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Abstract 

 
The use of meta-schedulers for resource management in 
large-scale distributed systems often leads to a hierarchy 
of schedulers. In this paper, we discuss why existing 
meta-scheduling hierarchies are sometimes not sufficient 
for Grid systems due to their inability to re-organise jobs 
already scheduled locally. Such a job re-organisation is 
required to adapt to evolving loads which are common in 
heavily used Grid infrastructures. We propose a peer-to-
peer scheduling model and evaluate it using case studies 
and mathematical modelling. We detail the DIANA (Data 
Intensive and Network Aware) scheduling algorithm and 
its queue management system for coping with the load 
distribution and for supporting bulk job scheduling. We 
demonstrate that such a system is beneficial for dynamic, 
distributed and self-organizing resource management 
and can assist in optimizing load or job distribution in 
complex Grid infrastructures. 
 
1. Introduction 

 
The Grid concept was created to facilitate the use of 

available distributed resources effectively and efficiently. 
The first step needed before one can utilize the Grid for 
running jobs is to locate and use (the best) resources 
available to serve those jobs i.e. resource scheduling. 
Applying the concept of P2P systems to resource 
scheduling, can lead to efficient resource utilization. 
Existing scheduling systems e.g. [1][2], are often based 
on the client-server architecture with one or several 
meta-schedulers [3][4] on top of independent local 
schedulers such as LSF, PBS etc. Each local scheduler 
can collect information and can schedule the jobs within 
its own managed site. Typically, these local schedulers 
cannot schedule jobs to some other available site.  

Peer-to-Peer (P2P) scheduling systems on the other 
hand can provide environments where each peer can 
communicate with all other peers to make “global” 

decisions, can propagate their information to other peers, 
and can control their behaviour through this information. 
This feature should make scheduling decisions more 
efficient. In contrast to this P2P approach, centralized 
scheduler management can be problematic in several 
ways since load balancing, queue management, job 
allocation, policies etc. are central and are typically 
managed by a (single) central meta-scheduler and might 
not be fault tolerant. Note that by client server 
architecture, we do not mean here a tier system which 
uses various tiers, which are clients of each other, to 
scale up the client server behaviour. Each tier is not 
scaleable if treated in isolation. 

Our intention is to incorporate a P2P approach so that 
schedulers do not take global decisions at a single central 
point, but rather many sites participate in the scheduling 
decisions. Each site should have information on load, 
queue size etc., should monitor its processing nodes and 
then propagate this information to other peers. Local and 
certain global policies could be managed at the site level 
instead of a central hierarchical management. As a result, 
the P2P behaviour can become an important architectural 
model for fault tolerant, self-discoverable and 
autonomous global resource scheduling.  

Schedulers may be subject to failure or may not 
perform efficient scheduling when they are exposed to 
millions of jobs having different quality of service needs 
and different scheduling requirements. They may not be 
able to re-organize or export scheduled jobs which could 
result in large job queues and long execution delays. For 
example in High Energy Physics (HEP) analysis a user 
may submit a large number of jobs simultaneously (this 
being referred to as bulk job scheduling), and the 
scheduling requirements of bulk jobs may well be 
different to those of singly queued jobs. In bulk job 
submission by a single or multiple users at a particular 
site it might become impossible for a local scheduler to 
serve all the jobs without using some job export 
mechanism. In the absence of this mechanism, it is 

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00  © 2006



possible that some of the jobs might be lost by the 
scheduler. What is required is a decentralized scheduling 
system which not only automatically exports jobs to its 
peers under potentially severe load conditions (such as 
with bulk jobs), but at the same time it manages its own 
scheduling policies, whilst queuing jobs and monitoring 
network conditions such as bandwidth, throughput and 
latency. The queuing mechanism that is needed at each 
scheduling peer should follow a recognised management 
scheme. It should associate priorities to each job inside 
the queue, depending on the user profile and job 
requirements with the scheduler servicing high priority 
jobs preferentially to optimise Grid service standards. In 
this paper, we explain the functionality of a P2P meta-
scheduler and present its scheduling and   queue 
management mechanism and demonstrate the advantages 
and drawbacks of such a system implementation.  

 
2. Hierarchy of Schedulers 

 
 A meta-scheduler coordinates communication 

between multiple heterogeneous local schedulers that 
typically manage clusters in a LAN environment (cf. 
Figure 1). In addition to providing a common entry point, 
a meta-scheduler also enables global access and 
coordination, whilst maintaining local control and 
ownership of resources through the local schedulers. The 
fundamental difference between a meta-scheduler and 
local schedulers is that a meta-scheduler does not own 
the resources and has no autonomy in its decisions. 
Therefore, the meta-scheduler does not have total control 
over the resources.  Furthermore, a meta-scheduler does 
not have control over the set of jobs already scheduled to 
a local scheduler (also referred to as local resource 
management system). This lack of ownership and control 
are the sources of many of the problems to be solved in 
the meta-scheduling domain.  

 
Fig. 1: No communication between meta-schedulers  

In this example local and meta-schedulers form a 
hierarchy and individual schedulers sit at different levels 
in the hierarchy. Each local scheduler can cooperate and 
communicate with its siblings through a meta-scheduler, 
however each meta-scheduler cannot communicate with 
other meta-schedulers of other sites or Grids as shown in 
Figure 1. Communication is only possible between local 
schedulers and the meta-scheduler.  

A user submits a job to a meta-scheduler (local to the 
user, typically at the same site) which in turn contacts a 
local scheduler. A particular meta-scheduler considers 
only its own managed sites to schedule the job and does 
not look around for other sites managed by other 
schedulers to distribute load and to get the best available 
resources. The jobs are scheduled centrally irrespective 
of the fact that this may lead to a poor quality of service 
due to long queuing and scheduling delays. Hence, the 
architecture with non-communicating meta-schedulers 
can lead to inefficient usage of Grid resources. Further, 
in this architecture the meta-scheduler schedules the job 
on its site, cannot communicate with the sibling meta-
schedulers and hence does not consider the underlying 
network and data transfer costs between the sites. This is 
one of the reasons that almost all Grid deployments have 
at most only a few meta-schedulers and that any two 
cannot communicate and interoperate with each other. In 
contrast, in this paper we discuss the DIANA scheduling 
algorithm and how it is achieved through a P2P meta-
scheduling hierarchy, and describe the underlying 
mathematical and implementation details for managing 
queue and load balancing in the DIANA meta-scheduler. 

This approach is not simply an ‘all-to-all’ 
communication. The nodes are managed by local 
schedulers which report to the site meta-schedulers. The 
site to site communication is in essence a P2P 
communication between meta-schedulers. Each meta-
scheduler maintains a table of entries about the status of 
the local schedulers, the queue length, jobs in execution 
mode, and the nodes managed by them which is updated 
in real time when a node joins or leaves the system. 
When a user submits a job, the site meta-scheduler 
communicates within the local scheduler to find the 
suitable resources. If the required resources are not 
available within the site, it contacts the meta-schedulers 
of other sites in the virtual organisation (VO) which have 
suitable resources. This approach is thus not just all-to-
all communication and involves a reduced set of message 
passing between the meta-schedulers. Furthermore, 
communication between the meta-schedulers is not very 
frequent, meta-schedulers communicate only after fixed 
intervals to update the status of their resources to each 
other. A meta-scheduler might also require to 
communicate if a group of jobs at a site needs to be 
exported to a site having better resources. Therefore, this 
meta-scheduler communicates with other meta-
schedulers for load evaluation and cost determination for 
job submission to that remote site. 

  
3. Meta-scheduling with DIANA 

 
It is important in Grid systems to have a distributed 

meta-scheduler, which implements the features discussed 
in Section 2, and that site meta-scheduler instances 
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should interoperate and communicate with each other, 
should be fault tolerant and self organizing and should 
make network aware (which includes network 
characteristics in the scheduling decisions) data intensive 
decisions. In addition to being network-aware, the meta-
scheduler should avoid making centralized decisions. It 
should communicate and share the information with all 
other meta-schedulers so that Grid resources are well 
evaluated and utilized.  

DIANA is a Data Intensive and Network Aware meta-
scheduler which performs global meta-scheduling in a 
local environment, typically in a LAN. In DIANA, we do 
not use independent meta-schedulers but use a set of 
meta-schedulers that work in a P2P manner. Each site 
has a meta-scheduler that can communicate with all other 
meta-schedulers on other sites as shown in Figure 2. The 
scheduler is able to discover other schedulers with the 
help of a P2P discovery mechanism [5]. We do not 
replace the local schedulers in this architecture, rather we 
have added a layer over each local scheduler so that site 
meta-schedulers can talk directly to each other instead of 
getting directions from a central global meta-scheduler. 

 
Fig. 2: P2P Communication between Schedulers 

A meta-scheduler can thereby obtain information from 
any other site and can make global decisions. Local 
information includes processing power, memory, site 
load, and queue length and network capability. The 
meta-scheduler will make scheduling decisions based on 
three essential factors: the network cost, the computation 
cost and the data transfer cost [6]. It can communicate 
with other meta-schedulers and may transfer jobs to 
other sites. It may transfer a job along with its required 
data to a remote site, consequently it should also 
consider the estimated transfer time of the job and data to 
that particular remote peer. Before making the 
scheduling decision, it should also consider the estimated 
computing capabilities of remote peers. Hence, the job 
will be submitted to the site with the least total cost. 

In DIANA, the P2P behaviour is complemented by a 
discovery service. This discovery service maintains a list 
of available/alive peers in different ways. One way is 
that whenever a peer meta-scheduler is introduced to the 
network, it will inform the discovery service about its 
availability and when a peer is properly shutdown, it will 
update the discovery service about its new status. This 

leads to the question: what would happen if a peer 
suddenly went down without informing the discovery 
service? In order to cope with this issue, the discovery 
service uses an echo request/reply communication with 
the peers currently available in the list. The peer which 
does not reply is simply removed from the list. Each 
meta-scheduler site periodically contacts a discovery 
service to collect the updated information about the 
available peers. After getting this information, the peers 
start communicating with other meta-scheduling peers 
and update their local repositories with this information.  

 
Fig. 3: Queue and DIANA Meta-Scheduler Instances 

4. Queue Management 
 
In conventional client-server scheduling architectures, 

local schedulers handle their queues at the site level 
whereas a meta-scheduler has a global queue at some 
central location. However, in the DIANA architecture, 
there is one DIANA meta-scheduler at each site, i.e. the 
DIANA P2P meta-scheduler layer sits on the top of one 
or many local schedulers at each site. In client-server 
architecture such as the one used by the gLite meta-
scheduler, there is only one large queue at the meta-
scheduler with local queues at each site. However, in the 
proposed P2P architecture each site meta-scheduler has 
knowledge about the local queue (s) plus a global queue 
which is managed by the DIANA layer. This leads to a 
scalable and self-organizing meta-scheduling behaviour 
which was missing in some of the conventional client-
server scheduling architectures.  

Each meta-scheduler has a queue management 
mechanism where it can queue the incoming jobs in a 
Scheduler Queue as shown in Figure 3, and the meta-
scheduler assigns priorities to the incoming jobs. In Grid 
scheduling we have “user quotas” (user quota is the 
number of jobs a user can submit within a definite period 
of time), network characteristics, data locations and 
securely granted user privileges and therefore, each 
meta-scheduler needs to maintain its queue according to 
these criteria. 

Before migrating a job, questions need to be answered 
such as: 
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• “What is the queue length on the target site?”   
• “Can the target site execute the job quicker than the 

current site?”   
• “If the job is migrated to another site, what will be the 

job priority on the remote site?” 
• “How many jobs are ahead of this job in terms of 

priority?”  

 
Fig. 4: Queue Management in DIANA P2P Meta-

Scheduler 
These considerations can have a significant effect on 

Grid performance. Figure 4 illustrates this queue 
management issue in the DIANA meta-scheduler. At 
each site there are two queues. One is the DIANA queue 
and the other is the queue of the local resource 
management system. Only the jobs from the DIANA 
meta-scheduler queue are exported to other sites. In 
contrast, once a job is allocated to a local scheduler at a 
site, it is never exported and waits in the local queue 
until assigned to a processor. All the prioritization of 
jobs, policy enforcement, migration and job steering 
issues are handled at the DIANA P2P level whereas the 
local scheduler works exactly in the same fashion as 
before once the job has been allocated to it. 

 
5. Scheduling Algorithm 

 
There are two scheduling schemes that the proposed 

algorithm will use: a Normal Scheduling Scheme and 
Job Migration (see Section 6). The Normal Scheduling 
Scheme is applicable to those jobs which have arrived 
for scheduling for the first time and have not, as yet, 
been migrated. Here, the meta-scheduler consults its 
peers, collects information about the peers (including 
network, computation and data transfer) and selects the 
site having minimum cost. It selects whichever site is the 
best site for its execution based on this cost estimation 
scheme. The meta-scheduler deals with both 
computational jobs and data intensive jobs using the 
DIANA meta-scheduling algorithm:  
1. In the case of computational jobs (i.e. the job requires 

mainly CPU time), the meta-scheduler should schedule 
a job to the site where the computational cost is a 

minimum. At the same time, we have to transfer the 
job’s files so that the job can be transferred as quickly 
as possible. The job might also require some input data 
which suggests selecting a site which has better 
network capacity (i.e. highest response time and lowest 
latency). Therefore, the meta-scheduler will select the 
site with minimum computational cost and but also 
takes into account the data transfer cost. 

2. In the case of data intensive jobs, our preferences will 
change. In this case our job has more data and fewer 
computation requirements, and we need to identify the 
site where data can be transferred quickly and where 
computational cost is also low.  In this case, data 
location will play an important role since data the 
transfer cost will be the key element in such a 
scheduling decision.  

3. In most cases jobs are at the same time both compute 
as well as data intensive and will most likely follow 
the third category of the algorithm. In the third 
category the algorithm considers compute cost, 
network cost, data location and data transfer costs, and 
the site having minimum aggregate cost is selected for 
job execution. 
 

 6. Job Migration Algorithm 
 
Consider a scenario in which a user submits a job to a 

meta-scheduler which places the job in a queue. If the 
queue management algorithm (see Section 7) of the 
meta-scheduler decides that this job should remain in the 
queue, it may have to wait some time before it gets 
scheduled or before migration to another site. The Queue 
Management Module of the meta-scheduler will ask the 
Scheduling Module to migrate this job.  One important 
point to be noted here is that we want to locate the site 
where this job can be executed earliest. Consequently, 
our peer selection criterion is based on two things: a 
minimum queue length and a minimum cost to execute 
this job on the remote site. The meta-scheduler will 
communicate with its peers and will ask about their 
current queue length and the number of jobs ahead of 
this job. The site with the minimum queue length and 
minimum total cost is considered as the best site to 
where the job can be migrated.  

Firstly, the algorithm will get the information about the 
available peers from the discovery service. Then it will 
communicate with each peer and collect the peer’s queue 
length, the total cost and number of jobs ahead in terms 
of job priority. Then it will determine the site with the 
minimum queue length and the minimum jobs ahead. If 
the number of jobs and the total cost of the remote site is 
higher than the local cost, then this job is scheduled to 
the local site (i.e. it will not be migrated). If other sites 
are congested then there is no benefit in migrating the 
job, and that job will remain in the local queue and will 
eventually be served on the local site.  Otherwise, the job 
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is moved to the remote site, subject to a cost mechanism. 
Note that the DIANA meta-scheduler does not consider 
each job for export process rather a group of jobs is 
exported to a remote site which can significantly save the 
execution time on the remote site. It will not be cost 
effective to poll the remote peers and collect the queue 
and cost information for each job. This process is only 
carried out for bulk jobs or groups of jobs which are 
likely to take more time on their local sites. Furthermore, 
this will reduce communication traffic between the peers 
since all peers are polled only after some intervals when 
jobs at the sites need to be exported. Otherwise if all 
peers are polled for each job, this would significantly 
increase the communication traffic between peers. 

 
7. Queue Management for Bulk Scheduling  

In DIANA we propose a multi-queue, feedback-
oriented queue management approach for bulk job 
scheduling. Users may send jobs in a burst, and the 
meta-scheduler has to place all these jobs in queues after 
assigning priorities. We must ensure that the priority of 
the jobs decreases as the number of jobs in the queues 
from a particular user increases. This is important 
otherwise a single user may send thousands of jobs in a 
burst and thereby improve the priorities for all his jobs. 

 In a typical scenario, when a user submits a job at a 
site for execution, the job is first placed in one of the 
queues managed by the queue management module of 
the meta-scheduler. A reprioritization algorithm may 
result in the migration of jobs from low priority to high 
priority queues or from high priority to low priority 
queues. The reprioritization technique eliminates the 
need for aging since the jobs are assigned new priorities 
on the arrival of each new job, and each job gets its place 
in the queues according to its new circumstances.  

In the case of congestion at the site, the queue 
management algorithm will migrate the jobs to any other 
remote site where there are fewer jobs waiting in the 
queues. Note that only low priority jobs are migrated to 
remote sites since low priority jobs will have to wait for 
a long time in the case of congestion. Knowing the 
arrival rate (job submission rate) and service rate (job 
execution rate) of the jobs, we can decide whether or not 
to migrate the job to some other site. The formula [7] to 
decide whether there is congestion in the queues or not is 
simply: 

If ((Arrival Rate – Service Rate ) / Arrival Rate)  >  Thrs     

where Thrs is the threshold value configurable by the 
administrator. If we increase Thrs, then this means that 
the arrival rate exceeds the service rate and we allow 
more jobs in the queues. In any case this value will lie in 
the [0, 1] interval. Taking this, we can now explain the 
queue management algorithm. The job’s place in the 
queue will be determined by the priority associated with 
the job, which is calculated by taking into account the 

quota of the user submitting the job, the execution time 
required by the job and the threshold on the number of 
jobs by a user.  

Each queue will contain jobs having priorities falling 
in its specified priority range. According to our priority 
calculation algorithm, the priority of all the jobs will be 
in the interval [-1, 1] where -1 indicates the lowest 
priority and 1 indicates the highest priority. In the 
process of selecting the job’s position in the queue, we 
place the jobs in descending order of their priorities i.e. 
the highest priority job will be placed first in the queue 
and the same order is followed for the rest of the jobs.  

Suppose ‘n’ is the total number of jobs of the user in 
all queues, including his new job. Let the new job require 
‘t’ processors for the computation and ‘T’ be the total 
processors (including ‘t’) required by all the jobs present 
in all queues. We denote the quota of the user, 
submitting the new job, by ‘q’ and the sum of the quotas 
of all the users, currently having their jobs in the queues 
including ‘q’, by ‘Q’. Therefore, if the new user has 
already some jobs in the queues, ‘q’ will appear just once 
in ‘Q’. Let ‘L’ be the sum of lengths of all queues, i.e. 
the total number of jobs present in all queues including 
the new job. Thus, if there are already 1500 jobs in the 
queues when 100 new jobs arrive, L = 1600. To assign a 
new job a place in the queue, we associate a number to it. 
This number is called the “priority” of the job and has its 
value in the interval [-1, 1]. The rule is that “the higher 
the priority, the better placed the job will be”. Obviously, 
if priority is in the range [0,1], it will be considered 
good. To attain a good priority we must meet the 
following two constraints: 

T
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×

×  by ‘N where ‘N’ represents the 

threshold and is clearly dynamic. For each job, its value 
will be different. If a user’s number of jobs in the queue 
crosses this threshold then the priority of the jobs 
crossing the threshold ‘N’ must be lowered. The 
following algorithm calculates the priority of the new 
job: 
 If( n <= N ) 

  Pr(n) = (N – n) / N  
 Else 
  Pr(n) = (N – n) / n  

where Pr(n) denotes the priority of the new job. On the 
arrival of each job, the priorities of all the other jobs will 

Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing (e-Science'06)
0-7695-2734-5/06 $20.00  © 2006



be calculated again. This technique is known as 
reprioritization. The reason for doing this that we want 
to make sure that the jobs encounter minimum average 
wait time and the most ‘deserving’ job in terms of quota 
and time is given the highest priority. Moreover, by 
using this strategy we do not need to worry about the 
starvation problem and there is no need for aging since 
jobs are reorganized on the arrival of each new job.  

 
8. Results and Discussion 
 
We present here a performance comparison conducted 

using the DIANA P2P meta-scheduler which is a Web 
service and uses a Grid services framework called 
JClarens [8] to deploy this service.  

We implemented a classical scheduling algorithm 
which works in a round-robin manner to compare it with 
the DIANA P2P meta-scheduler for job scheduling on 
various sites. Henceforth, we will refer to  it as a ‘Round 
Robin Scheduler’ or ‘Simple Scheduler’.  

For simplicity we have used our own test Grid (rather 
than a production environment) to obtain results since a 
production environment requires the installation of many 
other Grid components that are not required for our 
experiments. We used five sites located in Pakistan 
(NUST), Switzerland (CERN)  and the UK (UWE) for 
the purposes of our tests. Site 1 has four nodes, and the 
remaining four sites have five nodes each.  

Two types of jobs are used in these experiments. One 
type of job is compute intensive which is a simple prime 
number calculator (between a specified range) and the 
other is data intensive physics analysis job which 
requires large amounts of data as input but performs 
computation over this data as well.  

8.1 DIANA With Single Queue 

In our first experiment, we submitted 1000 compute 
intensive jobs and calculated their execution times. 
Condor is used as a local scheduler for all of our tests. 
The execution time includes the time required to 
schedule and execute the job to one of the ‘best sites’ 
plus the time required in sending the data and job to that 
remote site.  The scheduling decision made by DIANA 
in this experiment is independent of the queue 
mechanism (Shortest Job First (SJF) or Priority based 
queue) and therefore the first experiment uses a single 
queue.  

As shown in Figure 5, the DIANA P2P meta-scheduler 
has a significantly better execution time compared to the 
‘Round Robin Scheduler’ algorithm. We then calculated 
the queue times of the jobs (cf. Figure 6) to compare how 
effectively DIANA can reduce the wait time. The queue 
time here is the sum of the time in the meta-scheduler 
queue and the time spent in the queue of the local 
resource manager. Sometimes the queue time is even 
greater than the execution time if the resources are scarce 

compared to the job frequency. In this case compute 
intensive bulk jobs are placed in the queue before the 
DIANA meta-scheduler allocates them to the appropriate 
sites. The queue is maintained on a FCFS basis.  

Job Execution Time Comparison between DIANA P2P and Simple 
Scheduler
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Fig. 5: Execution Times 

 
Fig. 6: Queue Times 

8.2 DIANA With Multiple Queues 

After this we submitted a set of jobs to calculate the 
job execution time with a SJF Queue Mechanism. These 
compute intensive jobs are similar with respect to their 
prime number requirements but they are different with 
respect to their inputs since each job has a different input 
range. These jobs are of varying processor requirements 
such as 8, 17, 26, and 35. The job demanding 8 
processors has an input range 1-19999, 17 processors job 
has an input range 1-99999, 26 processors job has an 
input range 1-444444, and 35 processors job has input 
range 1-555555.  

All jobs are submitted to the scheduler, which arranges 
them in its queue in an SJF manner on the basis of the 
job’s processors requirement.  In the comparison graph 
of Figure 7, it is clear that the performance (i.e. the 
execution time of jobs) gained via DIANA is much better 
than that of the ‘Round Robin Scheduler’ algorithm. The 
reason behind this is that DIANA worked on a SJF basis 
which reduces the total execution time since short jobs 
do not have to wait for long jobs. Similarly, the DIANA 
P2P meta-scheduler with its multi-queue priority 
mechanism has a better execution time compared to the 
‘Simple Scheduler’ algorithm. Multi-queues not only 
enable the ‘short job first’ execution but also manage the 
queues on a priority basis, and this mechanism has 
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significantly reduced the total execution times. From the 
data collected in these experiments, we can easily decide 
which approach is best in terms of job execution time. 
From Figure 7 it is clear that our priority driven approach 
results in more efficient execution time than other 
approaches.  

Job Execution Time comparison between three techniques
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Fig. 7: Execution time Comparison 

Effect of Bandwidth over Execution Time
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Fig. 8: Execution times vs. Bandwidth  

8.3 Data Intensive Jobs and Network Issues 

The rest of the results are related to network issues and 
have more impact on data intensive jobs than compute 
intensive jobs. In this experiment, we submitted the same 
number of jobs to different sites with different network 
conditions. The bandwidth varied from 10 Mbps to 1000 
Mbps so that we can gauge its effect on the job execution 
time. We used Iperf to generate the extra network traffic 
and saturate the network so that available bandwidth can 
vary from 10 to 1000 Mbps.  In these tests we show the 
effect of bandwidth on the execution time of the job. The 
data size is 10 GB and is the same for all jobs.  

We see that bandwidth plays a vital role in scheduling 
decisions. The ‘Round Robin Scheduler’ algorithm will 
schedule the job to one of the sites without consulting the 
network conditions of that site. This approach will cause 
the user additional wait time since more time is 
consumed in transferring the executable and the data. In 
our proposed approach, before making any scheduling 
decisions for data intensive jobs, the network and 
bandwidth parameters are considered to select the best 
sites and we can see the impact of this approach in 
Figure 8. A lower bandwidth can often result in higher 
network costs, and the increase in network cost also 
affects the overall performance of the distributed system. 
Figure 8 is the comparison of different network costs 
against the execution time. Bandwidth is the only 

significant parameter in the network cost therefore we 
draw the execution time against the bandwidth. 

8.4 Scalability Tests 

In conclusion we present here the results of the 
scalability tests for the DIANA scheduling approach. 
These are simulation results since it was not feasible to 
deploy the DIANA system on such a high number of 
sites. In these tests, we assumed that there is a meta-
scheduler on each node (here, a node corresponds to a 
site), and all the nodes work in a P2P way.  

As shown in Figure 9, the number of nodes/sites and 
the number of jobs scheduled to the Grid was increased 
gradually to test which algorithm gives the steepest 
increase in time taken. An exponential increase is "bad" 
behaviour and shows that the algorithm is not scalable. 
In this test, jobs of a processing requirement of 3 
MFLOP and a bandwidth load of 1 MB are launched to 
the Grid.  

Test for Scalability
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 Fig.9: Scalability of the DIANA approach 

The ‘Round Robin Scheduler’ algorithm has a steep 
linear curve showing that it is the most unscalable of the 
candidates. FLOP ((Floating Point Operations per 
Second) is a common measurement for the 
computational capability of a computer. A FLOP based 
algorithm could be considered as being completely 
opposite to the ‘Round Robin Scheduler’ algorithm, 
since it tries to gain complete knowledge about the 
current state of resources so that it can schedule jobs to 
the most powerful available machine, guaranteeing the 
quickest possible runtime. FLOP shows far too much 
variation in this case, although it clearly is more scalable 
than round robin. The DIANA P2P approach has the best 
performance; it shows a nearly linear increase, and hence 
it is very scalable. This also demonstrates that DIANA is 
a suitable approach for large scale Grids and it can 
support increasing numbers of Grid nodes.  

9. Related Work and Conclusions 
 
Much work has been carried out in the domain of Grid 

scheduling but research in bulk scheduling and P2P 
scheduling for the Grid domain is relatively sparse. Prem 
et al. [9] present a P2P framework for the Grid but there 
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is little work available on the queue management 
mechanism and their framework does not cover data 
intensive bulk scheduling. The CoreGRID Project [10] 
has worked for fault tolerant scheduling but they tackle 
mostly the compute operations whereas in DIANA we 
aim for data intensive scheduling. The DIANA P2P 
architecture is very much closer to the Napster 
architecture but Napster [11] is a P2P file sharing system 
whereas DIANA provides Grid enabled data intensive 
job scheduling. In the adaptive scheduling scheme [12] 
for data intensive applications, Shi et al, consider 
bandwidth as the only parameter for calculating data 
transfer cost. Moreover, they consider a deadline based 
scheduling approach, and the bulk scheduling issue is not 
covered. We have shown that other additional parameters 
not only need consideration in data intensive scheduling 
but that queues can be optimized by including these 
parameters in the decision criteria. The European Data 
Grid (EDG) Project has created a resource broker which 
is an extended and derived version of Condor but this is 
subject to the same issues and problems as Condor [13] 
itself. Although the problem of bulk scheduling has 
begun to be addressed in the most recent version of gLite 
the approach taken does not address network aware 
scheduling. Elmroth and Peterg [15] describe a Grid 
wide fair share scheduling system for local and global 
policies. They feature quota based scheduling and 
multilevel queues, although they do not consider 
reprioritisation, and it was not P2P oriented. The 
GridWay Scheduler [14] provides dynamic scheduling 
and opportunistic migration but its information collection 
and propagation mechanism is not robust, and it has not 
as yet been exposed to bulk job scheduling. The Gang 
scheduling [16] approach provides bulk scheduling by 
allocating similar tasks to a single location but it is 
tailored towards parallel applications working in a cluster 
whereas we are considering the meta-scheduling of the 
data intensive jobs submitted in bulk. 

Our results indicate that considerable optimization can 
be achieved by applying P2P approaches to bulk 
scheduling. We have demonstrated that a scheduling 
cost-based approach can significantly improve the 
scheduling process if each job is submitted and executed 
after taking into consideration associated costs. Further 
details can be found in [6]. Our results demonstrate that a 
P2P meta-scheduler is better suited to Data Intensive and 
Network Aware (DIANA) scheduling than a single, 
centralized meta-scheduler. This paper demonstrated that 
if queue, priority and job migration are included in the 
bulk scheduling algorithm, the same algorithm could be 
used for the scheduling of bulk jobs. As a result, a multi-
queue, priority-driven feedback based bulk scheduling 
algorithm is proposed and the results suggest that it can 
significantly improve the Grid scheduling and execution 

process. This not only reduces the overall execution and 
queue times of the jobs but also helps avoid resource 
starvation as well as creating a next generation 
scheduling platform for self organizing and decentralized 
scheduling of data intensive bulk jobs. 
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