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Abstract—This work presents RepoGraph, an integrated se-
mantic code exploration web tool that combines information
extraction, knowledge graphs, and deep learning models. It offers
new capabilities for software developers (from academia and
industry) to represent and query Python repositories. Unlike
existing tools, RepoGraph not only provides a novel search
interface powered by deep learning techniques but also exposes
the underlying features and representations of repositories to
users. Additionally, it offers several interactive visualizations. We
also introduce RepoPyOnto, a new ontology that captures the
features of Python code repositories and is used by RepoGraph
for representing the captured knowledge. Finally, we successfully
evaluate RepoGraph against several criteria, including function
summarization performance, the correctness and relevance of
search results, as well as the processing time for constructing
graphs of various sizes.

Index Terms—Static Code Analysis, Code Exploration, Code
Understanding, Semantic Code Search, Knowledge Graph, Func-
tion Summarization, Deep Learning Models, Transfer Learning

I. INTRODUCTION

The concept of ”Programming as Theory Building” by Peter
Nau [1] emphasizes the importance of robust and comprehen-
sible mental models in software development. Without such
models, the dissolution of a programming team possessing the
theoretical understanding of a program can lead to its demise.
In today’s academic and industry software development land-
scape, Naur’s theory holds even greater significance [2]. With
millions of software developers worldwide, it becomes crucial
to equip software teams with effective tools that facilitate
the construction and maintenance of mental models to com-
prehend how their software operates, decreasing debugging
efforts, and improving the knowledge sharing within the team.

The Semantic Web movement has popularized knowledge
graphs as a valuable tool for storing and representing domain-
specific knowledge [3]. By combining a well-defined ontology
and a flexible graph database system, knowledge graphs have
the potential to serve as a human-understandable foundation
for future ’code intelligence’ tools [4]. Advances in machine
learning techniques have further contributed to the realization
of ‘semantic search’ [5], which leverages domain understand-

ing to enhance search capabilities. ‘Semantic code search’ [6]
aims to apply these techniques to search codebases. Given that
knowledge graphs can encode our understanding of software
repositories, semantic code search represents a complementary
technique in this context.

Numerous ‘code intelligence’ tools have emerged in recent
years, offering analysis and indexing of software reposito-
ries, such as KG4Py [7] or CodeClimate 1. While these
tools provide search interfaces, they often lack transparency
by not exposing their underlying models or representations
to users. To address these limitations, this work introduces
RepoGraph, an innovative semantic code-search web tool.
RepoGraph harnesses the power of knowledge graphs to
represent and query Python code repositories, providing a solid
foundation for semantic code search techniques. Importantly,
RepoGraph also promotes transparency and understanding
by exposing repository representations to users. The main
contributions of this work are:

• A new ontology, RepoPyOnto, that captures the features
of a Python repository extracted with inspect4py.

• A novel methodology to generate automatically knowl-
edge graphs of Python code repositories that conform to
RepoPyOnto ontology.

• Augmentation of the information previously captured in
the knowledge graphs with several deep learning models.

• A new semantic code search mechanism that utilises
knowledge graphs and deep learning transformers.

• A new user interface to allow users to create (and store)
automatically knowledge graphs from single or multi-
ple python repositories, visualize their main features,
their possible issues, as well as perform semantic code
searches on them.

By facilitating comprehensive code understanding and pro-
moting transparency, RepoGraph addresses the crucial need
for effective tools that enhance software teams’ productivity
and enable seamless collaboration in both industry and re-
search settings. The remainder of the paper is structured as

1https://github.com/codeclimate/codeclimate
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follows. Section II presents background on inspect4py.
Section III details the features of the RepoPyOnto ontol-
ogy. Section IV gives an overview of the main features of
RepoGraph. Section V gives a detailed introduction of the
core services implemented in RepoGraph, along with the
deep learning models employed at this work. Section VI
introduces the different components of the RepoGraph User
Interface. Section VII, describes the evaluations performed
to validate RepoGraph. Finally, section VIII summarises
related work, and section IX concludes with a summary of
achievements and future work.

II. INSPECT4PY

inspect4py [8], a static code analysis tool, is a project
of significant relevance to this work. It extracts two main
types of features from a Python code repository: ‘Software
understanding features’ and ‘Code features’. The ‘Software
understanding features’ aim to facilitate the adoption of a
software package and include:

• Class and function metadata and documentation:
Extracts information such as name, inherited classes,
documentation, methods, function arguments, returned
values, relevant variables, and detects nested functions.

• Requirements: Provides a list of required packages and
their corresponding versions.

• Dependencies: Lists the internal and external modules
used by the target software.

• Tests: Identifies files used for testing the software’s
functionality.

• Software invocation: Ranks the different alternatives to
run the software component based on relevance.

• Main software type: Estimates whether the target soft-
ware is a package, library, service, or series of scripts.

On the other hand, the ‘Code features’ aim to characterize
the code from different perspectives and include:

• File metadata: Tracks included classes, methods, depen-
dencies, presence of a main method, and the existence of
a file body.

• Control flow graph: Retrieves the control flow repre-
sentation of each file as a text file and figure, providing
insights into the program’s possible execution paths.

• Call list: Extracts a list of all involved functions for each
function, method or code body.

• File hierarchy: Records the organization and grouping
of files within the software repository.

As a result, when using inspect4py, a folder is generated
containing a summary file that includes the features selected
by users. For instance, Figure 1 shows a subset of the features
extracted by inspect4py from the PyLODE2 repository.

In this work we have used inspect4py for allowing
RepoGraph to extract the features of a given repository, and
to map them later into a knowledge graph. Section V-A explain
this process in detail. Furthermore, RepoGraph augments
the information extracted from inspect4py with: deep

2https://github.com/RDFLib/pyLODE

Fig. 1: Features of pyLODE, an OWL ontology documentation
package, extracted with inspect4py.

learning techniques to generate function summarizations (see
Section V-D); code call graph generation (see Section V-A);
and repository issues detection (See Sections V-B and V-E3).

III. REPOPYONTO ONTOLOGY

In this work, the RepoPyOnto ontology was developed to
represent entities and relationships found in Python code. This
ontology captures the core entities extracted by inspect4py
and incorporates important design choices. The Function
entity (see Table I), which represents pure functions and
class methods, is a crucial entity type, distinguished by the
type property (function or method). Relationships such as
HasMethod and HasClass (see Table II) connect this entity
to Class and Module entities. It is worth noting that the
summarization property is incorporated into the Docstring
entity instead of creating a separate Summarization entity.
This decision aims to simplify the knowledge graphs and limit
them to entities extracted by inspect4py, while the function
summarization is provided by RepoGraph (see Section V-D).
The data model of RepoPyOnto can be accessed at 3.

IV. REPOGRAPH OVERVIEW

In this work, we present RepoGraph4, a novel React-
based web application to explore Python code repositories
by employing knowledge graphs and deep learning models.
RepoGraph allows users to quickly generate automatically
knowledge graphs that represent single or multiple reposito-
ries, and to interact with them. Neo4j 5 is the graph technology
chosen to generate our knowledge graphs, since is considered
one of the most popular and widely-used graph database
implementation since 2013.

To enhance user interaction in RepoGraph, we have de-
veloped convenient abstractions that eliminate the need for
users to write Cypher queries, which is Neo4j’s graph query
language [9]. The novel RepoGraph functionalities include:

1) Automatic generation of knowledge graphs from one or
more Python code repositories.

3https://drive.google.com/file/d/1qPF zQoJ0vtjEDUCPJbf1cm5SgLR92ai/
view?usp=share link

4Availabe at https://github.com/WilliamsCJ/repograph
5Neo4j: https://neo4j.com/
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Entity Properties
Repository name, full name, description, type, . . .
README path, content
License text,license type, confidence
Directory name, path, parent path

Package name, canonical name, parent package, path,
parent path, external, inferred

Module name, canonical name, path, parent path, ex-
tension, is test, inferred

Class name, canonical name, min line number,
max line number

Function
name, type, builtin, canonical name,
source code, ast, min line number,
max line number, inferred

Variable name, canonical name, type, inferred
Argument name, type
Return Value name, type
Body source code

Docstring short description, long description, summa-
rization

Docstring
Argument name, type, description, is optional, default

Docstring Return
Value name,type, description, is generator

Docstring Raises description, type

TABLE I: RepoPyOnto entity set.

Relationship Source Destination
Requires Repository Package

Contains Repository, Directory,
Package, Module

Directory, Module,
Package,
README, Function,
Class,
Body, Variable

Imports Module Module, Package, Class,
Function, Variable

HasMethod Class Function
HasFunction Module Function
Extends Class Class
HasArgument Function Argument
LicensedBy Repository License
Documents Docstring Function, Class

Describes Docstring
DocstringArgument,
DocstringRaises,
DocstringReturnValue

Calls Module, Function Function, Class, Module

TABLE II: RepoPyOnto relationship set.

2) Browse knowledge graphs and select a specific graph
for further inspection.

3) View summary statistics about knowledge graphs.
4) Inspect a visualisation of an entire knowledge graph.
5) Execute semantic code search queries.
6) Inspect semantic code search results in detail with sum-

marization information, and interactive visualisations.
7) Execute pre-determined queries using an interface that

does not require knowledge of the Cypher language.
8) Browse possible ‘issues’ detected in repositories code.
9) Inspect individual ‘issues’ in more detail.

10) Delete knowledge graphs.

These functionalities are facilitated by a core set of services
located at the back-end of RepoGraph, which will be detailed
in the following section. The user interface, discussed in
Section VI, also contributes to providing these functionalities.

V. REPOGRAPH SERVICES

A RepoGraph service is an area of functionality that
operates as a self-contained unit. In RepoGraph we have five
core services (see TableIII). To provide complex functionality,
interaction occurs between those services (full architecture
available at 6). For example, the Search Service implements
semantic code search functionality. However, to access the
data, this service call functions defined in the Graph Service.

Service Purpose

Build Knowledge graph construction from a single or
multiple repositories. Section V-A.

Graph Management and querying of a graph. Sec-
tion V-B.

Metadata
Graph metadata management, including capturing
and storing all graph associated metadata. Sec-
tion V-C

Summarization Code summarizations generation. Section V-D

Search Execution of ‘semantic code’ and ‘predefined’
search queries. Section V-E

TABLE III: Repograh Core Services

Behind each of these services we have developed our novel
methods and heuristics for enabling semantic code exploration
of Python repositories. Those are explained bellow.

A. Build Service

This service is responsible for the generation of knowledge
graphs, which relies on inspect4py (see section II) to ex-
tract features from the supplied Python repositories. As it was
mentioned before, Neo4j was selected as the graph technology
to generate our knowledge graphs, while RepoPyOnto (see
Section III) is used as the graph ontology. Note that each
knowledge graph contains either single or multiple repositories
- depending on the number of repository zip files uploaded
while creating the graph (see Figure 5).

Furthermore, a core feature of the knowledge graphs gen-
erated by RepoGraph is that they are able to capture the
relationships that describe the interactions between compo-
nents (packages, functions, modules, classes, etc). This allows
users to understand the control flow of their software. To
generate these relationships, we have developed within the
Build Service a new heuristic to parse the dependencies and
call lists generated by inspect4py. The heuristic applies the
Deep-First-Search (DFS) algorithm to create a code call graph
(either for an individual function or for the whole repository)
representing not only the calls that are made by each function,
as well the calls that each of those calls make, which can imply
other functions.

B. Graph Service

The Graph Service provides the set of models to represent
the entities and relationships defined in RepoPyOnto. As
well as a set of methods for providing the basic function-
ality for querying and writing data to a knowledge graph.
Furthermore, since RepoGraph enables users to create and

6https://drive.google.com/file/d/1NT8sziYnDaw2enm3PSq231pdF016XLuw/
view?usp=share link

https://drive.google.com/file/d/1NT8sziYnDaw2enm3PSq231pdF016XLuw/view?usp=share_link
https://drive.google.com/file/d/1NT8sziYnDaw2enm3PSq231pdF016XLuw/view?usp=share_link


Fig. 2: Build Service pipeline. The information is parsed from
inspect4py, and augmented in order to obtain the final
knowledge graph.

store several knowledge graphs, these are stored in a Graph
Repository. The Graph Service controls access to the Graph
Repository, providing a broad access to read data from, and
execute queries on, graphs stored in the repository.

RepoGraph analyses potential issues regarding with code
repositories, at two levels: repository, and docstring. The
Graph Service is responsible for detecting the issues at repos-
itory level (‘Repository Issues’), while the Search Service
(see Section V-E3) is responsible for issues at docstring level
(‘Docstring-related Issues’). RepoGraph detects two ‘reposi-
tory issues’. The first one is Circular dependencies, when two
or more modules depend on each other. And the second one
is Missing dependencies, when there are packages imported
by the repository source code, but those are not explicitly.
Therefore, the Graph Service analyses specifically the code
call graph, requirements and dependencies information from
knowledge graphs to detect cyclical dependencies and missing
dependencies issues.

C. Metadata Service
RepoGraph captures metadata information for each

knowledge graph storing them in the Metadata Repository.
This includes the graph display name, the unique graph name,
the timestamp when the build process started, along with the
status: ACTIVE (once it is created), or PENDING (while
the graph is being created). This information is capture and
accessible to users by the user interface (see Figures 5, 6).

D. Summarization Service
RepoGraph also augments the knowledge previously ex-

tracted (see Section V-A) from Python repositories thanks to
the Sumarization Service, which adds additional summariza-
tions of functions using pre-trained transformer models.

Function summarization aims to summarize a function-
level code snippet into English descriptions [10]. We utilise
functions summaries as the foundation for the semantic code
search, as well for detecting possible docstrings-related issues
provided by the Search Service (see Section V-E).

In the sumarization service, we have evaluated three
transformer models: codet5-base-multi-sum 7;
codet5-small-code-summarization-python8; and
a new fine-tuned model, codet5-base-python-sum,
model developed with this work 9. While the first two
models are multi-language checkpoints (that is not explicitly
fine-tuned for Python), codet5-base-python-sum has
been fine-tuned using using the Python ‘code-to-text’ split of
the CodeXGLUE dataset [4].

Results of this evaluation are detailed in Section VII-A.
Since codet5-base-multi-sum is the model that gives
us the best performance (see Figure 11a), we have selected it
as the model to use in the Summarization Service. Note that we
have implemented this service in such a way, that is trivial to
interchange this model, by another one that gives even better
performance results.

The pipeline behind the Summarization Service has the
following steps. First, each function source code is ‘cleaned’
removing their docstrings to reduce their influence in the sum-
marization model. After cleaning, the source code is input into
an instance of the RoBERTa tokenizer 10, which generates a set
of ‘input IDs’ representing the source code. These ‘input IDs’
are passed into the model to generate a corresponding set of in-
teger ‘IDs’. Finally, the model decodes these IDs to produce a
function summarization using codet5-base-multi-sum.
This process is detailed in Figure 3. Resulting summarizations
are added back into the knowledge graph.

E. Search Service
The Search Service implements functions related to search,

including both semantic code search and pre-defined Cypher

7Fine-tuned checkpoint of the Code T5 model trained on the
CodeSearchNet data and provided at https://huggingface.co/Salesforce/
codet5-base-multi-sum

8Fine-tuned checkpoing from the codet5-small model and provided at
https://huggingface.co/stmnk/codet5-small-code-summarization-python

9Fine-tuned model: https://huggingface.co/cjwilliams/
codet5-base-python-sum/settings

10https://huggingface.co/docs/transformers/model doc/roberta

https://huggingface.co/Salesforce/codet5-base-multi-sum
https://huggingface.co/Salesforce/codet5-base-multi-sum
https://huggingface.co/stmnk/codet5-small-code-summarization-python
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https://huggingface.co/cjwilliams/codet5-base-python-sum/settings
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Fig. 3: Summarization Service pipeline. Green indicates ac-
tions performed by the Build Service , and orange indicates
actions performed by the Summarization Service.

search queries, and other functionalities that utilise cosine
similarity to analyse docstrings (see Section V-E3). These are
introduced as follows.

1) Semantic Code Search: Semantic code search is the task
of retrieving relevant code given a natural language query [11].
This task can provide an intuitive way for users to navigate
large code bases. This service utilises the summarizations
generated by the Summarization Service for this task, as it
shows in Figure 4.

Fig. 4: Semantic code search pipeline. When calculating cosine
similarities, a pair is defined as the natural language search
query embedding and a given summarization embedding.

Embeddings are generated for all function summarizations
(and stored), as well for each of the natural language queries
performed by the users (e.g. functions that call RDFLib).
And later, the cosine similarities scores are calculated be-
tween the summarization embeddings and the natural language
query embedding. Prior calculating a natural language query
embedding, the text is ‘cleaned’ by removing stop words
using NLTK11 - NLTK’s stopword list12.Later, embeddings
are generated using, multi-qa-distilbert-cos-v113.
This model utilises the Sentence-BERT model to ‘derive
semantically meaningful sentence embeddings’ [12], and it has
been selected because it has been trained with data from the
StackExchange website 14, which includes significant content

11NLTK: https://www.nltk.org/
12NLTK Stopwords: https://gist.github.com/sebleier/554280
13Hugging Face: https://huggingface.co/sentence-transformers/

multi-qa-distilbert-cos-v1
14https://stackexchange.com/

Pre-defined Query Used in
Select the requirements of a given repository Cypher Search
Select the READMEs of a given repository Cypher Search
Select the metadata of a given repository Cypher Search
Select the license of a given repository Cypher Search
Select the docstring (long and short) of a
given repository

Cypher Search
Semantic Code Search

Select the function summarizations of a
given repository

Cypher Search
Semantic Code Search

Select the file names of a given repository Cypher Search
Select the function and class names for a
given repository

Cypher Search
Semantic Code Search

Select the source code for a given repository Cypher Search
Semantic Code Search

Select the call graph for a given repository Semantic Code Search
Summarization

TABLE IV: List of pre-defined queries used by Search and
Function Summarization services

related to Python. Interchanging this model by another one,
will be also a trivial operation in RepoGraph.

The semantic code search service is currently limited to
functions and methods. Note that the summarisation embed-
dings are generated only once (the first time that a semantic
code search is performed), storing them for future semantic
code searches.

2) Cypher Search: As an alternative to semantic code
search (limited to functions and methods), the search service
allows also for knowledge graphs to be searched using a pre-
determined set of Cypher queries (see Table IV). These queries
cover most aspects of the knowledge graph and should be
sufficient for most use cases. Note, that not only the Search
service uses these for implementing the Cypher Search and
Semantic Code Search functionalities, as well by Function
Summarization Service.

The Search Service utilise the Graph Service to execute
these pre-defined queries and allow repository-level filtering
in multi-repository graphs. This benefits the RepoGraph ar-
chitecture and allows for further pre-defined queries extension.

3) Docstring-related Issues: The Search service also pro-
vides some functionality related to detecting ‘Repository Is-
sues’ (previously defined in Section Section V-B) - namely
‘Docstrings-Related Issues’:

• Possible incorrect docstring: when a function or a method
includes an incorrect docstring.

• Missing docstring: when a function or method has miss-
ing its docstring.

This service analyse the knowledge graphs functions and
methods docstrings to detect possible incorrect docstrings.
It employs the multi-qa-distilbert-cos-v1 model
(introduced at Section V-E1) to compare functions original
docstrings (the ones included by the developer) with the
docstrings automatically generated by the Summarization Ser-
vice. Our hypothesis is that a low cosine similarity may
indicate that the original docstring is incorrect, as it may
have been copied from another function or become out-of-
date. The low cosine score is used to calculate the ‘possible
incorrect docstrings’ issue metric and we have set up the
threshold to 0.25. This value was determined from our anal-
ysis of the similarity between summarizations generated by

https://www.nltk.org/
https://gist.github.com/sebleier/554280
https://huggingface.co/sentence-transformers/multi-qa-distilbert-cos-v1
https://huggingface.co/sentence-transformers/multi-qa-distilbert-cos-v1
https://stackexchange.com/


codet5-base-multi-sum and the docstrings they were
generated from in the CodeXGlue [4] dataset.

Furthermore, during the process of determining if docstrings
are possibly incorrect, the search service also detects which
functions have missing their corresponding Docstring. This is
used to calculate the missing docstrings issue metric.

VI. REPOGRAPH USER INTERFACE

The User Interface (UI) is designed to provide a simple
tool for users to utilise the knowledge graphs generated by
the system to further their understanding of their repositories.
The UI is designed with three key sections: Home, Graph,
Search. Each of them are detailed bellow.

A. Home Section

The Home section has the Create graph page where users
can upload repositories to generate new graphs (see Figure 5).
As we mentioned in Section V-A, users can create single or
multi-repository graphs (repositories need to be zipped to be
uploaded), name them, and also store an associated descrip-
tion. This information is stored in the Metadata Repository by
the Metadata Service (see Section V-C).

Fig. 5: Create Graph page from RepoGraph Home section .

To mitigate long waits for creating users graphs, we have
employed the optimistic acceptance and polling approach is
used, in which RepoGraph accepts an upload before it has
been fully processed. The UI then waits for the server to
finish processing by polling in the background before making
it accessible to the user.

The Home section has also Your Graphs page, which
provides a listing of generated graphs for users to interact
with. Given possible long build times, RepoGraph captures
the status of a graph (information stored at the Metadata
Repository), and visualize it in in this section (see Figure 6).
Upon upload, a graph is allocated the PENDING status and
is only upgraded to ACTIVE once the build process has been
completed successfully.

B. Graph Section

The Graph section is also composed of two pages. A
Summary page (see Figure 7) that contains key information

Fig. 6: Pending and active graphs on Your Graphs page. The
active graph corresponds to pyLODE repository, while the
pending correspond to a graph with multiple repositories.

on a graph (such as the number of files, repositories, etc.).
This page also contains the visualization of the graph, which
is interactive. So users can zoom in/out of them, obtaining
nodes and relationship details. This information is retrieved
from the Graph Service.

Fig. 7: pyLODE repository graph Summary page showing
statistics and knowledge graph visualisation.

An Issues page (see Figure 8) where users are alerted to
potential problems with the repositories contained in the graph
(these metrics leverage elements of graph theory, such as
cycles, and machine learning methods), as it was introduced
in Section V. These issues are calculated by Graph (Circular
Dependencies and Missing Dependencies) and Search services
(Possible Incorrect Docstrings and Missing Docstrings). Fig-
ure 8 shows an example of the Issues page for detecting
the possible issues for pyLODE repository. Each issue is
clickable in this, and more detailed information is available. In
this Figure, we can see the detailed information of ‘Possible
Incorrect docstrings’. For each ‘possible’ incorrect docstring,
this Figure shows the function’s name, type (function or
method), generated summarization (by the Summarization
Service, original docstring (included by the source code), the



similarity score (calculated by the Search service), and the
repository name.

Fig. 8: Overview of the issues founded for pyLODE repository.
The ‘Possible Incorrect Docstrings’ have been been clicked for
further inspection.

C. Search Section
This section is where a user can use both semantic code

search (see Figure 9) and pre-defined queries (see Figure 10a)
to explore a graph. The Search page has have two tabs: a
Natural tab for semantic code search queries; and a Favourites
tab for pre-defined queries. Both tabs uses the Search Service
introduced at Section V-E.

Figure 9 shows an example of the Natural tab to search
functions that are more similar to the natural language search
query functions that call RDFLib in the pyLODE graph. The
obtained results in this page are sorted by their similarity score.
Here, we can see the most similar functions, their source code,
and their code call graph (which is also interactive).

Fig. 9: Executing a semantic code search in RepoGraph.
The available pre-defined search options under the Favourite

tab are shown in Figure 10a. Each option corresponds to
one of the pre-defined Cypher queries introduced earlier in
Table IV. An example of those is available in Figure 10b,
in which we can see the results of executing Search function
summarizations query for pyLODE graph.

(a) Favourite search bar showing available options.

(b) Executing Search function summarization query.

Fig. 10: Favourite (pre-defined) search queries.

VII. EVALUATION

This section presents the evaluations performed to
RepoGraph against several criteria, such as function summa-
rization performance, the correctness and relevance of search
results, or the processing time for constructing graphs of
various sizes.

A. Function Summarization

In this work, we have evaluated the summarization models
introduced in Section V-D (codet5-base-multi-sum,
codet5-small-code-summarization-python,
codet5-base-python-sum), using CodeXGLUE Python
code snippets [4] as the test dataset. To assess the quality
of their summarizations, the associated docstrings in the
test dataset were compared to the generated summarizations
by applying multi-qa-distilbert-cos-v1 model
to generate their embeddings. Note that this model is also
employed in the Search Service (see Section V-E1), for
providing the semantic code search mechanism. Later the
cosine similarity between each pair embeddings (associated
docstrings and generated summary) was calculated obtaining
at the end the similarity score by each model for this dataset.

Figure 11a shows that codet5-base-multi-sum out-
performs the other models, codet5-base-python-sum



(a) Function summarization similarity scores.

(b) Function summarization duration.

Fig. 11: Function summarization evalutions.

and codet5-small-code-summarization-python,
with an average cosine similarity of 0.577. Furthermore, we
also evaluated the time needed for each of those models to
perform the summarizations of the test dataset. As Figure 11b
shows, codet5-base-multi-sum outperforms the other
models, with most observed execution times below 1 second.
Therefore, codet5-base-multi-sum was selected as the
model to use in the Summarization Service

B. Correctness

To assess the correctness of the knowledge graphs generated
by RepoGraph, several manual queries were devised to
compare the generated knowledge graphs against the reported
output from inspect4py. Table V lists the entities extracted
as reported by the output from inspect4py using six open-
source repositories. This is compared with Table VI, which
lists the corresponding entities reported in the subsequently
generated knowledge graph.

Tables V and VI show that the number of extracted functions
and classes are the same. The number of extracted files for all
repositories in Table VI is less than the corresponding entry in
Table V. This is because inspect4py includes non-Python
files, while RepoGraph ignore them. This also affects to the
number of folders, since inspect4py includes folders with
non-python files, and those are ignored in RepoGraph.

Repository Folders (inc. root) Files Classes Functions
pyLODE 5 21 4 37

black 35 223 108 367
flake8 15 103 42 328
fastapi 155 2064 551 2246
py2neo 24 126 138 550

pygorithm 16 129 73 246

TABLE V: Entities from inspect4py output

Repository Folders (inc. root) Files Classes Functions
pyLODE 5 20 4 37

black 35 187 108 367
flake8 15 72 42 328
fastapi 157 1130 551 2246
py2neo 24 89 138 550

pygorithm 18 118 73 246

TABLE VI: Entities from RepoGraph knowledge graphs

C. Performance

We have also evaluated the performance of RepoGraph
using repositories of various sizes, in terms of number of
entity nodes and relationships of their resulting knowledge
graphs. We measured the total time (processing time) to create
knowledge graphs for 100 repositories 15. In this experiment,
function summarizations were disabled.

Figure 12a shows the relationship between the number of
nodes created and processing time to create those. While
Figure 12b plots the number of relationships created against
their processing time. Note that each dot represents repository,
and consequently a knowledge graph.

In Figure 12 (a,b) several results were filtered out to remove
outliers at the upper end of upload durations that make the
graph difficult to understand (we selected repositories with
less than 30,000 nodes/ relationships). The the original graphs
(without filtering repositories) are available at 16

In both plots from Figure 12, we observe a roughly exponen-
tial relationship with most repositories completing in under 25
minutes (1500 seconds) and a significant number completing
in less than 9 minutes (approx. 500 seconds).

A second experiment was performed later to build knowl-
edge graphs that include function summarizations for a smaller
subset (six open-source repositories). The results for these
repositories, with and without function summarizations, are
listed in Tables VII and VIII, respectively.

15Those repositories have been also used to evaluate inspect4py:
https://github.com/SoftwareUnderstanding/inspect4py/blob/main/evaluation/
software type/software type benchmark.csv

16https://drive.google.com/file/d/1wdzwQvBmmhns2wqCumDdDe-FnD7yMHyi/
view?usp=sharing

https://github.com/SoftwareUnderstanding/inspect4py/blob/main/evaluation/software_type/software_type_benchmark.csv
https://github.com/SoftwareUnderstanding/inspect4py/blob/main/evaluation/software_type/software_type_benchmark.csv
https://drive.google.com/file/d/1wdzwQvBmmhns2wqCumDdDe-FnD7yMHyi/view?usp=sharing
https://drive.google.com/file/d/1wdzwQvBmmhns2wqCumDdDe-FnD7yMHyi/view?usp=sharing


(a) Entity Nodes created vs Processing Time

(b) Relationship created vs Processing Time

Fig. 12: Repository processing time evaluations. A dot repre-
sent a repository’s knowledge graph.

Repository Time (s) Entity Nodes Relationships
pyLODE 7.325 471 741

flake8 45.386 2185 2884
black 55.618 2687 3683

pygorithm 73.6906 3039 3820
py2neo 161.091 4441 6149
fastapi 619.773 7695 13238

TABLE VII: Processing times without summarizations.

We can see an average 4x increase in execution time when
summarizations are enabled. For the fastapi repository, this
leads to an execution time of aprox. 30 minutes. Table VIII
also highlights an increase in the number of nodes and
relationships created. This is due to Docstring nodes (and
subsequent Documents relationships) for Function nodes
that do not already have a Docstring node.

Repository Time (s) Entity Nodes Relationships
pyLODE 40.600 510 780

flake8 176.130 2302 3001
black 233.173 3045 4044

pygorithm 318.049 3424 4205
py2neo 564.566 5538 7246
fastapi 1759.812 12307 19946

TABLE VIII: Processing times with summarizations.

VIII. RELATED WORK

Several web tools have been developed for enabling users
to explore software code. In this section we review those most
relevant to our work.

A. KG4Py

K4GPy [7] a toolkit for generating Python knowledge
graphs and code semantic search, that utilises LibCST17

to perform code analysis on Python files [7] rather than
inspect4py.LibCST uses aspects of Concrete Syntax Trees
(CSTs) rather than inspect4py’s ASTs to parse Python
code, with the additional benefit that CSTs can be used to
reconstruct the original source code. inspect4py navigates
this issue by simply including the original source code in its
JSON output and, as such, the net result is broadly similar.

KG4Py also utilises a different ontology because it is be-
holden to the same feature of property graphs, making utilising
existing ontologies infeasible. The KG4Py ontology includes
six entity types [7, Table 3] and 8 relationship types [7, Table
4], which is significantly less than this work (see Section III).

KG4Py differs from RepoGraph in several aspects. With
KG4Py users can only perform code searchers, while with
RepoGraph, users not only can do this tasks, as well as vi-
sualizing the graph of their uploaded repositories, and explore
different features, as well as list their possible issues. With
KG4Py, users can not store more than one graph, while with
RepoGraph users are able to store many graphs.

B. GraphGen4Code

GraphGen4Code [13] is a ‘toolkit for generating code
knowledge graphs’. Unlike KG4py, it strongly emphasises
modelling the data and control flow of Python programs. This
is achieved through an extension to the WALAanalysis18 library
that extracts the control flow of the analysed programs. At the
time of publication, the GraphGen4Code extension toWALA
only provides support for Python programs, and, as such,
GraphGen4Code is only implemented and tested on Python
code. The authors note that the ‘mechanism can be applied to
other programming languages like Javascript’ [13].

GraphGen4Code takes a more semantic approach and out-
puts graphs represented as Resource Description Framework
(RDF) triples. This would allow graphs to be stored in a
compatible triple store and queried with SPARQL 19. A novel
feature of GraphGen4Code is that it utilises forum posts from

17LibCST: https://github.com/Instagram/LibCST
18https://researcher.watson.ibm.com/researcher/view group.php?id=2999
19https://www.w3.org/TR/rdf-sparql-query/

https://github.com/Instagram/LibCST
https://researcher.watson.ibm.com/researcher/view_group.php?id=2999
https://www.w3.org/TR/rdf-sparql-query/


platforms such as StackOverflow to augment the knowledge
graph. While it does not implement any semantic search
functionality, such information could significantly improve the
quality of semantic search results versus approaches that rely
solely on the knowledge extracted purely from source code.

Our RepoPyOnto differs from GraphGen4Code, since
our ontology represents Python code repositories, rather than
just Python software applications. Therefore, RepoPyOnto
captures features as license, requirement file, README files,
etc, which are not available currently in GraphGen4Code.

C. Code Smells

Several works [14], [15] utilise knowledge graphs to detect
‘bad code smells’. These are anti-patterns and other features
that may indicate suboptimal code. Suboptimal code includes
poor performance or correctness and code that may be hard
to read or maintain. These works had served as an inspiration
for a similar feature in RepoGraph. Whilst existing works
generally evaluate a wider variety of code smells, they provide
this functionality in isolation rather than as part of a broader
suite of features that leverage a knowledge graph, as we do
in RepoGraph. Furthermore, our work focused on issues at
the ‘repository level’, rather than at the ‘code level’.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented RepoGraph, a new
semantic code exploration tool for Python repositories. It
facilitates developers in analyzing and extracting knowledge
from Python repositories, conducting semantic code searches,
visualizing main features, and identifying potential issues. We
have introduced a new ontology, RepoPyOnto, to represent
Python code repositories using features extracted from in-
spect4py and inferred by RepoGraph itself. Our approach
combines knowledge graphs, deep transfer learning, and Se-
mantic Web techniques to formalize and connect insights
derived from the analysis of Python repositories.

This research demonstrates how deep learning models and
knowledge graphs can revolutionize the interaction between
developers (from both academia and industry) and Python code
repositories, enabling software teams to construct and maintain
mental models of their software’s operation. Our future plans
include enabling RepoGraph to generate graphs through
syncing with Git repositories, automatically updating knowl-
edge graphs when relevant branches in mirrored Git reposito-
ries undergo changes. We also aim to enhance the ‘Repository
Issues’ feature to detect anti-patterns and code smells. Addi-
tionally, we intend to improve both function summarization
and semantic code search by experimenting with other NLP
language models, such as UniXcoder [16], while enhancing
the performance of our codet5-base-python-sum.
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