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Abstract—The discovery and reutilization of scientific codes
are crucial in many research activities. Computational notebooks
have emerged as a particularly effective medium for sharing
and reusing scientific codes. Nevertheless, effectively locating
relevant computational notebooks is a significant challenge. First,
computational notebooks encompass multi-modal data compris-
ing unstructured text, source code, and other media, posing
complexities in representing such data for retrieval purposes.
Second, the absence of evaluation datasets for the computational
notebook search task hampers fair performance assessments
within the research community. Prior studies have either treated
computational notebook search as a code-snippet search problem
or focused solely on content-based approaches for searching
computational notebooks. To address the aforementioned diffi-
culties, we present DeCNR, tackling the information needs of
researchers in seeking computational notebooks. Our approach
leverages a fused sparse-dense retrieval model to represent
computational notebooks effectively. Additionally, we construct
an evaluation dataset including actual scientific queries, computa-
tional notebooks, and relevance judgments for fair and objective
performance assessment. Experimental results demonstrate that
the proposed method surpasses baseline approaches in terms of
F1@5 and NDCG@5. The proposed system has been implemented
as a web service shipped with REST APIs, allowing seamless
integration with other applications and web services.

Index Terms—computational notebook search, evaluation
dataset, Jupyter Notebook, scientific code reuse, virtual research
environment

I. INTRODUCTION

In the rapidly evolving landscape of scientific research,
scientists often need to find and reuse codes for various
purposes, e.g., learn state-of-the-art algorithms, reproduce
previous research results, and quickly develop new methods.
Computational notebooks have emerged as a particularly ef-
fective medium for scientific code sharing and reusing []1]].
The computational notebook programming environment allows
researchers to interweave code with explanatory text, images,
and other media, making it easier to communicate their
thought processes and provide context for their codes [2]. Col-
lecting computational notebooks and building a search system
help scientists discover research resources published through
computational notebooks and thus facilitate knowledge sharing
and increase productivity [3].

There are several studies on computational notebook
search [4]-[6]. A branch of work emphasizes code frag-
ments (a reusable block of code, e.g., a code cell [4], or a

sequence of codes extracted from different code cells [S])
of computational notebooks and returns code snippets given
natural language queries. They treat computational notebook
search as a code-snippet search problem and aim to bridge
the gap between programming language and natural language.
While code-snippet search solutions can be effective for gen-
eral programming questions, they may not be suitable for
answering research questions that involve complex pipelines
or workflows. Others investigate content-based computational
notebook search (or notebook-to-notebook search), which uses
computational notebooks as queries to retrieve relevant compu-
tational notebooks [6]]. These methods provide a representation
for the entire computational notebook, e.g., source codes,
tabular data, output formats, and imported library names, but
limit the application to scenarios where users already have a
computational notebook.

Despite studies carried out on computational notebook
search, researchers still rely on general search engines or
open-source code repositories to find computational note-
books. These tools do not explicitly index the contents of
computational notebooks and may yield inaccurate results or
take longer to locate the relevant ones. This leads to the
goal of our work, i.e., building an effective computational
notebook search system. However, two significant challenges
need to be addressed. The first challenge is the need for
suitable representations of both text and code in computa-
tional notebooks. Despite the availability of advanced models
for processing natural language and programming languages,
representing computational notebooks is still difficult. This is
primarily because computational notebooks are multi-modal
and need to cater to complex scientific information require-
ments. For example, in Figure a Markdown cell and a
code cell together provide knowledge on a specific topic, such
as the stationarity test for time series data. The Markdown
cell explains the concept of stationarity, while the code cell
demonstrates a stationarity test on real data with visualization.
The combination of text and code is common in computational
notebooks due to their literate programming approach. The
second challenge is the lack of evaluation datasets in the field
of computational notebook search, making it difficult to assess
and compare different methods for searching computational
notebooks objectively and fairly.

Targeting the above challenges, we (1) propose Dense



Deal with stationarity

Most time-series models assume that the underlying time-series data is
stationary. This assumption gives us some nice statistical properties that
allows us to use various models for forecasting.

Stationarity is a statistical assumption that a time-series has:

« Constant mean
« Constant variance
« Autocovariance does not depend on time

More simply put, if we are using past data to predict future data, we should
assume that the data will follow the same general trends and patterns as in the
past. This general statement holds for most training data and modeling tasks.

There are some good diagrams and explanations on stationarity here and
here.

Sometimes we need to transform the data in order to make it stationary.
However, this transformation then calls into question if this data is truly
stationary and is suited to be modeled using these techniques.

We will use Dickey-Fuller test to check wheather the time series is stationary
or not.

Reference: Test stationarity using moving average statistics and Dickey-Fuller
test (https://www.analyticsvidhya.com/blog/2016/02/time-series-forecasting-
codes-python/)

(a)
from statsmodels.tsa.stattools import adfuller
def (df_ts):
sta average statistics and Dickey-Ful
: icsvidhya.com/blog/2016/02/time-serie
# Determing rolling statistics
rolmean = df_ts.rolling(window = 12, center = False).mean()
rolstd = df_ts.rolling(window = 12, center = False).std()
# Plot rolling statistics:
orig = plt.plot(df_ts,
color = 'blue',
label = 'Original')
mean = plt.plot(rolmean,
color = 'red',
label = 'Rolling Mean')
d = plt.plot(rolstd,
color = 'black"',

label = 'Rolling Std')
plt.legend(loc = 'best')
plt.title('Rolling Mean & Standard Deviation')
plt.xticks(rotation = 45)
plt.show(block = False)
plt.close()

m Dickey-Fuller test:
pothesis (H_0): ti

> series 1is

s ot stationary
te Hypothesis (H_1):

# Alter time ser s stationary
print('Results of Dickey-Fuller Test:')
dftest = adfuller(df_ts,
autolag="'AIC')
dfoutput = pd.Series(dftest[0:4],
index = ['Test Statistic',
'p-value',
'# Lags Used',

'Number of Observations Used'l)

if (dftest[1]1>0.05):

print("The time series is NOT stationary at the p = 0.05 level.")
else:

print("The time series is stationary at the p = 0.05 level.")

for key, value in dftest[4].items():
dfoutput['Critical Value (%s)'skey] = value
print(dfoutput)

(b)

Fig. 1. An example of a computational notebook. Source link: https:
//github.com/MRY1ingLEE/Time- series- Preprocessing-Studio-in-Jupyter/blob/
master/Time-seriesPreprocessing.ipynb

Computational Notebook Retrieval (DeCNR), which models
computational notebooks as bi-modal data (including text and
code) and utilizes a fused sparse-dense model for compu-
tational notebooks retrieval; (2) build an evaluation dataset,

including actual scientific queries, computational notebooks,
and relevance judgments for performance assessment. The
related artifacts can be found here: https://github.com/nali001/
notebook_search_docker.

II. RELATED WORK

This section reviews previous studies on computational
notebook search/retrieval that are highly relevant to our work.

A. Computational Notebook Retrieval

Research on notebook search is still in its infancy, with only
a handful of prior studies [4]-[6]. Previous research can be
summarized into two categories: code search in computational
notebooks and content-based computational notebook search.
NBSearch and EDAssistant support semantic code
search in a computational notebook collection. NBSearch
first translates source codes into textual descriptors and then
computes the similarity between the queries and the descrip-
tors using language models [4]. EDAssistant focuses on the
Exploratory Data Analysis (EDA) sequence of computational
notebooks and utilizes GraphCodeBERT to represent the
codes. Both are aimed at code snippet search and lack the
representation approach for the entire computational notebook.
JupySim [6] is a content-based notebook search system. The
query comprises codes in cells, tabular data, output formats,
and libraries. The similarity between queries and notebooks is
defined as the weighted sum of similarities for each type of
content. However, there is no clear explanation of the similar-
ity computation methods for separated contents. Moreover, it is
hard to evaluate the proposed system’s efficiency and usability
since no experimental results are reported.

Different from previous studies that search code blocks from
computational notebooks or use computational notebooks as
queries, we propose searching for the entire computational
notebooks using natural-language queries.

B. Text and Code Representation for Computational Note-
books

Computational notebook representation is the cornerstone
of computational notebook search systems. Computational
notebooks comprise texts and codes, each of which can be
represented effectively for retrieval. Related studies can be
summarized into two categories: text representation and code
representation. There is an enormous body of studies dedi-
cated to text representation. Classical text retrieval methods,
e.g., BM25 [8], use term-level heuristic statistics to represent
the documents. Despite its simplicity, it is still effective in
many retrieval tasks [9)]. However, they only consider the
lexical retrieval similarity between queries and documents
and thus fail to retrieve relevant documents when there are
no overlapping words in the queries and documents. Neural
retrieval models are then developed for semantic retrieval [[10].
Among them, dense retrieval methods based on large-
scale pre-trained language models [12]], [13]}, e.g., DPR
and SBERT [13], map both query and document into a con-
tinuous vector space (dense vector space) where semantically
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similar words, phrases and sentences are closer to each other,
and thus also called semantic retrieval methods. Similarly, two
types of code modeling methods exist: Information Retrieval
(IR)-based and Machine Learning (ML)-based methods. IR-
based code retrieval methods [16], e.g., codehow [[17], utilize
traditional text retrieval techniques to measure text similarity
and rely on shared words between queries and codes. ML-
based methods usually map text and code snippets into a
shared vector space. The relevance can be measured through
cosine similarity between vector representations [[18[|—[22].

Unlike previous studies focusing on the representation of a
single modality of data, i.e., text or code, we consider both
text and code to represent computational notebooks.

C. Hybrid Sparse-dense Retrieval

Sparse retrieval models [8]] usually utilize the statistical
characteristics of words to represent queries and computational
notebooks. Dense retrieval models [11] aim to map texts
and codes into a continuous vector space, and the similarity
between queries and computational notebooks can be com-
puted as the dot product between the vector representations.
Each type of method has pros and cons. For instance, sparse
retrieval models are highly efficient but limited by their lexical
essence. Dense retrieval models provide preferable semantic
matching between words and sentences but usually require in-
domain labeled data for training or fine-tuning. We propose
a fusion-based approach to overcome this issue, combining
sparse and dense retrieval models to derive the final ranking.
Hybrid retrieval methods have been studied to improve the
effectiveness of a retrieval system via the fusion of different
retrieval strategies [23]-[25]]. Chen et al. [25]] propose a simple
yet effective zero-shot hybrid model that combines BM25
with NPR [26] to address the out-of-domain generalization
problem. They also point out that the dense retrieval models
could be incompetent in modeling long documents, and sparse
retrieval models can compensate for these weaknesses. Com-
putational notebooks and scientific queries are out-of-domain
data for most large-scale pre-trained language models, e.g.,
SBERT [15] and computational notebook retrieval also faces
the long document problem. Therefore, the combination of
sparse and dense models can be a potential solution for out-of-
domain and long document problems in computational note-
book retrieval. Hence, different from the previous studies [4]],
[5] that use only one type of model, we propose a fused sparse-
dense model for computational notebook retrieval.

III. DENSE COMPUTATIONAL NOTEBOOK RETRIEVAL

This section describes the proposed DeCNR, a system that
enables searching for external computational notebooks to
support scientific research activities.

A. System Design

Figure[2](a) depicts the high-level architecture of the system.
We harvest raw computational notebook and their correspond-
ing metadata from the web through a Crawler. The system then
processes each data accordingly. The computational notebooks

first go through a Preprocessor to extract useful contents and
then input to a Computational Notebook Representation mod-
ule. Meanwhile, the metadata for each computational notebook
is handled by a Metadata Harmonization unit to generate
common metadata. The Indexer proceeds with preprocessed
contents or representations to generate indexes to be stored in
the Index Database. The Retriever will serve online retrieval
for computational notebooks. More details of each module are
provided in the following:

1) A Crawler collects computational notebooks and corre-
sponding metadata from the web.

2) A Preprocessor takes raw contents of computational
notebooks as input and outputs aggregated texts and
codes.

3) A Computational Notebook Representation unit trans-
forms natural-language texts and codes to vectors.

4) A Metadata Harmonization unit maps metadata from
various data sources onto a common metadata schema
to ease the indexing for the metadata.

5) An Indexer generates indexes from vector representa-
tions produced by the Computational Notebook Repre-
sentation unit and common metadata produced by the
Metadata Harmonization unit.

6) An Index Database stores the indexes and makes them
available for searching.

7) A Retriever interacts with users via the User Inter-
face, and retrieves matched notebooks from the Index
Database based on their similarities.

The system can be used to handle computational notebooks
from different sources. Typical data sources include software
repositories (e.g., GitHub and Kaggle), research assets cata-
logs, or other public web locations. Since crawling computa-
tional notebooks is a common practice, our work only focuses
on the rest of the pipeline. The user interface can be dedicated
web pages for vertical computational notebook search or
extensions of existing web services. The backend can be scaled
to multiple instances and run on cloud infrastructure. These
components ’ technical considerations and detailed design will
be discussed in the rest of this section.

B. Preprocessor

The preprocessor is responsible for splitting texts from
codes and cleaning up irrelevant content such as images and
cell outputs. A computational notebook is in JSON format
and is organized as cells. We traverse the cells to extract
contents inside, concatenate texts from all Markdown cells,
and codes from all code cells. Afterwards, we omit the HTML
contents, URLs, and blank lines inside the text to get clean
textual descriptions. For code, we first remove the commands
commonly used in Jupyter Notebooks but not part of the
code itself, e.g., cell magic or line magic commands, and
shell commands to install Python packages or set environment
variables. Next, we enhance the metadata by incorporating
statistical features, such as the count of code cells.
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Fig. 2. (a) The high-level structure of DeCNR; (b) Computational notebook ranking using the fusion of BM25 and a dense retrieval model.

C. Indexer, Index Database and Retriever

The indexer, together with the index database, is necessary
for the fast retrieval of computational notebooks. Inverted
indexing is commonly exploited to allow fast full-text searches
based on sparse retrieval models, e.g., BM25 and TF-IDF.
Recently, tools that support fast similarity search of dense
vectors, e.g., Faiss [27], have emerged as the backbone of
dense retrieval systems. In our case, we use Elasticsearclﬂ as
the indexer to serve the “shallow” retrieval of computational
notebooks, which are based on the lexical similarity between
queries and the textual description of computational note-
books. To support “semantic” retrieval, we use haystack [28]]
to generate Faiss indexes with dense retrieval methods. The
retriever interacts with users and the index database. It receives
user queries, retrieves notebooks, and ranks them based on
their similarities to the queries.

D. Computational Notebook Ranking using a Fused Model

We use a fused sparse-dense model for computational
notebook retrieval. Figure [2] (b) illustrates the workflow of
the proposed method. A computational notebook is first split
into ‘text’ and ‘code’, with ‘text’ being aggregated textual
descriptions in Markdown cells and ‘code’ the code fragments
from code cells. The texts and codes are concatenated and
then segmented into passages to fit in the input layer of the
Encoder. Each passage p is encoded as a vector representa-
tion in a high-dimensional Euclidean space, referred to as a
Passage embedding v, = Ep(p), where Ep is the encoder for
passages. Another encoder E encodes a query g to generate a
query vector representation v, = Eg(q). The Cosine similarity
between the passage and the query is computed as the inner
product of two vector representations, i.e., v, - v4. We apply
the Max-pooling operation to all passage similarities to get
the computational notebook-level similarity score. Meanwhile,
A sparse model computes the similarity score between the
query and the computational notebook. For sparse and dense
model fusion, we employ the linear combination of similarity
scores computed by two models. Formally, for each query and

Uhttps://github.com/elastic/elasticsearch

computational notebook pair (g, d) the final similarity score
S tusion 18 derived by:

(D

where Sgense and Sgpqrse refer to similarity scores produced
by the dense and the sparse retrieval model, respectively.
wy and we are weighting parameters. The computational
notebooks are re-ranked by the fused similarity score Srusion-
In the current implementation, we use BM25 as the sparse
retrieval model and SBERT [15]] as the dense retrieval model.
SBERT utilizes pre-trained large language models [[12f], [13]
and fine-tunes them to achieve semantically meaningful vector
representations of sentences for efficient similarity search.

Sfusion = wqy * Sdense + wa * Sspar567

E. Metadata Harmonization

Computational notebooks come with default metadata such
as “name”, “full_name”, “id” and “language” when down-
loaded from big code repositories, such as Kaggle and GitHub.
However, they usually follow different schemas and pose
difficulties in metadata indexing. Therefore, we introduce a
metadata harmonization unit that extracts and maps the most
common fields from different metadata schemas, which are the
above rows (until the description) displayed in Table [} These
metadata fields provide the index’s basis but are insufficient
for understanding the contents. The pipeline extracts other
meta-information directly from the computational notebook
contents. We add six main fields (the bottom rows in Table
to store additional features. The computational notebooks from
different sources are indistinguishable from each other in
terms of the contents, so we append the same features to all
computational notebooks.

F. Implementation

The current software is implemented in the context of
several EU projects, i.e., H2020 ENVRI-FAIR, CLARIFY,
and BlueCloud. Computational notebooks are gathered from
GitHub, Kaggle, and service catalogs provided by the data
infrastructure in these projects. We emphasize extensibility,
modularity, and deployability when developing the software.
To cope with the rapid evolution of data analysis models,
the backend is implemented with Python using the Django
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TABLE I
THE SCHEMA OF HARMONIZED METADATA.

Mapped fields Type Explanation

docid string Local unique ID

stargazers_count  integer  Star numbers of the repository (GitHub only)
forks_count integer ~ Fork numbers of the repository (GitHub only)
size integer File size (GitHub only)

name string The name of the notebook (Kaggle only)
html_url string URL of the computational notebook file

source string The name of the data source, e.g., GitHub
code_file string The name of the file

description string Text descriptions extracted from Markdown cells
language string Programming language

num_cells integer Number of cells

num_code_cells integer Number of code cells

num_md_cells integer Number of Markdown cells

len_md_text integer Number of lines of texts inside Markdown cells

framework, considering that many SOTA retrieval models
are available through Python libraries, e.g., transformers, and
thus can be smoothly updated. To modularize the system,
we align the software components with conceptual modules
demonstrated in Figure 2]and separate them into self-contained
units. This is achieved by the careful design of the communica-
tion interface between two connected modules. Regarding the
deployment, we leverage Docker’s containerization techniques
to ease the deployment of the system. The system can be
effortlessly deployed in a single laptop, a virtual machine, or
a cluster.

Additionally, we developed a search agent as a Jupyter ex-
tension tool inside our NaaVRE [29] ecosystem to demonstrate
the in-site usage of computational notebook search within
a Jupyter-based Virtual Research Environment. It is a key
supporting element in achieving the vision of “Notebook as
a Virtual Research Environment” [29]]. The user interface is
the same as that in CNSVRE [30]. We also incorporate it
into the ENVR]E| search platform, displaying search results on
the website, as shown in Figure @ In this case, the search
is only performed over metadata due to practical reasons.
Additionally, it provides REST APIs that can be incorporated
into any web service.

IV. EVALUATION

To assess the performance of proposed computational note-
book search methods and facilitate future studies, we build an
evaluation dataset containing scientific queries, computational
notebooks, and relevance judgments. This section describes
the evaluation dataset construction procedure.

A. Query Collection

We collect researchers’ queries by designing and circulating
a questionnaire within the university and the network of Ph.D.
students in the related EU projects. The questionnaire explic-
itly instructs the participants to provide research-related code
search queries. More concretely, they are asked to “list at least

Zhttps://search.envri.eu/genericpages/

breast cancer diagnos.

| found 268 results for you! (Feedback)
¥ ENVRI-HUB

search space

fagnosis-using " P
® webpages

Breast Cancer Diagnosis Using KNN with R
¥ Datasets

stars: 10
X Web APIs "

& images ~ " i
| P <

visualization
Classification of Breast Cancer diagnosis Using Support Vector Machines
£ Graph based

S 45 | s
G Ppiechart Stars:145 | Size: 1820 KB "

info
Q) publications

S nyukat/GLAM <
&£ RaDteam

Weaklysupervised i of
Diagnosis

Images for Breast Cancer

Fig. 3. DeCNR embedded with the ENVRI search platform.

5 queries in natural language that you use for searching codes
related to your research topic(s). The queries should reflect
your research topics/questions, e.g., segmentation of epidermis
in histopathological images, instead of general coding tips,
e.g., load json files”. Additionally to the queries, we also ask
them to specify their research fields. A total of 132 queries
are collected from 26 participants, with most of them from
the computer science domain and two from the chemistry
and psychology domains. Table [IIj lists some examples of the
collected queries.

B. Relevance Judgment Collection

Finding relevant computational notebooks given an arbitrary
query is a significant challenge using current search platforms.
Thus, we adopt the following steps to generate relevance judg-
ments for the queries and the computational notebooks, shown
in Figure 4] We collect computational notebooks from GitHub,
a commonly used code repository where computational note-
books are stored within repositories. We use APIs to search
and download computational notebooks. Since the returned
results are scarce for most original queries, we first enlarge
the query set by manually extracting scientific entities (words
or phrases standing for scientific concepts, e.g., attention-based
multiple instance learning, pytorch, whole slide image diagno-
sis) from the original queries and combine these entities into
new queries, resulting in 270 queries. We then use the enlarged
query set as keywords to search GitHub at the repository level
because searching at the file level produces too many noisy
results. The constraint of the “Jupyter Notebook™ language
is applied to pick out repositories containing computational
notebooks. We selected 64 queries that have 1-100 returned
code repositories and downloaded all the .ipynb files from the
top 30 code repositories, ranked by the number of stars. The
reason behind using 1-100 repositories as selection criteria
is that queries that result in more than 100 repositories are
usually too broad, which will not be well supported by the
search system. For relevance judgment, we use the original
queries collected from researchers instead of the processed



TABLE II
QUERIES COLLECTED FROM RESEARCHERS WITH DIVERSE BACKGROUNDS

Index Query Research field
1 Post processing in gigapixel images Image Processing
2 Multi-class tissue segmentation with Pytorch artificial intelligence for histopathological image analysis
3 multi-modal deep learning models for early detection of AD the early detection of Alzheimer’s disease
4 Specularity removal from image Intrinsic Image Decomposition, Augmented Reality & Colour Constancy
5 Time-series data preprocessing Cloud computing
6 Internet of things Computer science
7 Comparison of execution cost in smart contracts Blockchain
8 code for t test Psychology
9 codes for calculating photoluminescence quantum yield (PLQY)  Chemistry

( Original queries )

"Attention-based multiple instance learning
Wy for whole slide image diagnosis pytorch"

[ Query set preprocess and enlargement ]

"Attention-based multiple instance learning",

"whole slide image diagnosis",

"Attention-based multiple instance learning pytorch",
"Attention-based multiple instance learning whole
slide image diagnosis",

v "whole slide image diagnosis pytorch"

[Initial search for computational notebooks]

notebook1,
notebook2,
notebook3,
notebook4
\ A

[ Re-ranking computational notebooks ]

[1] notebook22,
[2] notebook13,
[3] notebook5,

[4] notebook47
\ A

[ Human annotation ]

[1] notebook22: Irrelevant,

[2] notebook13: Relevant,

[3] notebook5: Highly relevant,

[4] notebook47: Perfectly relevant,

v -

( Relevance judgements )

Fig. 4. Steps for collecting relevance judgments between queries and
computational notebooks.

queries used for computational notebook collection. Thus, the
64 queries are projected to 47 original queries, which will be
included in the evaluation dataset.

It is infeasible to assess the relevance of queries against
all computational notebooks. Therefore, we use the BM25
method to re-rank the collected computational notebooks for
each query to present more relevant ones in the top positions.
Afterward, we manually annotate the top-ranked computa-
tional notebooks in terms of relevance to the given query. To
ensure at least one relevant record for each query, relevant
computational notebooks are quested using multiple search
platforms and added into the search space. We utilize four-

level relevance labels for annotation, similar to that in the MS
Marco dataset [31]. Eventually, the evaluation dataset contains
49 queries, 3,779 computational notebooks, and 254 relevance
judgments. Table [[II| summarizes the statistics.

V. EXPERIMENTS

We aim to answer the following research questions via
empirical experiments: RQ1 What contents within the com-
putational notebooks, including texts and codes, are useful
for retrieval? RQ2 How do dense retrieval models perform,
compared with sparse retrieval models? RQ3 How does model
fusion affect the performances of dense retrieval models?

A. Experimental Setup

1) Query subjects: To examine the ability of our system
to support diversified scientific queries, we use the 47 queries
from the evaluation dataset, as described in Section |IV-B|

2) Search space: The search space used for evaluating our
system comprises the 3,779 computational notebooks crawled
from GitHub using the collected queries. All queries are
accompanied by at least one relevant computational notebook.
The relevance labels are in four scales: {3—Perfectly relevant,
2-Highly relevant, 1-Relevant, O-Irrelevant}. Computational
notebooks are split into passages of 512 words. The number
of passages for different types of contents is listed in Table

3) Evaluation metrics: We use precision, recall, FI, and
Normalized Discounted Cumulative Gain (NDCG) as the per-
formance metrics, which are commonly used in information
retrieval tasks. Since users usually only pay attention to top-
ranked results, we compute the metrics using top-k returned
computational notebooks. The precision@k measures the
correct hits in the top-k ranking, and it is calculated as follows:

TPQk

k 9
where k is the number of retrieved computational notebooks,
and T PQF is the number of relevant ones in top-k retrieved
results. The higher the precision@k is, the more relevant
results will be presented to users. The recall@k measures how
many relevant computational notebooks can be retrieved from
the corpus:

2

precisionQk =

TPQk

[lQk =
reca 2

3)



TABLE III
STATISTICS OF EVALUATION DATASET

# queries  # computational notebooks # relevance Judgment's # passages
Total Avg. Min. Max. Only text Only code Text and code
47 3,779 254 (208 relevant) 5.4 1 19 4,970 7,129 9,766

where P is the number of all relevant computational notebooks
in the corpus. The F'1Qk is the combination of precision@k
and recallQk, as defined below:

FlOk — 92 x precisionQk X recallQk

precision@Qk + recallQk @)
Note that the precision@k is bounded by min(£,1). In other
words, the perfect precision 1 can not be achieved when P <
k. Similarly, the recall@k is limited to min(%,1).

Despite the informativeness of the above metrics, they do
not consider the ranking within the top-k results. For exam-
ple, two rankings [1,1,1,0,0,0] and [0,0,0,1,1,1], where
1 denotes relevant and O non-relevant, will have the same
values using these metrics. NDCG is commonly used to assess
different ranking outputs, favoring relevant results at higher

ranking positions. It is defined as below:
DCGQak
IDCGak’

where DCGQF is the discounted cumulative gain at rank k
and I DCGQF is the ideal discounted cumulative gain at rank
k. They are calculated as follows:

NDCGQE = 4)

k

2rel4 -1
DCGak = Too(7+1)° 0
min(k,|Na,|) rel;
oreta) — 1
IDCGQk = log,(i + 1) !
cG 2 log,(i +1)’ v

i=1
where rel; is the relevance score of the ¢-th ranked computa-
tional notebook, while rel(;) is the relevance score of the :-th
most relevant computational notebook in the corpus. |N,| is
the size of the corpus.

Since the four-point labels are aimed at guiding human
annotators in relevant judgment rather than providing accurate
classification for the relevance of computational notebooks, we
use binary labels when computing precision@k, recallQk,
and F'1Q@k. We regard the [rrelevant label as non-relevant and
the rest as relevant. The four-point relevance labels remain for
the N DC'GQF; calculation. We report the model performances
at k = 5 and 10. k=1 is not considered because including
relevant computational notebooks in the top 5 or 10 results is
sufficient for system usability.

4) Comparison methods: Two main factors affect the per-
formance of computational notebook search methods: indexing
contents and ranking models. Regarding indexing contents, we
consider three settings: ‘text’, ‘code’, and ‘text+code’, which
denote indexing only textual descriptions in the Markdown
cells, only codes inside the code cells, and the concatenation

of both. For the ranking models, we utilize a commonly
used sparse retrieval model, BM25, and two state-of-art dense
retrieval models: sentence-transformers/multi-qa-mpnet-base-
dot-vl (SBERT1) and sentence-transformers/all-mpnet-base-
v2 (SBERT?2). They are both based on the pre-trained model
microsoft/mpnet—basﬂ [13]. SBERT1 is trained on 215M
(question, answer) pairs from diverse sources while SBERT2
is trained on above 1B sentence pairs. They share the same
model size and report comparable performances on 6 diverse
semantic search tasks. The dense retrieval models are provided
by the sentence-transformers libraryﬂ and are used in a zero-
shot manner. All ranking methods are applied to the three
aforementioned indexing settings. Besides single models, we
investigate hybrid search via model fusion. Three fusion
variants are considered: SBERT1+SBERT2, BM25+SBERT1,
and BM25+SBERT?2. The fused models utilize both texts and
codes for similarity computation. We tested different settings
of the weighting parameters w; and ws in the preliminary
experiments, and the fused models seemed to be insensitive to
these parameters. For simplicity, we set them both to 1. Their
performances are measured using top-k ranked results.

B. Results

Table and Table [V] list the experimental results. As
discussed in Section [V-A3] the P@k and R@Fk have upper
bounds depending on the selection of k. Therefore, we provide
the metrics values in an ideal situation as references.

1) Effect of indexing contents (RQ1): We show the results
in Table to demonstrate the effect of using different con-
tents for retrieval. The results suggest that the combination of
text and code performs better than only text or code. Moreover,
the text is more useful than code for retrieving computational
notebooks. First, we observe that the ‘text+code’ group consis-
tently achieves the best performance using different retrieval
models (Lines 3, 6, 9). Compared with the ‘text’ group, the
P@5, R@5, and F1 @5 increase by 45.2%, 47.7%, and 45.8%
respectively using the BM25 method (Line 1, 3). Compared
with the ‘code’ group, the P@5, R@5, and F1 @5 increase by
281.2%, 136.1%, and 258.7% respectively using the BM25
method (Line 2, 3). Second, we find that the ‘text’ group has
better performance than the ‘code’ group. Comparing the ‘text’
group to the ‘code’ group, the P@5, R@5, and F1 @5 increase
by 162.4%, 127.6%, and 142.2% respectively using the BM25
method (Line 1, 2). It is reasonable as, in many cases, texts
and codes are complementary, and the combination of them
provides more retrievable information for the computational

3https://huggingface.co/microsoft/mpnet-base
4https://www.sbert.net/
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TABLE IV
PERFORMANCE OF MODELS WITH DIFFERENT INDEXING CONTENTS. P@Fk: precision@k; R@k: recall@Qk, k = 5,10. SBERT1:
SENTENCE-TRANSFORMERS/MULTI-QA-MPNET-BASE-DOT-V1; SBERT2: SENTENCE-TRANSFORMERS/ALL-MPNET-BASE-V2. ‘TEXT’ STANDS FOR USING
ONLY TEXTUAL CONTENTS FOR INDEXING, ‘CODE’ FOR ONLY CODES, ‘TEXT+CODE’ FOR THE CONCATENATION OF TEXTS AND CODES. UNDERLINE
MARKS THE BEST RESULTS WITHIN THE SAME CONTENT GROUP.

No. Method Content P@s R@5 F1@5 NDCG@5 P@10 R@10 F1@l10 NDCG@10

0 - Ideal 0.6851  0.9046  0.7073 - 0.4191  0.9856  0.5356 -

1 text 0.1787  0.2317  0.1843 0.4881 0.1426  0.3530  0.1872 0.5026
2 BM25 code 0.0681 0.1018 0.0761 0.2196 0.0553  0.1392  0.0742 0.2403
3 text+code  0.2596  0.3422  0.2730 0.5584 0.1915 0.5078  0.2593 0.5720
4 text 0.1787  0.2714  0.1927 0.4462 0.1298  0.3659  0.1761 0.4686
5 SBERT1  code 0.0936  0.1248  0.0951 0.2499 0.0660 0.1480  0.0802 0.2674
6 text+code  0.1872  0.2755  0.2021 0.4965 0.1426  0.3961  0.1948 0.5287
7 text 0.2043  0.3020 0.2217 0.5569 0.1426  0.3855  0.1909 0.5629
8 SBERT2  code 0.0723  0.1021  0.0761 0.1967 0.0660 0.1482  0.0829 0.2388
9 text+code  0.2213  0.3153  0.2356 0.5958 0.1553  0.4080  0.2084 0.5764

notebooks. Hence, both text and code should be exploited to
better represent the computational notebooks.

2) Dense retrieval model performance (RQ2): We further
investigate the effectiveness of dense retrieval models com-
pared to the BM25 method using controlled indexing contents
and report the results in Table The results suggest that
when using uni-modal data for indexing, i.e., text or code,
dense retrieval models consistently outperform BM?25. But
BM?2S5 tends to work better when using bi-modal data.

On the one hand, two dense retrieval models beat BM25
on all reported metrics under the ‘text’ and ‘code‘ groups.
Under the ‘text® group, compared with BM25, SBERT?2 sees
increases of 14.3%, 30.3%, and 20.3% in terms of P@5,
R@5, and F1@5 respectively (Line 1, 7). Under the ‘code‘
group, compared with BM25, SBERT1 sees increases of
37.4%, 22.6%, and 25.0% in terms of P@5, R@5, and F1@5
respectively (Line 2, 5). The improvement of dense retrieval
models compared with the BM25 method likely stems from
the models’ semantic representation of input data, which maps
semantically similar sentences to closer places in a high-
dimensional vector space, whereas BM25 matches words in
a lexical manner. On the other hand, under the ‘text+code*
group, BM25 surpasses dense retrieval models w.rt. P@E,
R@k and F1@k, kK = 5,10. It implies that dense retrieval
models are effective on single data modality, but applying them
in computational notebook search tasks requires extra effort.

3) Effectiveness of the fusion method (RQ3): To examine
the effectiveness of the fusion strategy and the effect of model
selection for retrieval performance, we compare three variants
of fused models, i.e., SBERT1+SBERT2, BM25+SBERT1,
and BM25+SBERT?2, applied on ‘text+code’ contents. The
first method combines two dense retrieval models, while the
last two coalesce a sparse retrieval model with a dense retrieval
model. We show the results in Table They illustrate that
incorporating a sparse retrieval model to form a keyword-
aware retrieval method can significantly boost the performance
of dense retrieval models. However, the fusion of two dense

retrieval models does not improve and even impairs the
performance compared to using a single dense retrieval model.
The sparse-dense fused model gains the best performance for
top-5 retrieved results.

First, both dense models achieve large performance in-
creases when combined with the BM25 model. Compared
with SBERT1 only, BM25+SBERT1 shows 42.1% and 12.5%
raises on F1@k, for £ = 5,10 respectively (Line 2, 5).
Compared with SBERT?2 only, BM25+SBERT?2 also manifests
a performance improvement of 13.8% on F1@5 and 9.3%
on F1@10 (Line 3, 6). In contrast, the SBERT1+SBERT2
combination causes a performance drop compared with each
individual model (Line 2, 3, 4). Second, BM25+SBERT1 is the
best-performed model over the top-5 retrieved computational
notebooks. Compared with BM25, the P@5, R@5, F1@5
and NDCG@5 increase by 4.9%, 9.0%, 5.2% and 9.3%,
respectively (Line 1, 5). An exception is P@10, R@10 and
F1@10, the reason why the scores are low in metrics@ 10
could be that dense retrieval models introduce more irrelevant
computational notebooks in the top-10 results. It provides the
community with an opportunity to develop more effective
fusion strategies for sparse and dense retrieval models to
leverage the full set advantages of both models. Table
shows top-3 ranking examples for the query “visual saliency”
with BM25(text+code) and BM25+SBERT 1(text+code) meth-
ods. Due to the page limit, we only display descriptive texts.
Readers can access the whole computational notebooks via
given URLs. Compared with BM25, the fused model of BM25
and SBERT1 improves the ranking by shifting relevant results
one spot higher. Although it does not change the precision and
recall for top-3 retrieved results, it prevents the frustration of
seeing irrelevant computational notebooks on the top.

One common phenomenon in the experimental results is
the decreased performance of P@k when k increases from 5
to 10, also seen in the ideal situation (Line O in Table [[V).
This is because the average number of relevant computational
notebooks in the evaluation dataset is 208/47 =~ 4.4 < 5, and



TABLE V
COMPARISON OF DIFFERENT METHODS USING ‘TEXT+CODE‘ INDEXING CONTENTS.

No. Method P@s R@5 F1@5 NDCG@5 P@10 R@10 F1@l10 NDCG@10
1 BM25 0.2596  0.3422  0.2730 0.5584 0.1915  0.5078  0.2593 0.5720
2 SBERT1 0.1872  0.2755  0.2021 0.4965 0.1426  0.3961  0.1948 0.5287
3 SBERT2 0.2213  0.3153  0.2356 0.5958 0.1553  0.4080  0.2084 0.5764
4 SBERT1+SBERT2  0.1787  0.2668  0.1946 0.4954 0.1319  0.3834  0.1818 0.5368
5 BM25+SBERT1 0.2723  0.3729  0.2872 0.6102 0.1660 0.4234  0.2191 0.6105
6 BM25+SBERT2 0.2553  0.3381  0.2682 0.5808 0.1723 04241  0.2277 0.5754
TABLE VI

EXAMPLES OF RETURNED COMPUTATIONAL NOTEBOOKS FOR QUERY “VISUAL SALIENCY SALIENCY”

Method Rank Top-k ranked computational notebook

relevance

DeepGaze Il and ICF

1 https://github.com/sammy- w/visual_saliency/blob/main/deep_gaze/Demo.ipynb 0

BM25

This notebook demonstrates how to load and use the DeepGaze II and ICF models. ...

text+code - — - -
( ) Visualizing neural network with visual_keras

2 https://github.com/ellolo/visual-keras/blob/master/example_usage.ipynb 2
This notebook provides examples of how to use the _visual__keras_ library to visualize neural network ...

Seeing is believing

notebook.ipynb

https://github.com/davidGCR/VisualizeSaliency/blob/master/flashtorch- master/presentations/Hopperx 1 London/

Using FlashTorch to shine a light on what neural nets “see” ...

Visualizing neural network with visual_keras

1 https://github.com/ellolo/visual-keras/blob/master/example_usage.ipynb 2

BM25+SBERT1

This notebook provides examples of how to use the _visual__keras_ library to visualize neural network ...

(text+code) Seeing is believing

https://github.com/davidGCR/VisualizeSaliency/blob/master/flashtorch- master/presentations/Hopperx 1 London/

2 notebook.ipynb

Using FlashTorch to shine a light on what neural nets “see” Evolved in response to a desire to make neural

nets ...

Find visual saliency in uncompressed videos

3 https://github.com/Dimitri78000/Neural_network_saliency/blob/master/Keras_saillancy.ipynb 0
Dimitri LEURS and Khalil GHETARI framed by mihai MITREA. ...

thus the increase in the number of retrieved results will likely
hamper the model precision. This also causes a prevalently
higher R@Fk than P@F because the precision is more bounded
than the recall by the small number of relevant computational
notebooks associated with evaluation queries.

VI. CONCLUSION AND FUTURE WORK

With the Jupyter Notebook environment widely adopted
in data science, there is an increasing amount of compu-
tational notebooks created and published on the web [32].
Scientists can reuse these resources to reduce laborious work
and expedite scientific innovations. However, finding relevant
computational notebooks is challenging due to the complexity
of researchers’ information needs and the multi-modal nature
of computational notebooks. In this paper, we propose DeCNR
to increase the discoverability of external computational note-
books via a fusion-based approach that combines BM25 and
SBERT for computational notebooks ranking. Experimen-
tal results suggest that the proposed system can effectively
retrieve semantically relevant computational notebooks, and
the fusion-based model outperforms baseline models when
evaluated on top-5 retrieved results.

Our bi-modal approach—considering both text and code
within computational notebooks—addresses the inherent com-
plexity and interplay of these two components. Notably, this
approach has the potential to be extended beyond computa-
tional notebooks to encompass broader forms of data, such as
code scripts and documentation. The proposed computational
notebook search system is a great effort to improve the
research environment, which relies heavily on commercial
tools and open-domain retrieval techniques. Experimental re-
sults suggest that the proposed system can effectively retrieve
semantically relevant computational notebooks, and the fused
model outperforms baseline models when evaluated on top-5
retrieved results. Besides, the dataset developed for assessing
computational notebook retrieval models fills an important gap
in the research community. It enables convenient comparison
between different methods and tracking of development in the
field of computational notebook retrieval.

Nevertheless, we admit that there are still limitations in
this work. We apply the dense retrieval models in a zero-shot
manner, which may be a suboptimal solution towards the com-
putational notebook search problem. Optimizing such models
usually requires a large amount of labeled data, posing a


https://github.com/sammy-w/visual_saliency/blob/main/deep_gaze/Demo.ipynb
https://github.com/ellolo/visual-keras/blob/master/example_usage.ipynb
https://github.com/davidGCR/VisualizeSaliency/blob/master/flashtorch-master/presentations/Hopperx1London/notebook.ipynb
https://github.com/davidGCR/VisualizeSaliency/blob/master/flashtorch-master/presentations/Hopperx1London/notebook.ipynb
https://github.com/ellolo/visual-keras/blob/master/example_usage.ipynb
https://github.com/davidGCR/VisualizeSaliency/blob/master/flashtorch-master/presentations/Hopperx1London/notebook.ipynb
https://github.com/davidGCR/VisualizeSaliency/blob/master/flashtorch-master/presentations/Hopperx1London/notebook.ipynb
https://github.com/Dimitri78000/Neural_network_saliency/blob/master/Keras_saillancy.ipynb

significant challenge for research-oriented computational note-
book search tasks. Moreover, we did not explicitly measure
the quality of computational notebooks, which may impact
the usefulness of the retrieved results. In the future, we will
improve the system by introducing computing-related factors
into computational notebook ranking, e.g., the executability
of computational notebooks/cells and execution time. We will
also explore graph-based computational notebook search and
recommendation, which leverage the common components
within the computational notebooks, e.g., models, datasets,
and libraries, to connect computational notebooks. It will
potentially provide researchers with high-quality (importance
assessment via graph analysis) and personalized (considering
the available resources of users) computational notebooks.
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