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Abstract—Federated Learning (FL) has attracted much at-
tention in recent years because it enables users with private
data sets to train a global model collaboratively without
raw data exchange. However, due to a lack of automation,
researchers often struggled to develop, deploy, track, and
manage all the data, steps, and configuration setup for all FL
participating nodes. Federated Learning Operations (FLOps)
is recently emerging in the FL community, a new methodology
for developing FL systems efficiently and continuously. Some
research works discussed approaches for FLOps, but only a
few solutions address managing FL application scenarios from
the workflow perspective. This poster proposes CWL-FLOps,
a novel CWL-based method for FLOps, which can improve
the flexibility of FL abstraction and fully automate the FL
deployment and execution by mapping high-level descriptions
onto distributed resource nodes. Our experiments demonstrate
the feasibility of describing centralized and decentralized FL
scenarios using CWL abstracted definitions without relying on
heavily customized or external software for execution.

Index Terms—Federated Learning Operations, Common
Workflow Language, Cloud computing, Docker

I. INTRODUCTION

Federated learning (FL) recently has attracted a great deal
of attention in diverse domains [1], such as healthcare, the
internet of drones (IoD), and international financial crime
detection. However, running FL efficiently and continuously
is still challenging [2] [3]. These challenges mainly focus
on the automation and flexibility of FL application scenarios
due to the diversity of the FL ecosystem, e.g., different data
sets, heterogeneous infrastructures, and various FL source
codes. FL libraries and open-source frameworks such as Ten-
sorFlow Federated (TFF), NVFlare, FATE, FedML, IBM FL,
OpenFL, PySyft, and Flower, have made significant progress
from communities and are often sufficient for deploying
on diverse resource nodes [4]. However, most frameworks
are based on centralized FL with a client/server architecture
and often require direct bidirectional communications (e.g.,
MQTT, gRPC, and MPI) between the aggregator and each
client training node. In addition, they cannot be easily
extended to support various FL deployment scenarios [5].

Federated Learning Operations (FLOps) focuses on the
FL life cycle management and gains much attention because
it is essential for running FL jobs and managing any FL
system efficiently and continuously [2]. In addition, scientific
workflow languages (e.g., Workflow Description Language
(WDL) and Common Workflow Language (CWL) [6]) pro-
vide a way to describe the dependencies, inputs, outputs,

Fig. 1. An overview of our CWL-FLOps architecture.

and execution logic of individual tasks or jobs with a high-
level description. That makes it easy to scale complex data
analysis and machine learning workflows from a single
developer’s laptop to massively parallel cluster, cloud, and
high-performance computing environments.

In this poster, we propose CWL-FLOps method based on
a MSc Software Engineering thesis, that enables fast deploy-
ment for fine-grained FL services and simplified implementa-
tion using CWL. This approach makes critical workflow con-
cepts such as automation, scalability, abstraction, portability
or flexibility, and reusability come true around the specifics
of a FLOps context. We demonstrate its feasibility and our
results in the experiment section for showcasing.

II. PROBLEM STATEMENT AND RELATED WORK

FL contains several different topologies and general ar-
chitecture considerations, making supporting their diversity
in a FLOps solution difficult. Daga et al. [7] presented
Flame, which uses a high-level description to map distributed
FL services onto specific resource nodes. Colonnelli et al.
proposed StreamFlow [5] , by describing hybrid workflows
under CWL standards on top of heterogeneous and geograph-
ically distributed architectures. Similarly, Yang et al. [8]
proposed an FL life cycle management platform, FLScalize,
to continuously update and deploy the latest FL server
or client code, enabling an FL CI/CD pipeline. However,
Flame [7] does not integrate widely adopted open standards
as CWL for FL diverse scenario deployments. In addition,
StreamFlow [5] and FLScalize [8] lack strong focus on the
variations of FL scenarios and rely on the backend for FL
experiment execution.



TABLE 1. The mappings of FL description on CWL patterns.

FL scenarios Sequence Stru. Loop Sync Simpl Merge Parallel Split Gen.Sync merge MI Impl. term

Centralized FL ✓ ✓ ✓ ✓ ✓ ✓
Decentralized FL ✓ ✓ ✓ ✓ ✓ ✓
Hierarchical FL ✓ ✓ ✓ ✓ ✓ ✓ ✓
Async FL ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fig. 2. Comparisons between CWL-based and python-native
FL operations on decentralized FL in different data sizes at
scale: 1) 2 clients, 2) 5 clients, 3) 10 clients.

We considered 43 control workflow patterns and 40 data
flow patterns from the literature to study the feasibility of
using CWL-supported workflow patterns to describe various
FL scenarios. We observed that only 17 data flow and 8
control flow patterns are being supported based on CWL
community research study1. To bridge the gap and enhance
the supported control flow representations, we conduct our
analysis in Table 1 to investigate CWL feasibility for de-
scribing the most important FL scenarios (e.g., centralized,
decentralized, hierarchical, and asynchronous FL). Based on
this analysis, we designed and prototyped our CWL-FLOps
framework.

III. CWL-FLOPS FRAMEWORK

A. Architecture

We have designed and implemented the CWL-FLOps
architecture in combination with CWL, Github, Docker,
and Cloud technologies in a distributed cloud environment
(See Fig. 1). It consists of 3 main components: 1) an FL
topology configuration with several FL requirements defined
in CWL; 2) a cloud infrastructure setup that consists of
FL client and server node instances using Terraform; 3)
FL client and aggregator source code that is being built,
pushed and deployed to all FL nodes using GitHub Actions
jobs. Commonly used workflows include exchanging model
updates in parallel based on Curl.

B. Experiments and Results

To validate the feasibility of our approach, we employed
AWS EC2 instances with t2.small CPUs for deployment and
FL training. CWL Workflows are executed locally or using
AWS EC2 c5.4xlarge CPU instance to leverage increased
parallelization, demonstrating less overall overhead. We uti-
lized the MNIST dataset, partitioned across ten different
datasets of sizes 5, 16, 30, and 60 MB, for decentralized and
centralized FL workflows without considering deployment

1https://github.com/common-workflow-library/cwl-patterns

time. Fig. 2 demonstrates the average decentralized FL
execution time in minutes based on the dataset size, number
of clients, and experiment type. Our CWL workflow imple-
mentations prove our feasibility and scalability hypothesis
in practice. Although CWL tends to introduce overhead in
the execution, we strongly argue that its benefits in FL
development, re-usability, and automation far outweigh this
drawback.

IV. CONCLUSION

This poster presents a novel tool named CWL-FLOps
that leverages CWL workflow’s significant capabilities for
automating and abstracting FL scenario description and exe-
cution. Our work demonstrates CWL integration in a scalable
FLOps pipeline to automate the deployment and execution of
several diverse FL scenarios. In the future, we will integrate
CWL-FLOps as a component of the NaaVRE framework to
extend our automation for Jupyter Notebook users [9].
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