
Sensor Networks and Grid Middleware for Laboratory Monitoring

Jamie M, Robinson; Jeremy G, Frey;
School of Chemistry

University of Southampton, SO17 1BJ United Kingdom
j.m.robinson@soton.ac.uk

Andy J, Stanford-Clark; Andrew D, Reynolds; Bharat V, Bedi;
IBM UK Laboratories

Hursley Park, SO21 2JN, United Kingdom

Abstract

By combining automatic environment sensing and exper-
imental data collection with broker based messaging mid-
dleware, a system has been produced for the real-time mon-
itoring of experiments whilst away from the lab.

Changes in the laboratory environment are encapsulated
as simple messages, which are published using an MQTT
compliant broker. Clients subscribe to the MQTT stream,
and perform a data transform on the messages; this may
be to produce a user display or to change the format of the
message for republishing.

For example, an MQTT client written for the Java MIDP
platform can be run on a smart-phone with a GPRS Internet
connection, freeing us from the constraints of the network.
We present an overview of the technologies used, and how
these are helping chemists make the best use of their time.

1. The Chemistry Experimental Problem.

Improvements in automation technology have made it in-
creasingly common to leave chemistry experiments running
unattended. In many cases this can lead to a safer working
environment (e.g. experiments involving ionising radiation
or laser sources) and better results (e.g. liquid surface exper-
iments can be sensitive to vibration). In this extreme case
this can be considered to be a “Dark Laboratory”.

However, by being present during an experiment an ex-
perienced chemist will notice problems as they occur and ei-
ther alleviate them, or abort the experiment early and restart
it, having taken measures to avoid the problem recurring.
By providing the chemist with the ability to monitor their
experiment and its environment remotely, the safety and
quality of result improvements of allowing an experiment

to run unattended can still be obtained, while maintaining
the user interaction.

Using a combination of off the shelf electronic compo-
nents, and a software solution from IBM UK laboratories
at Hursley[1], a system has been created that allows for the
real-time monitoring of the chemistry laboratory from a va-
riety of clients. By using standards-compliant middleware,
in the form of an MQTT[2] data broker, the system can be
easily, and rapidly, extended to include more sensors and
different output devices.

In the current system we present the laboratory informa-
tion feed using a Java MIDP[3] dashboard interface running
on a smart-phone. This interface represents the information
streams from the lab using graphical icons, with additional
detailed notes available. We also have a representation of
the data as a webpage, that can be viewed on desktop PC.

2. Background

2.1. eScience : Science on the Grid

“e-Science is about global collaboration in key areas of
science, and the next generation of infrastructure that will
enable it.”[4]

“[The Grid] intends to make access to computing power,
scientific data repositories and experimental facilities as
easy as the Web makes access to information.” Tony Blair,
2002[4]

Broadly speaking eScience is the use of computers
to enhance science. The UK eScience project spans
a vast range of topics including Mobile Medical Mon-
itoring (part of EQUATOR)[5], Biomolecular Simula-
tion (BiosimGRID)[6], Distributed Aircraft Maintenance
(DAME)[7], Collaborative Knowledge (CoAKTing)[8] and
providing support methodologies such as storage and re-
source management in Bioinformatics (MyGRID)[9].

1



2.2. eScience in the Chemistry Lab – The
Combechem Project

CombeChem is promoting consideration of the whole
end-to-end pathway for the generation of chemical knowl-
edge, keeping track of the whole process from chemical
laboratory to the literature. The project encompasses
electronic lab books in the organic synthesis lab through
automated crystal structure collection and resolution; Data
collection for laser driven surface spectroscopy to ab-initio
chemical property calculation, and the use of statistical
methods to improve laboratory efficiency.

Publish@Source. Frey and Hursthouse[4] note that the
current publishing methods, whilst being an important
storage and archival mechanism (the technology of paper
libraries is well defined), are unable to contend with the
speed at which new science is being performed. Taking
their example of X-Ray Crystallography, the published data
set of structures is currently in the region of 300,000 which
is collated in the Cambridge Structures Database[10], how-
ever they estimate that approximately 1.5 million structures
have been successfully resolved, out of a potential dataset
of 10 million compounds. The disparity between the 1.5
million structures known, and the 300,000 published is
their major point of concern. They propose that chemists
self publish their data in a common format. By providing
a traceable provenance for the material right back to its
preparation, end users will be able to make judgements
about the quality of the data.

End-to-end data Storage. By placing the record of the
chemical process into an electronic storage facility from its
inception, the route is opened for completing the end-to-
end system. Taking the example of a chemical synthesis, if
at the planning stage the sample is given a unique identifier,
this value can be stay with the sample throughout its life-
cycle. When a spectroscopic technique is performed on the
sample, by using its unique ID the spectra could be auto-
matically filed into the samples record. When a material is
taken on as the precursor to another, by using its unique ID
a provenance chain is created. By providing all the raw data
from the analysis techniques carried out on a compound,
especially where there exists a possibility for doubt in its
processing, the end user is able to re-process the data, hope-
fully, achieving the same results.

Alongside the chemical information that is stored in this
provenance chain, a record of laboratory conditions is also
important, procedures may be sensitive to changes in tem-
perature, light level or vibrations from people in the lab.
Aligning these data chains (experimental and environmen-
tal) may be problematic. A trivial way to overcome this is
to reference against time. If all the servers used are syn-

chronised to a central time server, time-stamps can be used
to align datasets which are collected separately.

2.3. Middleware

Middleware is the name given to software which pro-
vides a messaging fabric to link applications and systems
together. The implication from the name is that it is some-
thing that occupies the space between the operating system
and the applications, and this is pretty much accurate. The
alternative to not using a middleware system, is that the ap-
plication writer has to deal with the mechanics of getting
messages from A to B, dealing with connection failures,
network outages, duplicate messages, etc, etc.

�����

�����	
��

�



������������

�



������������

Figure 1. Client-Server Dataflow without Mes-
saging Middleware. All producers talk di-
rectly to the clients, and have to deal with
potential networking instabilities

A middleware system takes that responsibility away
from the application writer, and provides a convenient in-
terface to enable the application to send a message, and be
confident that it will get to its destination. This enables the
application writer to focus on the domain-specific part of the
problem (i.e. closer to the user and the data), and not have to
worry about moving messages around the system. So with
a middleware system, the problem of “by what mechanism
will a message be delivered from application A to applica-
tion B”, becomes: “what would you like to send, and what
will you do with it when it arrives?”

2.4. Publish and Subscribe Technologies[11]

The publish/subscribe model is built around a central
broker and a number of clients which connect to the bro-
ker. The broker acts as a go-between: an agent that matches
subscribers to information with publishers of information
thats relevant to them. Clients can be publishers of, and/or



������

�����

	
������

�
�

�������������

�
�

�������������

Figure 2. Dataflow with Messaging Middle-
ware. All data flows through the broker, de-
coupling data producers from data users.

subscribers to, data and can range from big enterprise-based
servers to hand-held pervasive computing devices or unat-
tended remote telemetry devices.

Publishers send units of information (called messages) to
the broker, on a specific topic. The topic is like the subject
line of an e-mail. It tells you what the body of the mes-
sage contains. Subscribers register their interests in certain
topics with the broker. The broker manages connections
from publishers and subscribers, and deals with authentica-
tion and access control lists, to control who is allowed to
publish and subscribe to which topics.

It’s important to remember that publishers and sub-
scribers are usually unknown to each other, the broker acts
as a matchmaker. This decoupling makes the system future-
proof by generalising the use of data; it is not tied to specific
applications. At any time, you can deploy new applications
that can use a new combination of topics. It is this potential
that makes publish/subscribe such a powerful concept.

Topics are arranged hierarchically, with slashes (/) be-
tween the levels, similar to a URL. The hierarchy, which
defines an information space, must be carefully designed to
help ensure that data is available in a sensible, logical, struc-
ture. For example, if you had two labs with two temperature
sensors in each, sensible topics might be;
/environment/lab1/temp1
/environment/lab1/temp2
/environment/lab2/temp1
/environment/lab2/temp2

When a message from a publisher arrives at the broker,
the broker examines the topic, and matches it against the
expressed interests of the currently registered subscribers
(including wild-card matches). The broker then sends a
copy of the message to each subscriber whose subscription
matches that of the incoming publication. This is a true
“push” model: data is sent from the publisher to the bro-

ker, then directly sent by the broker to the subscriber. The
subscriber must maintain an open socket connection to the
broker in order to receive those pushed messages.

2.5. Using middleware in the laboratory space

A powerful feature of using messaging middleware, is
that the architecture allows collaborating applications to in-
tercommunicate via a central hub, known as a Message Bro-
ker. Each application sends its data to the broker, and the
broker sends it on to the intended recipients. This decou-
pling of producer (or publisher) from consumer (or sub-
scriber) is extremely powerful, as it means that neither the
publisher nor the subscriber needs to know about the other
party. This means that data producers can be simply set up
to publish their data to the broker, and that’s all they need
to do. On the other side, subscriber applications then tell
the broker what kind of information they’re interested in,
and the broker forwards any messages that come in from
publishers, matching those interests, to the interested sub-
scribers. This permits great flexibility in the rapid explo-
ration of new ideas and the easy deployment of new appli-
cations which are written as new uses are found for the data
that’s being published. Similarly, if a piece of equipment is
swapped for another type of machine, as long as it publishes
the same information as the previous one, none of the sub-
scribing applications need to know that the swap has taken
place: they simply continue to receive the data they expect,
as before.

In an environment where things are often changing, and
new things are being tried out, with the research lab being a
case in point, the decoupling of publishers from subscribers
has particular benefit as the back end applications which
process, display, etc, the information can remain the same
while the equipment generating that data may be changed,
improved, etc. Another significant benefit is the one-to-
many capability of publish/subscribe - several people and
applications may receive one piece of data being published
from a device in the lab.

The presence of the broker also helps define the respon-
sibility in case of network communication failure. All nodes
in the system (both publishers and subscribers) make a TCP
connection to the broker as clients, and hence if the com-
munications network fails are responsible for either exiting
gracefully, or attempting reconnection. The broker does
however provide tools to help minimise the problems this
can cause. If a subscriber needs to receive a message as
soon as it connects, to fill a data structure for example, then
the broker can be configured to use ‘retained topics’. When
a retained topic is published, the broker stores a copy of it in
memory, and then publishes out this old message whenever
a new subscriber requests a topic. The broker also manages
a system of “Last Will and Testament” this allows a client to



specify, when it connects, a message (and the topic to pub-
lish on) that notifies other clients of its failure. This could be
used to alert the System administrator of problems, or warn
users that the current data may be out of date. All these fea-
tures mean that smooth running is supported without special
code for each sensor output.

2.6. MQTT

MQTT (MQ Telemetry Transport)[2] is one of the pro-
tocols supported by the IBM WebSphere Message Broker
products as a way of getting data in and out of the broker.
The protocol was designed specifically for remote telemetry
applications, with three specific design goals:

1. It should offer a once-and-once-only assured delivery
mode to enable a message to be reliably transferred all
the way from a remote sensor to a back-end applica-
tion.

2. The protocol should be as lightweight as possible
across the ”wire”; most remote telemetry is done over
low bandwidth, high cost networks, and so minimising
the overhead of each message is highly desirable.

3. The protocol should be very easy to implement on em-
bedded devices such as sensors and gateways.

The MQTT protocol has an open, published
specification[12], which is available for anyone to im-
plement on a client device, and reference implementations
are available from IBM in Java[13] and C[14].

3. Implementation

3.1. Implementation Overview

The initial implementation of this was in a Laser lab used
for measuring surface optical properties. It was decided
to monitor temperature, presence of people in the lab (and
their movement in and out) and the state of the lab lights
(on/off). A sensor connection to the laser interlock was
also made, as this provides a quick indication of unautho-
rised access to the lab (which would result in the interlock
changing state), and if the interlock is tripped, laser output
is stopped, which makes the experiment data useless.

Data from the sensors in the laboratory are captured into
a computer system, which looks for changes in the mea-
surements. When a change is detected, a message is pub-
lished as a MQTT message over an IBM WebSphere Con-
nection Server Micro Edition (”MicroBroker”) running lo-
cally in Southampton. These messages are then distributed
to a range of clients, some of these being end user displays,
some being storage agents (for example writing data to an
SQL database), and some being transform agents to refor-
mat the data for other clients.

��������	
���

�����	
���

��������

���	


�����	����

�����	������

�����������

�	��

�����
���
�
�

������	������

�
�

������	������

�����

����

����

�	����

�����

�����

�����

������

�����

���

 ��������

������

!	�"�	��

�����

��#������

�����

$�������

�%�

!	�	"	�

&	���

����	���

��	
��������

!����	
�&	������

!�'���

��"
������

�%���

��	��

$���

��������

&���������

 (����������	�	

��	�������&

Figure 3. Dataflows within the Laboratory
messaging system.



3.2. Electronics

Temperature was measured using three semiconductor
temperature sensors supplied by RS-Components which
provide a linear temperature to voltage output. This signal
is then captured using an existing Data Acquisition card.
Currently these sensors measure temperature in three areas
of the lab, away from the rig, near the rig and inside the
safety covers alongside the input-side optics.

The state of room lighting (on/off) is being monitored by
a photo-diode placed alongside one of the light fittings. The
signal from this is monitored by the data acquisition card,
and passed through a threshold filter to generate a toggle
that mimics the light switch. Currently we’re only inter-
ested in light being on or off, as the actual level is reason-
ably constant in the region being studied however for an
experiment detecting in the visible light region, it may be
more appropriate to monitor the actual light level, with a
sensor mounted on the experimental rig.

Monitoring of personnel movements was performed us-
ing security alarm components. A PIR sensor in the lab de-
tects people moving, it has been found that due to the layout
of the lab, and the necessity of operators to stay still, that the
PIR loses people in the lab, and stops triggering. This was
predicted when we were at the planning stage, so the abil-
ity to check people passing through the lab doors was also
added. Door state is monitored using simple magnetically
controlled reed switches. All these toggle sensors connect
back to the TTL Input of the Data Acquisition Card, using
the card’s internal 5V supply with a bias resistor to generate
the high state.

3.3. MQTT messages in the SmartLab

Within the smartlab a system was required that could
provide message transmission reliability, the ability to dis-
tribute messages to a range of clients, ease of implementa-
tion on an range of machines (although mostly PC based), a
clear degradation scheme in case of system failure, and the
ability to filter the message stream hence allowing minimal
data to be sent, enabling the use of expensive communi-
cations technologies such as GPRS[15]. MQTT provides
these facilities as part of it’s specification, and through us-
ing existing software such as the MicroBroker, development
time has been significantly reduced.

The MQTT specification[12] defines a generic messag-
ing system, providing transport controls, and a container
to hold application specific message. In the Southampton
Smartlab monitoring system we chose to use an XML like
messaging format. This decision was driven by two core
reasons.

1. Format Standardisation, the Combechem project is us-
ing XML based formats where-ever sensible, to aid fu-
ture file conversion, and interpretation.

2. Compatibility with other Projects, The Floodnet
project[16] uses an XML based messaging delivered
over MQTT, and already has some tools to use this
data, that can be adapted for the SmartLab monitoring
work.

By using the MQTT libraries provided by IBM[14, 13] we
are saved from having to encode the underlying MQTT
messages, and need only produce the text of the message,
and pass this to the provided library. Our messages follow
the XML fragment shown in figure 4.

<msg>
<data>Wiring Box</data>
<value>20.996094</value>
<time>1095690315</time>

</msg>

Figure 4. Example of the XML message that
carry sensor information in the SmartLab sys-
tem.

3.4. Transformation Agents

A number of small ”Agents” are used within the Smart-
Lab Messaging system. These perform translation tasks,
to make the messages accessible from some other system.
These can either be transferring messages away from
the MQTT based system, or may be translating message
from one format to another, but then encapsulating the
result as MQTT message, and publishing them back to the
Broker (or another Broker). The agents used in the Smart-
Lab as shown in Figure 3, and discussed in more depth here.

Mimic Agent. The workstation client shown in figure 3
includes an applet that plots live data from the broker as it
is received. This plotting applet is linked to the temperature
data feed. The sensor system in the lab only produces
messages when the temperature changes, and the applet
only plots a point when it receives messages. A more
useful plot is one showing temperature over the most recent
time period, to get the applet used to plot this required
publishing a message to it every second. To achieve this
the mimic agent was written, which subscribes to the
temperature topics from the lab, then publishes messages
once a second on the temperature mimic topic.



Bridge Agent. The Southampton MicroBroker operates
within the University of Southampton network domain, and
access to it is restricted by the University’s data access pol-
icy (enforced by the campus firewall). The mobile phone
client, is a remote client on the Internet, using a commercial
ISP (in this case a mobile GPRS provider) and as such is
outside the campus administrative domain. Hence for the
mobile phone client to receive data from the lab it needs
to be published by a publicly visible broker. The simplest
solution to this would be to make the Southampton broker
publicly visible (by liaising with the campus firewall team)
However this would make all of our data streams publicly
visible, and could potentially allow other users on the In-
ternet to inject data into the streams. The solution to these
problems is to bridge the data from our MicroBroker onto
a publicly visible broker, in this case an IBM WebSphere
Business Integration Message Broker (”Enterprise Broker”)
run by IBM. The bridge agent, which is a component of the
IBM MicroBroker, allows us to only send that data which
we want to be publicly visible, and is a one-way connec-
tion, so external clients can’t inject data into our private data
streams.
Backup Agent. Data on the broker is inherently transient
in nature (or at best retaining the last message). One aim
of the lab monitoring work is to be able to review old data,
so that we can consider the lab conditions when analysing
data (and possibly justifying poor data), therefore we need
a way of retrieving old data. The backup agent performs
the “store” function of this recall, by subscribing to all the
lab data streams, and writing the data from the messages
into a SQL database.

Dashboard Agent. The phone client requires messages
suitable for client display, and is less concerned with the
raw message format. Generating these messages requires
a simple transform, mapping messages from the lab topics
onto dashboard topics, and also extracting the data from
the lab topics, and writing it out as dashboard display
texts. The dashboard agent also performs some basic
inferencing. An example of this is that by storing previous
values, an indication of direction of change can be added
to the messages eg “The Temperature rose by 1

oC to 23
oC”.

Inference Agent. By combining the existing data streams,
and performing some action on the data, new “inferred”
streams can be generated. At this time a simple example of
this is the “lab occupied” topic. To generate this, an agent
listens for messages from the three PIR sensors in the lab,
and records the time they last triggered. Then when the
door *closes* checks to see if there was a PIR trigger in the
past 5 seconds. If there wasn’t then the door closing must
be someone entering the lab, so we send a message stating
lab occupied. If the PIRs had triggered in the 5 seconds

preceding the door closing, then it could be someone
leaving, or someone else entering. However if someone
new entered, then the PIRs will continue to trigger after
the door closed. Hence we can send a “Lab Unoccupied”
message, but when we get a PIR trigger message, if the
current state is “unoccupied”, then this must be wrong so
send a “Lab Occupied” to correct it. The time between the
door closing, and the next PIR firing will be quite short, so
the blip is unlikely to be noticed.

3.5. Security and Firewalls in the Smartlab

Security is always a concern, especially where sensitive
or important data is involved, when the data goes across the
public Internet, and where control messages are being sent
to modify experimental parameters or turn devices on or off.

Figure 3 shows the flow of data within the Broker in the
Smartlab. There is some system re-use within the Smart-
Lab, ie the majority of the services are hosted by the same
physical machine (MQTT Broker, Bridge Agent, Mimic
Agent, Backup Agent, SQL database and Inference Agent),
however as all MQTT communication is done using TCP/IP
sockets, they could be separated. This would be particularly
useful if other laboratories were linked into this system, and
the load was found to be too great for the one machine.

After concerns about system reliability and security, a
stateful packet filtering firewall[17] was implemented using
a dedicated machine, and the Linux netfilter[18] software.
This was designed to protect the Microsoft Windows based
laboratory data capture machines after an outbreak of the
Sasser Worm[19]. The speed with with this worm spread
resulted in the experiment data capture machine becom-
ing infected before the appropriate security patches could
be installed. Similar local (software) firewalls have also
been implemented on all public facing Linux machines in
the Smart(SHG)Lab. The Lab is also protected from the
Internet at large by a Campus Level firewall, however as
discussed above this causes problems for remote access, re-
sulting in the need to use the bridge agent and a publicly
visible broker.

MQTT deliberately has a very minimalist approach to
security, enabling appropriate security to be layered on top
of it as required for any given application. Encrypting
the message payload is an obvious first step in securing
the data, which can be done using PKI certificates if re-
quired, to additionally provide signing for authentication
and non-repudiation. Challenge/response security can be
incorporated at the application level, by sending the chal-
lenge/response flows as MQTT messages over pub/sub. As
MQTT is a protocol on top of TCP/IP, standard VPN (Vir-
tual Private Network) products can be used to secure the
connection, and hence the data flowing inside it.



4. Discussion

4.1. Effect on the chemist

The current implementation was designed as an exem-
plar of the technology, to be implemented quickly, with the
possibility of providing the chemist with some added value.
The data provided by the current sensors is of little use in
real-time. However as a recallable data-set the temperature,
and room access information is valuable for corroborating
poor quality experimental data.

An exception to note, is that whilst at a conference in
Paris discussing associated work, it was noticed that the
temperature in the lab was somewhat higher than usual.
This was reported back to the people working in the lab
by email, who then discovered that the Air-Conditioning
wasn’t performing efficiently, and an engineer was called
to rectify the problem.

At present we don’t transmit the actual experiment data,
this decision was reached for two reasons. Firstly the data
produced is reasonably large (and the aim is to keep MQTT
messages small to minimise transmission costs), and more
importantly, the display capabilities of smaller clients (such
as the phone) makes a graphical display of the data of little
use. More useful will be to send a message stating that the
experiment has finished, and giving a unique identifier. This
could then be entered into a web page, to display the data
on a device with better display capabilities, such as a PC .

By storing all the experimental, and environmental data
surrounding an experiment, we can build this into a virtual
laboratory simulator. This could then playback the events
of the laboratory, which would be useful during analysis to
help answer the ”why did it do that” question. It could also
be used as a teaching tool.

4.2. Safety Concerns

Remote monitoring and control technology such as
MQTT and the message broker can be used to implement
”lights-out” operations of labs, factories, oil wells, etc, with
no need for anyone to be physically present at the location
being monitored or controlled. This being particularly
problematic when dangerous equipment is being remotely
controlled. The use of local mechanical and electrical in-
terlocks can help to aid this, but adding remote monitoring
the operator is placed in a more knowledgeable position.
Security devices such as PIR sensors and door/pressure
switches can be used to raise an alert if anyone unexpect-
edly enters a room or building. Identification technology
such as RFID[20] tagging can also be used to verify the
identity of personnel who do enter or leave a controlled
area, again using MQTT to alert the appropriate parties.

4.3. Conclusions

The use of a message broker based approach gave a sig-
nificant head-start in the implementation of the laboratory
monitoring solution. The MQTT message broker provides
message transmission reliability, the ability to distribute
messages to a range of clients, and the ability to filter the
message stream based on client requests. The availability
of standard libraries eases the implementation of MQTT
clients. By automatically collecting and distributing data,
additional metadata can be provided to the experimental re-
port that would otherwise have been missed.

5. Future Work

5.1. Additional Data Streams

The current data streams were chosen for their speed of
implementation. Based on knowledge gained here, more
chemically useful data streams need to be implemented.
This will require the addition of extra sensors, for exam-
ple, indication of laser running, and laser emitting. It will be
helpful to publish experiment status from the data collection
software (eg experiment start, experiment end, experiment
needs human intervention).

From these (and the existing data streams) more inferred
data streams can been added. Possible examples include
“un-authorised entry”, “Lab safe to enter indicator” and
“Laser Ready to use”.

5.2. Other Output Devices

It is planned to extend the system to allow the remote
user to provide the laboratory with feedback via the mes-
sage broker, and to investigate ways of presenting more
complex data, such as experimental data plots, based on
awareness of the chemists location.

5.3. Other Laboratories

We’ve shown the potential usefulness of these tech-
niques within our laboratory (studying liquid surfaces),
a logical follow-on is to apply these techniques to other
spaces. The SmartTea project is looking at ways to
automate the collection of laboratory data in the synthetic
organic chemistry laboratory, with the aim to providing an
end-to-end data curation solution. Part of this will be to
record the environmental conditions that experiments are
performed under. There is also scope to monitor reactions
remotely, allowing the chemist to perform other work.
Discussions are currently under way to discover how the
technology described here can be applied to their work.



Appendix

A. IBM Message Brokers : Choosing the cor-
rect broker for the Job

IBM has several ”message broker” products in the prod-
uct portfolio. In decreasing order of size, range of functions,
sophistication and price, these are WebSphere Business In-
tegration Message Broker (WBIMB)[21], WebSphere Busi-
ness Integration Event Broker (WBIEB)[22], and Web-
Sphere Connection Server Micro Edition (WCSME). The
first, WBIMB, is often referred to as the Enterprise Broker,
and that runs on a server-class machine, supports multiple
input and output messaging protocols, and has a rich set
of tools and functions to develop message transformations
and routing logic to enable the broker to act as a power-
ful, central communications and transformation hub for an
Enterprise-scale middleware operation. By contrast the last
mentioned, WCSME, more widely known as the ”Micro-
Broker”, is a small footprint (about 500K of Java) message
broker, designed for use in embedded applications, such as
for integrating sensors, actuators and applications at a re-
mote location (for example, in the research lab). The Mi-
croBroker uses MQTT as its communications protocol, and
is able to selectively ”bridge” some of the information top-
ics to another broker (often an Enterprise Broker). This hi-
erarchy of brokers implements the middleware fabric that
enables the seamless delivery of messages from sensors to
back-end applications, with aggregation and additional pro-
cessing being performed at the point in the network where
it makes most sense.

References

[1] IBM. IBM United Kingdom Laboratories, Hursley
Park. http://www.hursley.ibm.com.

[2] IBM. Mqtt.org. http://www.mqtt.org.
[3] Sun Microsystems. Mobile Information Device Pro-

file. http://java.sun.com/products/midp/index.jsp.
[4] Jeremy G. Frey and Mike B. Hursthouse. From e-

science to publication@source. In National Poli-
cies on Open Access (OA) Provision for University
Research Output, Southampton, UK. University of
Southampton, 2004.

[5] Equator. Website. http://www.equator.ac.uk/.
[6] BiosimGRID. A GRID Database for biomolecular

simulations. http://www.biosimgrid.org/.
[7] DAME. Distributed Aircraft Maintenance Environ-

ment. http://www.cs.york.ac.uk/dame.
[8] CoAKTinG. Collaborative Advanced

Knowledge Technologies in the grid.
http://www.aktors.org/coakting.

[9] MYGRID. Directly Supporting the E-Scientist.
http://www.mygrid.org.uk/.

[10] CCDC. The cambridge structural database - the
world repository of small molecule crystal structures.
http://www.ccdc.org.uk/products/csd/, 2004.

[11] Andy Stanford-Clark. Integrating monitoring and
telemetry devices as part of enterprise information re-
sources. Technical report, IBM, 2002.

[12] IBM. WebSphere MQ Teleme-
try Transport Specification.
http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp?
topic=/com.ibm.etools.mft.doc/ac10840 .htm.

[13] IBM. IA92: WBI Brokers - Java implemen-
tation of WebSphere MQ Telemetry transport.
http://www-1.ibm.com/support/docview.wss
rs=171&uid=swg24006006&loc=en US&cs=utf-
8&lang=en.

[14] IBM. IA93: WBI Brokers - C implementa-
tion of WebSphere MQ Telemetry transport.
http://www-1.ibm.com/support/docview.wss
rs=171&uid=swg24006525&loc=en US&cs=utf-
8&lang=en.

[15] Wikipedia. General Packet Radio Service, defined at
wikipedia.org. http://en.wikipedia.org/wiki/GPRS/.

[16] FloodNet. Pervasive Computing in the Environm-
ment. http://envisense.org/floodnet/floodnet.htm.

[17] Wikipedia. Stateful firewall from wikipedia.
http://en.wikipedia.org/wiki/Stateful firewall, 2004.

[18] CombEchem. Firewalling, NAT and packet mangling
for linux. http://www.netfilter.org/, 2004.

[19] Sophos. Virus information w32/sasser-a.
http://www.sophos.com/virusinfo/analyses/w32sassera.html,
2004.

[20] Wikipedia. Radio Frequency IDenti-
fication, as defined at wikipedia.org.
http://en.wikipedia.org/wiki/RFID.

[21] IBM. WebSphere Business Integra-
tion Message Broker. http://www-
306.ibm.com/software/integration/wbimessagebroker.

[22] IBM. WebSphere Business Inte-
gration Event Broker. http://www-
306.ibm.com/software/integration/wbieventbroker/.

IBM and WebSphere are trademarks of IBM Corporation in the
United States, other countries or both.
Java is a trademark of Sun Microsystems Inc. in the United States,
other countries or both.


