behaviour of the installation service:
• If the value is “.”, the software is installed and

validated in the working area of the job and then
removed when the job is finished. If the validation
step has passed with success, the ESM can publish
the attribute
GlueHostApplicationSoftwareRunTimeEnvironme
nt in the Information System. Such an attribute is
set to a VO software specific tag that certifies the
site for that specific version of the software.
Subsequent jobs ending up on the same WN for
execution have to perform first the software
installation step in their working area and then
execute the real job.

• If the value of the VO_<EXP>_SW_DIR
environmental variable is not “.”, the software is
installed in a permanent area that is shared among
the WNs. The ESM job has to first check if the
version of the software to be installed is already
present. Only if that version is not there, the job
proceeds with the installation since the ESM is
guaranteed to have write privileges in that area. In
this case the ESM can run validation scripts in a
second step, and only if the validation process is

successful, the ESM can publish the relative
software tag in the BDII using provided tools.

The solution adopted by LCG is largely serving its
purpose. In particular, it provides a framework within
which experiments are free to use their own
proprietary distribution tools (Pacman [9], tarballs,
DAR [10], or even a CVS repository accessible via
http, if outbound connectivity from the WNs is
available). However, the current solution has several
limitations, as reported by the LHC experiments in
[11]:
 The lack of “roles” severely constrains the

abilities of software managers. An ESM should be
able to dynamically switch his/her role and
become a normal user able to submit normal user
requests to the Grid.

 Many jobs failures are often due to loss of
visibility of the NFS file system either during
software installation or during run. Avoiding the
use of NFS on a large installation can cure this
problem. However, with the current system it is
impossible to trigger an installation on a whole
farm of WNs on demand.

 The ESM job has to compete with normal user
jobs without any special priority.

 There is no automatic mechanism to trigger a
software installation on the whole Grid, i.e. on all
sites supporting a specific VO.

3. The requirements for a Software
Management Service

In order to test the complete functionality of the
LCG infrastructure before the start of the LHC
accelerator operations and to understand reliability and
scalability issues, a series of Data Challenges (DCs)
were performed on LCG. During such DCs simulated
data files were produced and injected to the Grid and
the entire data flow and analysis infrastructure has
been tested. This was a great opportunity for us to
understand the problems and collect requirements in
terms of software installation from the four LHC
experiments and from the site administrators running
the LCG facility. Here, we list the main features that a
software installation service should provide from a
user and site administrator perspective.

3.1. The User’s and Experiment’s View
Interacting with users and ESMs and supporting them
during the data challenges, we highlighted the
following needs:

 Each LHC experiment requires frequent updates of
software releases, about three times per month.
Software should be installed without special
interaction with site administrators. Whenever
necessary, old unused versions should be removed.

 Several releases of the software should coexist at a
site.

 All software for the experiment should be
relocatable. The root installation path should be
accessible through an environment variable.

 No root access should be required to install
experiment software.

 Only a subset of users should be entitled to manage
experiment software. This is achieved in LCG
through the ESM role. An ESM should be able to
add/remove software at any time without
communication with the site managers.

 The software has to be accessible through standard
POSIX I/O calls on the WN.

 The ESM should be able to install software on a
per site base as well as launching a request to the
entire Grid supporting the specific VO.

 The ESM should be able to verify the installation
in separate steps. Different kinds of validation
procedures can be run by the ESM at different
moments.

 The ESM should have the possibility to publish
special software tags in the Grid Information
System. This is done in order to advertise all
installed and validated versions of the software
available at a site allowing users to direct jobs to
that site.

 It is the responsibility of the ESM to prepare a
given software distribution for a given release.
Dependencies should be completely managed and
fully satisfied.

 Experiment software can be packaged as the
experiment requires: tarballs, RPMs, DAR files,
Pacman distributions, etc. Installation and
validation scripts should be provided by the
experiments. Therefore, dependencies should be
expressed in a way that those scripts can process
them.

 The user environment should be setup by a script
placed in a given location that the user job sources
as a very first step.

A more detailed report about user’s and experiment’s
requirement has been produced by the LCG GAG team
in [12].
3.2. The Site Administrator’s View
The main concerns from the site manager’s point of
view are summarized in the following list. Such
requirements came out after a survey conducted among
the sites participating to LCG [13],[14].

 For security and maintenance reasons, no daemons
running on WNs should be allowed. Neither user
applications nor Grid software installation services
should have control over WNs.

 Every individual access to a site should be
traceable. For this reason, no shared accounts are
allowed.

 The information published by a site should not be
corruptible.

 Service actions, such as restart, flushing, etc.
should not be triggerable externally unless policies
can be applied. In fact, this could lead to denial-of-
service (DoS) attacks when the service is
continuously restarted. Such a DoS attack not only
affects the VO with the compromised ESM
account, but will also bring the entire site down.

 Access to any tool/service should be strongly
authenticated, and the restrictions and policies
should be applied on the server-end and not on the
client-end.

 Possible inbound/outbound connectivity
requirements from WNs should be avoided.

 It should be possible to apply and enforce site
policies to the software installation mechanism.

 One should not assume shared file systems among
WNs to serve experiment software. Such a
requirement in fact poses serious performance,
reliability and scalability problems for large
installations.

4. Our Solution: Tank&Spark

With one of the recent releases of the LCG
middleware we introduced a new service that site
administrators can optionally configure and activate.
Such a service called Tank&Spark satisfies the
requirements previously listed. The toolkit is fully
integrated with the software management system in use
in LCG. However, it has been designed to work as
well as a standalone service in a generic Grid
infrastructure, requiring only a few modifications. The
toolkit provides as well for many other interesting
features, as explained later, and it enforces site policies
defined by site administrators.

Triggering automatic software distribution to the
Grid can be achieved via a Grid job or directly via
contacting the installation service at a site from a User
Interface (UI). In this latter case the ESM will not
compete with normal user jobs but it can immediately
schedule a software installation request.

The architecture of such a service foresees a multi-
threaded server (Tank) running on a Grid machine
(such as a CE), a client application (Spark) that runs as

cron job on each WN of a farm or in a VO Box, and a
r-sync server running on a disk-server (a Storage
Element) acting as central repository of the experiment
software.

Tank is a daemon listening on a dedicated port for
incoming connections. It can currently accept GSI-
authenticated and insecure connections but other
security protocols can be easily integrated. The service
is also integrated with the VOMS and uses user
credentials interpreting user roles. Tank uses a MySQL
database to store internal status information.

The server component represents the central
intelligence of the system managing the various
releases of the experiment software that need to be
installed/removed.

The server enforces local policies set by the site
administrator: he/she can describe whether and when
the installation/removal process can take place. If
Spark is invoked on a WN via a user job, it transfers
the VO software bundle to the local SE, it installs and
validates the software (if not already installed) starting
from that bundle in the area pointed to by the
environment variable VO_<EXP>_SW_DIR, triggers
an r-sync installation of that software to the central
repository on the SE and then contacts Tank. The r-
sync software synchronization is currently not secure.
The r-sync server can only be contacted locally. After
authenticating with Tank, Spark registers the new
software tag in Tank’s DB.

From a UI a user can also invoke Spark installed on
a VO Box. In this case the user bypasses the WMS and
can immediately schedule software installation. In this
case, user credentials are passed via an ssh tunnel. As
done in the previous case, Spark triggers the copy of
the software bundle on the SE, installs the software
locally, synchronizes it in the local repository and then
it contacts Tank, presenting the user credentials. Then
the process proceeds as in the previous case.

On the other WNs, the client program (Spark) is
invoked by a cron job running every 5 minutes. It
retrieves the list of tags relative to software releases
installed since the last update on that machine. In case
of new updates, the client synchronizes the local
software area with the central repository. The location
of the central repository per VO is defined by the Tank
and Spark configuration file.

Once the installation has been performed
successfully on all nodes of the farm, Tank takes care
of publishing a VO specific software tag in the
information system.

The management of concurrent installations for the
same VO is also performed by Tank. If an installation
or upgrade process is going on, the system stops

another installation process from the same VO because
of a temporary lock that lasts until the process ends.
Tank controls the installation/removal process for a
specific WN by setting an appropriate field in the
database. In this way the installation on WNs takes
place only if allowed. Configurations with or without a
shared file system or mixed are therefore supported.

4.1. The Implementation

Tank&Spark has been entirely written in C++. The
server exposes its methods through the SOAP protocol
using gSOAP v2.6.

The Tank server uses the CERN implementation of
the GSI plug-ins for gSOAP. Via a local grid-mapfile
or other mechanisms (such as the EDG LCAS server
plug-ins [15]) that maps specific software management
roles to local accounts, only authorized users (or users
with the right role) are allowed to perform installation
tasks.

However, a module to interface the service to a
generic high-level security interface described in [16]
is already foreseen. In this way the server can
dynamically support multiple authentication
mechanisms.

4.1.1. The Tank Database Tables. The MySQL
database on the server side keeps track of information
regarding the status of the system. There are six main
tables.

The Flags table manages the propagation of the
software installation to all the nodes once the software
has been successfully installed by Spark and the new
software tag has been registered in this table. This
table contains 8 fields: the name of the software
package installed, the status of the installation process
(installation in progress, removal in progress,
installation OK, removal OK, generic failure), the local
account used to perform installation, time of
installation or removal, e-mail of the ESM, a unique
process identifier used as a key, a counter that is
incremented everytime the installation/removal has
been performed with success on a WN.

The Host table contains information about the
status of the WNs: name and IP address of the WN,
status (off if the node was not reachable for more than
half an hour), last time that an interaction with the WN
took place, type (if it shares the filesystem with other
WNs or not – the default for all nodes is specified in
the service configuration file), addition and removal
time for this WN in the system. Through this table and
through the configuration of the cron entries running
on the WNs, the site administrators can control when
an installation takes place.

 The Monitors table is used for reserving and
authorizing installation time slots, avoiding clashes
with concurrent installations for the same VO. This
table also manages installations in shared areas on a
WN, avoiding that the same installation takes places on
other nodes sharing the same area. It stores the
following information: the local user performing the
installation, the VO name, the VO status to allow site
administrators to describe time slots for a VO
installation to take place, the “shared” status allows the
service to determine if an installation in a shared area
can take place.

The Success and Failure tables keep track of the
successful and failed operations per installation
process. They store the unique installation process
identifier and the hostname of the specific WN. In
Failure also a message containing the cause of the
failure is stored.

4.1.2. Other Implementation Details. The MySQL
back-end database can be easily replaced by other
back-end databases such as Oracle.

The service uses r-sync to synchronize software
directories. The r-sync mechanism is a plug-in and can
be replaced by other tools.

A Tank server can serve multiple VOs, while at the
moment, on each WN one crontab entry is needed per
VO supported running under one of the ESM local
accounts.

The authentication is now based on GSI. However,
the interface to the high level interface developed by
the LCG EIS team and described in [16] is foreseen to
allow for other authorization mechanisms.

Tank&Spark is also interfaced to the gssklogd
service used for the conversion of GSI credentials into
AFS Kerberos tokens. This allows for installations in
AFS served areas.

The toolkit is maintained using the GNU Autotools
and distributed via RPMs.

4.1.3. Tank&Spark Features. Installation,
configuration and maintenance are quite easy tasks as
reported by the site administrators who have activated
the service.

Both server and client are resilient to failures. If the
server goes down while an installation request is on
going, the user is notified and the installation is
attempted later on. Nodes contacting the server will
just retry at a later time.

If a WN goes down and looses the software disk,
the server will take care of the situation triggering the
installation of all missing VO specific software
versions.

Tank&Spark can also detect NFS failures and stop
installation processes that use specific NFS mounted
areas. It can also notify site administrators about NFS
stale mounts. As stated previously it provides also
support for AFS shared areas.

Through Tank&Spark it is possible to track down
software management actions, identify the ESM who
has triggered them, and notify site administrators.

Tank&Spark can also coexist and operate in parallel
with the LCG application software installation and
management service. It allows for installation of
multiple releases of the same software.

Special wrapper tools available on the UI allow an
ESM to trigger the installation, removal or update of a
specific software release on all sites supporting a given
VO. This is done contacting the LCG Information
System to retrieve the list of sites supporting a specific
VO. Automatic failure management is being added.

5. Experimental Results

We performed some preliminary functionality and
performances tests using the LCG Grid farm in Pisa
and Legnaro (Tier-2 centers), Italy. The goal of the
tests was to verify the full compatibility of the service
with the LCG application software installation and
management service, its full functionality, stability,
and scalability. Pisa provides 10 WNs Dual PIII 1GHz
with 512MB of RAM, Dual AMD 1.6GHz and 1GB of
RAM and Dual Xeon 2.4GHz with 512MB of RAM.
They are connected via FastEthernet. Tank was
installed on the CE (a PIII 1GHz with 512MB RAM),
while the software repository has been configured on
the SE, a PIV 1.5GHz with 256MB.

 Legnaro provides a farm of WNs with 70 Dual
Xeon processors with 2.4 to 3.0GHz and 2GB RAM.
The CE and SE have a similar configuration and the
farm is connected to a Gigabit Ethernet switch.

After 25 days of running under heavy tests the
Tank server has shown no problems with memory
usage of about 4MB.
While in Pisa we simulated a mixed configuration with
some WNs sharing a file system for experiment
software and some with a local installation, in Legnaro
all WNs shared an AFS served area. In both cases the
sites were used by production Data Challenges jobs
that were not affected by the tests performed. Both
sites support 5 VOs. Even though the WNs in Legnaro
shared an AFS served area, Tank&Spark was
configured to perform local installations. 1.4 GB of
application software for the Geant4 VO was installed
and propagated. Because of the shared area, no files
have been actually propagated after the first

installation to all WNs, but the r-sync service has been
quite stressed since it has performed a checksum of 1.4
GB of data for 70 different nodes, managing
simultaneous requests.

In addition, we measured the CPU and memory
consumption of the r-sync server process while
executing the synchronization of the software directory
of one single WN with the central software repository
on the SE. In average, with the machines under test,
the CPU load was of about 10-15% while the memory
usage was about 6.5MB.
As far as the Tank server performance goes, on the
Pisa site we monitored the CPU load of the server
program lcg-utank receiving requests for each VO
every 5 minutes. In our setup (2 VO and 10 WNs) the
server receives 20 connections and the CPU load is
negligible (0.1%).

6. Related Work

The Pacman software [9] has been developed by the
ATLAS collaboration for software distribution,
installation and configuration. Even though the
package is very effective and allows for dependency
management, it cannot be considered an alternative to
Tank&Spark. In fact, it does not provide a service to
trigger installation on a set of WNs. However, Pacman
could complement our solution allowing for the
management of software dependencies and roll-back
features.

 A very recent work on application software
installation is the one being developed in EGEE: the
gLite PackMan [17]. As presented this tool can be an
alternative to Tank&Spark. However, PackMan does
not offer a framework for ESMs, but forces the
packager to give a very detailed description of the
software via specific metadata files. In addition,
PackMan does not tackle the problem of automatic
installation on a farm of WNs.

7. Conclusions

In this work we have presented our experience with
application software installation and management
services, the list of requirements for an adequate tool,
and our proposed solution Tank&Spark. Preliminary
results show that the service proposed seems to be
quite stable and performing. Further enhancements
include a more reliable way to notify ESMs of the

status of the installation process (now only e-mail is
supported), a more efficient way to handle requests
coming from a UI (avoiding the use of the VO Box),
the possibility of rolling back to the last functional
software installation if problems arises, native support
for software dependencies, disk quota management,
development of a real super-service for central
software installation and management on the Grid,
more large scale tests to better understand the
scalability of the system in terms of local network
traffic (propagation of the software on all WNs).

References

[1] LHC Computing Grid Project: http://www.cern.ch/lcg
[2] Globus Project: http://www.globus.org
[3] Condor Project: http://www.cs.wisc.edu/condor/
[4] Virtual Data Toolkit: http://www.cs.wisc.edu/vdt
[5] European Data Grid: http://www.cern.ch/edg
[6] gLite Toolkit: http://glite.web.cern.ch/glite/
[7] GSI: http://www.globus.org/security
[8] GLUE: http://infnforge.cnaf.infn.it/glueinfomodel/
[9] Pacman: http://physics.bu.edu/%7Eyoussef/pacman/
[10] Natalia Ratnikova, Andrea Sciaba, Stephan Wynhoff,
Distributing applications in distributed computing
environment, VIII International Workshop on Advanced
Computing and Analysis Techniques in Physics Research,
June 24-28, 2002.
[11] Preliminary observations on LCG-2 based on the 2004
LHC data Challenges: LCG-GAG-DC04.
[12] Software Installation Requirement document, 2 Dec
2004:http://project-lcg-gag.web.cern.ch/project-lcg-
gag/LCG_GAG_Docs/SoftInst.pdf
[13] Experiment Software installation on LCG-1, 7 Nov
2004: http://grid-deployment.web.cern.ch/grid-
deployment/eis/docs/SoftwareInstallation/index.html
[14] Private communication with David Groep, NIKHEF.
[15] Martijn Steenbakkers, Guide to LCAS version 1.1.16,
15 September 2003, http://hep-proj-grid-
fabric.web.cern.ch/hep-proj-grid-
fabric/documentation/lcas.pdf
[16] Simone Campana, Antonio Delgado Peris, Flavia
Donno, Patricia Mendez Lorenzo, Roberto Santinelli, Andrea
Sciaba’, Toward a Grid Technology Indipendent
Programming Interface for HEP Applications, CHEP 2004,
Interlaken, Switzerland.
[17] gLite PackMan:
http://agenda.cern.ch/askArchive.php?base=agenda&categ=a
043837&id=a043837s1t0/transparencies

http://www.globus.org/
http://www.cs.wisc.edu/condor/
http://www.cs.wisc.edu/vdt
http://www.cern.ch/edg
http://glite.web.cern.ch/glite/
http://www.globus.org/security
http://infnforge.cnaf.infn.it/glueinfomodel/
http://physics.bu.edu/%7Eyoussef/pacman/
http://project-lcg-gag.web.cern.ch/project-lcg-gag/LCG_GAG_Docs/SoftInst.pdf
http://project-lcg-gag.web.cern.ch/project-lcg-gag/LCG_GAG_Docs/SoftInst.pdf
http://grid-deployment.web.cern.ch/grid-deployment/eis/docs/SoftwareInstallation/index.html
http://grid-deployment.web.cern.ch/grid-deployment/eis/docs/SoftwareInstallation/index.html
http://hep-proj-grid-fabric.web.cern.ch/hep-proj-grid-fabric/documentation/lcas.pdf
http://hep-proj-grid-fabric.web.cern.ch/hep-proj-grid-fabric/documentation/lcas.pdf
http://hep-proj-grid-fabric.web.cern.ch/hep-proj-grid-fabric/documentation/lcas.pdf

	1. Introduction
	2. The LHC Computing Grid
	
	2.1. The LCG Middleware
	2.2. LCG Application Software Installation and Management Service
	3. The requirements for a Software Management Service
	3.1. The User’s and Experiment’s View
	3.2. The Site Administrator’s View

	4. Our Solution: Tank&Spark
	4.1. The Implementation

	5. Experimental Results
	6. Related Work
	7. Conclusions
	References

