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Abstract

This paper proposes an application of the Collabora-

tive e-Science Architecture (CeSA) to enable e-Research in

combustion research community. A major problem of the

community is that data required for constructing modelling

might already exist but scattered and improperly evaluated.

That makes the collection of data for constructing models

difficult and time-consuming. The decentralised P2P col-

laborative environment of the CeSA is well suited to solve

this distributed problem. It opens up access to scattered

data and turns them to valuable resources. Other issues of

the community addressed here are the needs for computa-

tional resources, storages and interoperability amongst dif-

ferent data formats can also be addressed by the use of Grid

environment in the CeSA.

1. Introduction

e-Science is about global collaborations amongst key ar-

eas of science and the infrastructures that enable it [21].

The introduction of e-Science is the result of the increasing

demand for distributed global online collaborations to sup-

port international collaborations amongst scientific commu-

nities. The concept of e-Science is now broadening to e-

Research to encompass the social sciences, the arts and hu-

manities [1]. Generally, e-Research “encapsulates research

activities that use a spectrum of advanced ICT1 capabil-

ities and embrace new research methodologies”, which

1Information and Communication Technology

emerge for increasing access to network, hardware and soft-

ware infrastructures together with application and collabo-

ration tools [6]. The kind of collaborations addressed by

e-Science, and hence e-Research, includes the exchange

of scientific results, potentially in huge volume of data,

amongst scientists from across disciplines and the sharing

of back-end computational resources, such as CPU cycles,

memory and storages.

Research in combustion is a typical example. The main

subject of studies in combustion is the modelling of chem-

ical reaction mechanisms and their applications in combus-

tion processes such as burning of fuel in combustion en-

gines. The modelling of chemical reaction is a compli-

cated process. It requires knowledge, expertise and data

from a range of research areas in chemistry such as quan-

tum chemistry, thermodynamics, measurement and calcula-

tion of reaction rate coefficients. The modelling of chemi-

cal reactions is a central area in reaction kinetics, with ap-

plications not only in combustion but also in atmospheric

chemistry. Research activities in these three areas are inter-

related through this modelling process. Therefore, there is

the need for collaborative research activities to transfer re-

search data, knowledge and expertise within research disci-

plines and communities in applied reaction kinetics. There

is also considerable advantage in developing communities

across disciplines, e.g. amongst combustion, reaction ki-

netics and atmospheric chemistry (as illustrated in Fig. 1).

Grids and Grid technologies are currently seen as the

most promising infrastructures to support distributed col-

laborations. It deals with the coordinated sharing of huge

amount of scientific data and computational power across
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Figure 1. Collaborative research activities
amongst inter-related research communities
of combustion, reaction kinetics and atmo-
spheric chemistry

organisational boundaries and disciplines [7, 9, 8]. An ex-

ample in the domain of bioinformatics is myGrid, which

deals with similar requirements for collaborations [19][12].

myGrid focuses on the middleware components that enable

collaborations using distributed Web Services and compo-

sition of these services into workflows. This approach is

workgroup oriented. The collaboration amongst end users

at a community scale has not been addressed. In general,

the Grid model alone is often project oriented and does not

scale well with respect to the granularity and heterogeneity

of community [17].

Web-based collaborative portals are commonly used as

environments for end users of distributed communities to

get involved in the collaborations, such as the Virtual

Knowledge Park [31] and the British Atmospheric Data

Centre[2]. However, the centralised Web-based approach

has shown to be inflexible for distributed and loosely cou-

pled communities as it does not well support spontaneous

collaborations[29].

Peer-to-Peer (P2P) is a computing model that supports

the sharing of smaller computing resources. This model has

been proved successful in a number of commercial desk-

top file-sharing applications such as Napster [20] and Kazaa

[16]. This success has motivated the use of P2P model in

scientific projects such as Triana [30] and Chinook [13].

P2P is a decentralised network-computing model, where

computation is taken place at the edges. That makes it scale

well with respect to the community structure. In addition,

P2P applications often provide means for real-time commu-

nication. It is highly suitable for direct and spontaneous col-

laborations amongst users. In an essence, the decentralised

model of P2P can efficiently support user collaborations at

a higher level of granularity.

Given the pros and cons of each of the architectural mod-

els discussed above, there is considerable advantage in the

integration of P2P and Grid. This paper discusses a pro-

posed application of a Collaborative e-Science Architecture

(CeSA) [22], which is an integration of Grid infrastructure

and a P2P collaborative environment, for the combustion

research community. It firstly reports on the requirements

collected from the research community. The paper then de-

scribes the CeSA and earlier work on its prototype imple-

mentation and evaluation. Further work on the CeSA to-

gether with an assessment of related work will be presented.

2 Research in Combustion

Research in combustion chemistry is centred around re-

action models [24]. The basic component of a reaction

model is a chemical reaction mechanism, which consists of

a series of steps called elementary reactions in which chem-

ical species are inter-converted. Each elementary reaction

is associated with involved species (reactants and products)

and a rate coefficient, which determines the rate at which the

reaction occurs. The elementary reactions and their associ-

ated rate coefficients are investigated in laboratory. It is also

feasible to calculate some rate coefficients using quantum

theory. The computing resource needed for this approach is

substantial. This mechanism can then be used to construct

a model that consists of a set of ordinary differential equa-

tions that represent the rates at which the concentration of

individual species in the mechanism changes with time.

Application of reaction models in combustion, for ex-

ample, involves the interaction between chemistry and fluid

dynamics. This adds a further stage of complexity and re-

quires an additional set of scientists with specific expertise.

This stage is essential in applications to real systems, such

as the design of engines. It is often divorced from the chem-

ical developments, for practical reasons, but it should ide-

ally be incorporated in the overall set of interactions, so that

feedback is feasible between all elements.

2.1 The Three Stage Modelling Process

The reaction modelling process, the central activity in

combustion research, consists of three stages: gathering and

evaluating data, generating mechanisms and models, and

publishing and archiving models, as summarised in Fig. 2.

i. Gathering and evaluating data: Data gathering and

evaluation is an essential stage of model construction.

In this stage, elementary reactions are identified to-

gether with their reaction rate coefficients and thermo-

dynamic data required for the reaction mechanism of

the model. These data are produced by different re-

search groups in the community and scattered over var-

ious sources. The data need to be collected and evalu-
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Figure 2. The three stage modelling process

ated. Good datasets are then archived as recommended

data for use in later stages.

ii. Generating mechanisms and models: In this stage,

relevant elementary reactions and their associated pa-

rameters gathered and evaluated in the previous stage

are put together to build a mechanism. The result-

ing mechanism is then put into a model. This com-

prises ordinary differential equations describing the

chemistry and partial differential equations describing

the fluid dynamics. The model can then be tested in

a variety of ways, for example, through experiments

on a flame, in which the concentrations of some of

the species are directly measured and checked against

those simulated using the mechanism. A sensitivity

analysis can also be conducted. This is to determine

the sensitivity of an important observable to the mech-

anism components, e.g. the rate coefficients, to allow

the experiments to be targeted at key features of the

mechanism. The result of sensitivity analysis is essen-

tial feedback to the overall model development pro-

cess.

iii. Publishing and archiving new models: The result-

ing model from this process needs to be published so

that other researchers and potential model consumers

are aware of its availability. The new model is also

archived for later use by application engineers or by

other modellers as a referenced model. For archiving

purposes, standards for data formats are essential, so

that the archived models can be easily retrieved and

used without the need for any conversion.

2.2 Current Limitations and Issues

One major problem that the combustion research com-

munity is facing is that the data required for generation of

reaction mechanisms and models is scattered in the commu-

nity and often inadequately evaluated. There are different

groups working on different reactions and aspects of data

required for the modelling process. There might also be two

or more different groups working on the same reactions and

set of data. Currently, there is no coordination across the

group. The organisation of research topics amongst these

groups is unstructured. Therefore, it is often the case that

a dataset produced from by one group is different from an-

other group, even though they are both working on the same

reaction. There is the need for evaluation to select the best

datasets as recommendations for use in later stage of the

modelling process.

International panels consisting of experts in the field are

often set up to evaluate these kinds of data. Typically, they

meet together once a year in a peer-review meeting. During

the meeting, participants discuss and recommend rate data

generated by experiments. The outcomes of such a meet-

ing are recommended datasets which are then deposited to

a database and used as reference data. This process is time-

consuming and costly.

There are examples of evaluated databases in combus-

tion [3] and atmospheric chemistry [14]. The former is cur-

rently only available in hard copy, while the latter is acces-

sible from a website. However, such efforts are still patchy.

Recently, a Process Informatics Model (PrIMe), set up by

the initiative of experts in combustion, has started to co-

ordinate the development of predictive chemical reaction

models [25]. In PrIMe, the evaluation is broken down to

smaller sets of reactions. Each set is evaluated by a work-

group, operating remotely. In turn, other workgroups will

eventually cover all aspects of the three stage process. This

is described in section 2.1. The PrIMe project, however, is

currently focused on the development of data repositories.

Another issue that concerns the community is the exis-

tence of many different formats for the same set of data.

This is also a result of a lack of collaboration and coordi-

nation amongst research groups in combustion. Many dif-

ferent tools (e.g. for simulations, analyses or editing model

data) are used in the community, and are often self-built by

individual groups to meet their own needs. The formats of

data are therefore customised to the habits and conventions

of the groups that build the tools. Furthermore, different

versions of the same tool might also be used at the same

time. As a result, different researchers, or research groups

may use and produce data using different formats and stan-

dards. That makes the data transfer from one group to an-

other group more difficult. Format conversion tools are of-

ten necessary. There is the need for a lightweight ontology.

Finally, the construction of a reaction model often in-

volves hundreds to thousands species and requires large sets

of ordinary differential equations. Solution of these equa-

tions at a large number of “computational grid points” in a
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computational fluid dynamic simulation requires a substan-

tial amount of computational resources. Currently, the plat-

forms on which these tools are running are often personal

computers or workstations in clusters. As executing large

amount of ordinary differential equations, sometimes, takes

hours to days or even weeks, these computers may not be

adequate.

2.3 Requirements for Combustion Re-
search

The combustion research community needs a collabo-

rative infrastructure for their distributed collaborations. In

particular, the infrastructure needs to be able to:

• Allow scientists who are working on the same or sim-

ilar research activities to dynamically form working

groups (small focused groups) to make the data trans-

fer process from one research group to another easier

and smoother.

• Provide efficient support for timely collaborations

within and across working groups in the commu-

nity for sharing expert knowledge, day-to-day work-

ing data, such as experimental data, chemical reaction

mechanisms and related input data for reaction mod-

elling to speed up the data collection and evaluation

process.

• Provide easy access to computational intensive re-

sources for time and resource consuming simulations

and analyses and for storage of large amount of exper-

imental data deal with large amount of calculation and

storage required by the community.

3 The Collaborative e-Science Architecture

Previous work on the Collaborative e-Science Architec-

ture (CeSA) which has detailed the prototyping, an early

use experiment and evaluation [22]. This section briefly

outlines the CeSA and the earlier work.

3.1 Goals

The CeSA is aimed at a better support for collabora-

tions within distributed scientific communities by providing

an integrated collaborative environment. In order to suffi-

ciently support the community, the CeSA:

• is scalable with respect to decentralised nature of sci-

entific communities.

• supports scientific collaborations at different levels of

granularity, so that different collaboration activities

such as those required in section 2.3 could be per-

formed.

• provides access and enables back-end computationally

intensive resources for complex computation and stor-

age requirements.

3.2 A High Level View of the CeSA

A high level view of the CeSA is shown in Fig. 3. The

CeSA consists of two layers: a P2P collaborative environ-

ment on top of a Grid environment.

Figure 3. High level view of the Collaborative

e-Science Architecture

The Grid environment may consist of one or more Grids,

represented by Grid Nodes in Fig. 3. They may or may not

be connected together. Grids handle computational inten-

sive resources (e.g. CPU cycles, memory, network band-

width and storage) and scientific data (e.g. data generated

by experiments). The kind of collaborations supported by

the Grid environment is often heavyweight. The Grid archi-

tecture adopted for the CeSA is specified by the Open Grid

Services Architecture [8, 10], as shown in Fig. 4.

The P2P collaborative environment consists of P2P ap-

plications. Collaborations supported by the P2P environ-

ment are smaller granularity and lightweight processes. For

example, a direct exchange of information about a Grid re-

source or a working dataset between two researchers. An

important property of the P2P in the CeSA is its ability to

scale well with the size of the community. In addition, cross

working group, discipline and community boundary collab-

oration is easier and transparent in a P2P environment.

This combination will leverage the capability of provid-

ing computationally intensive resources of the Grids and

the advantage of P2P computing environments in enabling
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Figure 4. Grid architecture for the CeSA

lightweight and direct scientific collaborations within sci-

entific communities.

This integration is done is a way that the Grid and P2P

environments are loosely coupled together. The P2P col-

laborative environment can operate independently from the

Grid to maintain its openness and autonomy to attract a

wider user communities. Secured management within the

Grid environment is separated from day-to-day collabora-

tions in the autonomous P2P environment.

The loose coupling of the Grid and P2P environments

is facilitated by a service oriented architecture. In a ser-

vice oriented view, Grid resource providers enclose the re-

sources in services. The information about the services

are published in the P2P collaborative environment. Re-

source consumers in the P2P environment can perform re-

source (in form of services) discovery and then gain access

to Grid resources via published service interfaces (as shown

in Fig. 4). Services from the Grid environment are applica-

tion specific. Examples of the application services are sim-

ulation services and data delivery services.

3.3 Prototype Implementation

The P2P application was developed using JXTA P2P

technology [15]. Services implemented in the prototype

system were Grid services specified by Open Grid Service

Architecture (OGSA) [8].

The P2P application prototype consisted of generic tools

for collaborations, such as file sharing, chatting and group

formation. It also provided a service client for executing

simulation and analysis services provided from the Grid en-

vironment and a service publication and discovery agent for

publishing and discovery of information about services that

exist in the P2P environment.

On the Grid side, a few applications used in the com-

munity for simulations and analyses of chemical reaction

mechanisms were wrapped into Grid services. These appli-

cations usually use files as input and output. When wrap-

ping these programs into Grid services using Java, input and

output were mapped to the input and output parameters of

Grid services. These Grid services conformed to the unified

service interface. After being wrapped into Grid services

using Java, these new services were deployed into a Grid

service container provided in Globus Toolkit version 3.0.2.

3.4 Early Experiment and Evaluation

The main aim of this experiment was to collect feedback

from a sample of three potential users for School of Chem-

istry, University of Leeds on the functionalities of the proto-

type based on the CeSA. These potential users were guided

to walk through the prototype. There comments, collected

using questionnaires, were invited to compare this new way

of working with their current practice.

The result of the experiment on CeSA prototype system

showed that P2P environment was preferable for collabora-

tions within user community than the centralised web-based

approach. The reason was that the users had more sense of

control over shared resources. The users were also more

willing to share as the resources can be shared directly from

their computers without moving around to any third party

servers. Resource consumers could also instantly get ac-

cess to most updated shared by their partners. The ability

to provide direct instant communication between users in a

community was also an advantage of a P2P environment.

The result also showed that running scientific simulation on

computational intensive remote computers via Grid services

would release computing resources on small user desktop

computers for other day-to-day work. Easy access to Grid

services via a unified service interface was also an advan-

tage of the architecture. The following were general feed-

back recorded:

“A fully working system would benefit the atmo-

spheric chemistry group provided it was widely

accepted by the whole community”

“I think that our group would certainly use such

a system if it proved to be the way forward in e-

Science (which I feel it is) and the community em-

braced the use of such a system”

Despite of these advantages, issues about security,

change documentation and connectivity of P2P applications

were raised as concerns. These issues should be carefully

considered in the next version of the CeSA.
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3.5 An Ontology-based Adaptive Re-
source Discovery Approach for the
CeSA

An ontology-based adaptive approach to resource dis-

covery for P2P collaborative environment of the CeSA has

been developed to address requirements of scientific re-

search communities. These requirements are currently not

efficiently addressed by common P2P discovery methods

based on flooding technique, used in Gnutella-like systems

[11], and indexing using distributed hash table [26, 27, 28].

This approach separates the routing of queries from

query matching mechanism so that it can efficiently route

search queries in decentralised P2P environment while can

still support any type of query matching techniques. Three

properties of scientific research communities provide the

grounding for the method: the existence of common interest

groups, the willingness to share resources of common inter-

ests and the transitive relationship in the sharing behaviour.

By exploiting these properties, search queries can be effi-

ciently forwarded to those who are more likely to have the

answers to improve the quality of search results and to re-

duce the network traffic. This discovery method uses a clas-

sification ontology to describe interests of peers. The col-

lection of ontology descriptions of peer interests forms the

basis for query routing.

Simulation results have shown that query hit rate of

adaptive approach quickly got over 90% while, with the

same configuration, the hit rate returned flooding approach

was constantly at about 30% as reported in [23].

4 Application of the CeSA for Combustion

Research Community

The result of the experiment above has motivated a fur-

ther exploration on the CeSA, especially the P2P environ-

ment for collaborations within the user community and the

access to remote simulations and analyses in form of ser-

vices. An application of the CeSA for the combustion re-

search community and a further user evaluation using this

community are being proposed.

4.1 Mapping the CeSA

The Fig. 5 shows an overview of a realisation of the

CeSA on the combustion and its overlapping research com-

munities. In those communities, there can be members that

are more data oriented (denoted as Data Nodes in the fig-

ured), while others may be ordinary researchers (Commu-

nity Nodes). As shown in the figure, different research

communities, i.e. combustion, reaction kinetics and atmo-

spheric chemistry, can jointly operate in one P2P collabo-

rative environment. Working groups can be formed in the

environment, even across community boundaries. Usually,

each working group has an group coordinator (shown as

Workgroup Coordinators in the figure). In the P2P envi-

ronment, a member can seamlessly communicate with an-

other member across working groups and communities (il-

lustrated by straight thin lines).

Figure 5. Application of the CeSA for com-
bustion research community

The underlying Grid supports the community with back-

end computational and data resources. Access to these Grid

secured resources is made possible via services designed

specific for the research communities (illustrated by dashed

bidirectional arrows).

4.2 Addressing the Limitations and Issues

Making scattered data easily accessible. Data scatter-

ing problem, discussed earlier, can be addressed by the

P2P discovery function of the CeSA. Datasets produced by

working groups or individuals usually reside on the groups’

or individuals’ personal storages. Only the final, well-

prepared version of selected data are published. Majority

of the earlier datasets are hidden from outsiders, although

these datasets may be very important to some other groups.

Through P2P discovery process, these datasets can become

visible to others. As a result, the data gathered for a mod-

elling process is much richer. In a reversed direction, data

publication is also easier in a P2P environment. Newly pro-

duced data can be made ware of and brought into use by

other members of the community.

Identifying expertise for potential collaborations. In

addition, data held on a researcher’s storage reflects his/her
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interests and expertise. Similarly, it reflects working areas

of the working group(s) where the researcher is a member.

Knowing the interests of researchers and/or working groups

before they actually make publications of their research data

can bring about potential collaborations in the early stages

of research processes. This speeds up the collaboration pro-

cess, particularly in terms of data transferring and resource

sharing across community boundaries.

For example, if a group working on modelling of a chem-

ical reaction model (i.g. process of burning methane), they

will need to know the research data about elementary re-

actions involved in the burning process, such as thermody-

namic data, structural properties, the reaction rates etc. If

they know that other working groups are working on the re-

lated data, a collaboration of the related groups can be set

up. The benefit for the modelling group is that they can

produce the most up-to-date models. The groups working

on the input data also benefit from the modelling group as

their data is validated and used early in the research pro-

cess. Time required for review and validation is likely to be

reduced.

Supporting the modelling process with computational

and data resources. Computational, storage and data re-

sources for the modelling process are provided to the com-

munities in form of services (available in the P2P environ-

ment). As shown in Fig. 5, potential services are Workgroup

(WG) Services, Modelling Services and Data services:

WG Services are services that support collaborations

amongst members of community in the P2P environment.

The collaboration mainly happens in the P2P environment.

However, there is still the need for support from Grid. Ex-

amples of WG Services are Shared Storage Services, WG

Information Services and WG Authentication Services

Modelling Services provide computational capability for

constructing reaction models. Examples of Modelling Ser-

vices are Model Simulation Services, Model Optimisation

Services, Model Reduction Services and Model Verification

Services.

Data Services handle Grid data resources involved in

the modelling process, such as experimental data, reaction

rates, mechanics statistics and combustion models. Capa-

bility of Data Services is enhanced by metadata standards

and ontology. Examples of Data Services are Data Publish-

ing Services, Data Archiving Services and Data Validation

Services.

The use of common sets of shared services together with

standardised metadata and shared ontologies will also help

to reduce the number of data formats. It will make the data

transferred across platforms, working groups and commu-

nities easier and smoother. The time and efforts required

for unnecessary conversion will be reduced.

In summary, the functionalities provided by the CeSA

has the potential to deal with various requirements of the

combustion research community. Especially, with the P2P

collaborative environment, the distributed collaborations

within combustion and its overlapping research communi-

ties can easily be extended across the community bound-

aries. In this environment, researchers can easily contribute

their own resources to the community, while still maintain

control over the resources.

5 Related Work

In addition to the myGrid project, which was discussed

in the Introduction, the following projects are also closely

related to this work.

The Process Informatics Model [25], which was pro-

posed as a new approach to supporting the model building

process by combustion community, consisting of combus-

tion experts from the UK, other parts of Europe and the US.

At the current stage, the current focus has been on a data

warehouse for archiving of combustion data.

Collaboratory for Multi-Scale Chemical Science

(CMCS) project [4][18] used a combination of Grid infras-

tructure, for management of large datasets, and web-based

portal, for user’s collaborations. CMCS also used PrIMe as

its pilot.

CombeChem, part of the UK e-Science programme,

addressed a similar chemical science research process as

PrIMe, but in the domain of combinatorial chemistry [5]. It

is based on the concept publication at source and pervasive

computing, covering the whole research process in combi-

natorial chemistry from collecting of raw experimental data

from laboratories, to processing, archiving data and publi-

cation of experimental results. CombeChem was built on

the Grid and the Semantic Grid infrastructures.

The focus of PrIMe, CMCS and CombeChem has been

extensively on semantic technologies (i.e. metadata, on-

tology) for describing chemical data and services to sup-

port experiments in combustion or combinatorial chemistry.

The focus of the CeSA is slightly different. It is aimed at

providing a scalable infrastructure to support collaborations

within distributed scientific communities at different levels

of granularity.

6 Conclusion and Future Work

The paper has discussed the current limitations and re-

quirements for combustion research community. These re-

quirements included the support for distributed scientific

collaborations amongst combustion scientists and the need

for access to large-scale computing resources. The combus-

tion modelling community is a representative example of

scientific communities. Hence, the CeSA has wider appli-

cability.
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In order to move forwards, it is necessary to address a

number of technical qualities and usability issues. Tech-

nical qualities include security, connectivity and scalability

of resource discovery of P2P application. There is a need

for further work on the proposed resource discovery method

and management of ontologies within decentralised P2P en-

vironments. The usability issues have not been addressed

but would need to be addressed before further evaluation

study could be undertaken.
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