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Abstract—The rapid growth of scientific software development
has led to the emergence of large and complex codebases, making
it challenging to search, find, and compare software reposi-
tories within the scientific research community. In this paper,
we propose a solution by leveraging deep learning techniques
to learn embeddings that capture semantic similarities among
repositories. Our approach focuses on identifying repositories
with similar semantics, even when their code fragments and
documentation exhibit different syntax. To address this challenge,
we introduce two complementary open-source tools: RepoSim
and RepoSnipy. RepoSim is a command-line toolbox designed
to represent repositories at both the source code and documenta-
tion levels. It utilizes the UniXcoder pre-trained language model,
which has demonstrated remarkable performance in code-related
understanding tasks. RepoSnipy is a web-based neural semantic
search engine that utilizes the powerful capabilities of RepoSim
and offers a user-friendly search interface, allowing researchers
and practitioners to query public repositories hosted on GitHub
and discover semantically similar repositories. RepoSim and
RepoSnipy empower researchers, developers, and practitioners
by facilitating the comparison and analysis of software reposito-
ries. They not only enable efficient collaboration and code reuse
but also accelerate the development of scientific software.

Index Terms—semantic similarity, code search, code under-
standing, embeddings, pre-trained language models, GitHub.

I. INTRODUCTION

The advent of increasingly powerful and affordable comput-
ing has revolutionized scientific and scholarly discovery across
diverse fields [1]. This transformation is closely tied to the
rapid growth of software, which has given rise to expansive
and intricate codebases comprising thousands of source code
files [2]. Within the scientific research community, researchers
are increasingly sharing repositories of code related to their
research papers, aiming to amplify the reach and influence of
their work [3].

The ability to detect similar repositories is of paramount
importance in various aspects of scientific research. Firstly,
it facilitates code reuse, allowing researchers to leverage
existing solutions and build upon them, leading to increased
productivity and efficiency [4]. Additionally, identifying al-
ternative implementations of algorithms and methods can aid
in validation and comparison of results, promoting robustness
and transparency in research practices [5]. Exploring related
research projects through repository comparison offers signif-
icant advantages to researchers, Research Software Engineers

(RSEs), and the scientific community. By engaging in repos-
itory comparison, researchers can obtain valuable insights,
discover innovative approaches, promote knowledge exchange,
and foster collaborations within the scientific community [6] .
This practice aligns with the ’collaboration’ pillar of Research
Software Engineers, facilitating the sharing of best code prac-
tices [7]. As well, repository comparison also plays a crucial
role in enhancing software citation [8]. Researchers have the
opportunity to identify relevant work and projects in their
field, leading to a more comprehensive and interconnected
software ecosystem. By recognizing and citing these related
repositories, researchers contribute to the acknowledgment and
visibility of the underlying software projects that support their
research endeavors.

Moreover, the detection of code theft and plagiarism is a
critical concern in the scientific research landscape. Comparing
repositories can help identify instances of inappropriate code
reuse and ensure the integrity of scientific contributions [9].
Furthermore, rapid prototyping and finding projects for col-
laboration are facilitated by the ability to locate repositories
with similar functionality and research objectives. However,
searching for, finding,and comparing software from scientific
communities can be a challenging task [10].

To address the challenge of effectively representing and
comparing software repositories, this study explores the appli-
cation of deep learning techniques to learn embeddings that
capture semantic similarities among repositories. Our focus is
on identifying repositories with similar semantics, even when
their code fragments and code documentation exhibit different
syntax. While our current investigation is focused on Python
repositories, our approach is extensible to other languages.

In this paper, we propose two complementary open-source
solutions. The first solution, RepoSim, is a command-line
toolbox that leverages embeddings to represent Python repos-
itories at two levels: source code and documentation (doc-
strings). The second solution, RepoSnipy, is a web-based
neural semantic search engine built upon the capabilities of
RepoSim. By utilizing inspect4py [11], a static code
analysis framework, RepoSim automatically extracts key
features from Python software, including code and docstrings.
To generate our embeddings, we have selected the pre-trained
language model UnixCoder [12], which has shown superior



performance in various code understanding tasks such as clone
detection and code search.

By leveraging RepoSim and RepoSnipy, researchers and
developers can benefit from accelerated software develop-
ment in several ways. Firstly, these tools facilitate efficient
collaboration by allowing users to discover and explore ex-
isting repositories, which can serve as valuable resources
and references for new projects. Secondly, by building upon
existing solutions and leveraging shared code, developers can
significantly reduce development time and effort, accelerating
the overall software development process. Reusing pre-existing
code also ensures the reuse of reliable and tested implementa-
tions, leading to faster and more robust software development.

The remainder of the paper is structured as follows. Sec-
tion II presents background on technologies relevant for
this work. Section III details the features of the RepoSim
command-line tool. Section IV gives an overview of the main
features of the RepoSnipy neural search engine. Finally,
section V summarises related work, and section VI concludes
with a summary of achievements and future work.

II. BACKGROUND

In the following sections, we look into the background work
that is inherently established in this paper.

A. inspect4py

inspect4py [11] is a robust static code analysis frame-
work specifically designed to facilitate comprehension of
Python software repositories. By analyzing and extracting
crucial information such as functions, classes, methods, docu-
mentation, dependencies, call graphs, and control flow graphs,
inspect4py empowers developers to gain a deeper understand-
ing of the repository’s structure. It enables us to identify the
software type (library, package, service) and its usage (soft-
ware invocation), thus enhancing repository comprehension.
inspect4py parses repositories into Abstract Syntax Trees
(ASTs), and enhaces machine readability by extracting:

• Documentation for functions and methods
• Source Code and AST of functions & methods
• Call list
• Licence(s), Readme, Starts, Topics
• File hierarchy
• Dependencies and requirements
• Analyze the previous data with heuristics for test detec-

tion, software type, and invocation
Using inspect4py, RepoSim leverages its capabilities

to extract essential components from a given repository. This
includes code and docstrings of functions and methods, as
well as other pertinent details such as licenses, topics, and
stars. In Section III we delve into the detailed process of how
RepoSim uses inspect4py. Note that topics are labels that
create subject-based connections between GitHub repositories
and let developers explore projects by type, technology, and
more. While a star in GitHub signifies the external recognition
and interest of a repository from other users.

B. Language Models and Transformers

Natural language processing models have revolutionized
computers’ capabilities to read, speak, and comprehend human
languages. Among the state-of-the-art models, the Transformer
architecture has demonstrated remarkable advancements [13].
However, the scope of these models extends beyond human
language and can be expanded to incorporate abstract syntax
trees, enabling them to understand and compare code.

C. Code Search: Cross-Encoder and Bi-Encoder Paradigms

Code search encompasses the process of querying a corpus
of code samples to retrieve relevant codes based on either
code-to-code or text-to-code similarity. In code-to-code search,
the query itself is a code sample, while in text-to-code search,
the query is a natural language sentence. The objective is to
identify matching codes in the search corpus that correspond
to the query. This process is commonly categorized into two
tasks: the code-search task for text-to-code search and the
clone-detection task for code-to-code search. The code-search
task aims to locate codes in the search corpus that are relevant
to the given natural language query, while the clone-detection
task focuses on identifying code clones within the search
corpus that resemble the provided code sample query

There are mainly two paradigms of model architecture in
existing deep learning code search methods: cross-encoder and
bi-encoder [14]. As described in Figure 1, cross-encoders
perform full- attention over the input pairs of query and
code, while bi-encoders map each input (query or code)
independently into a dense vector space. Note that in Figure 1,
the query can be both, a code sample (clone-detection task)
or a natural language sentence (code-search task).

Bi-enconders calculates the embeddings for both, query and
code, which can be stored. While cross-enconders do not
generate embeddings for those, they produce an output value
between 0 and 1 indicating their similarity.

Fig. 1: The concept diagram of bi-encoder and cross- encoder
code search architecture. Bi-encoder models are fast as the
code embeddings can be pre-calculated offline. While cross-
encoder models perform full-attention over the input pair of
query and code, which could gain more information.

The trade-off of efficiency and effectiveness also exist
between these two paradigms: cross-encoders achieves better
accuracy than bi-encoders. As the code embeddings can be
pre-calculated and stored, bi-encoders are more efficient than
cross-encoders. However, for many applications, including



repository similarity, cross-encoders are not practical as they
cannot produce separate embeddings for effective comparing.

In summary, bi-encoder architecture is fast, but less accu-
rate, while cross-Encoder is more accurate, but slow. Given,
that we are interested to compare the similarity or repositories
based in their functions code and docstrings, which might
contain large number of functions we have selected the bi-
encoder architecture for this work. In the future, we plan to
combine both strategies.

D. UnixCoder Language Model

UnixCoder [12] is a transformer-based model specifically
designed to convert Abstract Syntax Trees (ASTs) into se-
quence text representations [15]. In order to enhance the se-
mantic representation of code fragments through embeddings,
the authors introduced two pre-training tasks: multi-modal
contrastive learning (MCL), which leverages ASTs to ac-
quire comprehensive code semantic representations, and cross-
modal generation (CMG), which aligns embeddings across
different programming languages using code comments.

Through rigorous experimentation presented in the pa-
per [12], UnixCoder surpasses previous state-of-the-art mod-
els, including CodeBERT [16], GraphCodeBERT [17], SYN-
COBERT [18], and CodeT5 [19], in various code-related
understanding tasks such as code search and clone detec-
tion. Given UnixCoder’s exceptional performance in extracting
code semantic information and its versatility across multiple
programming languages, we have chosen it as the model of
choice for generating code and docstring embeddings within
RepoSim (see Sections III-B and III-C).

III. REPOSIM TOOLBOX

This work focuses on addressing the challenge of comparing
software repositories that share a similar objective but may
have different implementations. While their source code and
documentation (docstrings) may exhibit different syntax, they
possess similar semantics. Thus, we propose comparing repos-
itories based on their source code and docstrings.

We present in this paper RepoSim1, a novel deep-learning
command-line tool. It is designed to assess the semantic sim-
ilarity of repositories by analyzing their code and docstrings.
RepoSim operates through the following steps:

1) Utilizing inspect4py, it extracts the source code
and docstrings of all functions and methods within
a repository. Additionally, it gathers relevant metadata
information such as topics, stars, and licenses

2) By employing a fine-tuned UniXCoder language model
(see Section III-B) it obtains code embeddings for each
function and method (code-level). These embeddings are
then averaged to compute the code-mean embedding
representing a repository at source code level.

3) Leveraging a fine-tuned UniXCoder language model (see
Section III-C) it generates embeddings for each doc-
string (docstring-level). Then it computes the docstring-

1https://github.com/RepoAnalysis/RepoSim

mean embedding, which represents a repository at doc-
umentation level.

4) To determine the similarity scores between two reposito-
ries, RepoSim computes the cosine similarities of their
code and docstrings.

Fig. 2: RepoSim general model diagram including both
embeddings representations: based on code and docstrings.

The diagram illustrating the RepoSim model can be seen in
Figure 2. It is important to note that RepoSim only encodes
each function and docstring once, enabling swift comparisons
between repositories.

Figure 3 illustrates an example usage of RepoSim for
comparing two or more repositories. The tool accepts GitHub
repositories as input in the format of <owner>/<repo>
(e.g., keon/algorithms), allowing the comparison of multiple
repositories simultaneously. RepoSim generates a pickle file,
<output dir>/output.pkl, which contains essential information
such as the repositories’ names, topics, licenses, and stars. Ad-
ditionally, it includes the code and docstrings embeddings for
each repository. Moreover, when the ’–eval’ flag is specified,
RepoSim saves a csv file, <output dir>/eval res.csv, which
presents the similarity scores between pairs of repositories at
both the code and docstrings levels. This file provides a com-
prehensive overview of the similarities across the repositories.

python repo_sim.py --input keon/algorithms
prabhupant/python-ds --output ./outputdir --eval

Fig. 3: RepoSim usage example to compare two repositories:
keon/algorithms 2 and prabhupant/python-ds3.

After generating the code-mean and docstring-mean embed-
dings of a repository using RepoSim, these embeddings can
be visualized using the 2D t-SNE [20] algorithm. t-SNE is
a dimension reduction technique that maps high-dimensional
embeddings into two dimensions, enabling visualization.

Figure 4 illustrates the projection of code-mean embeddings
for a collection of Python repositories, created with RepoSim.
By examining the visualization, we can observe that reposi-
tories belonging to the same topic tend to cluster together,
indicating their proximity in the embedding space. This visu-
alization provides insights into the semantic relationships and
similarities among repositories based on their code semantics.

A. Fine-tuning UnixCoder Models

In this work, our focus lies on the fine-tuned Unixcoder
models for code-related understanding tasks such as code-
search and clone-detection, as presented in [12]. However, the



Fig. 4: 2D TSNE projection of repositories RepoSim code-
mean embeddings. Markers represent repositories. Colors rep-
resent topics (e.g. algorithms, security, cli tools, etc.).

base model provided by the authors through Hugging Face 4

lacks any fine-tuning tasks. To address this, we conducted our
own fine-tuning process following the instructions outlined
in 5, utilizing the AdvTest dataset [21]. The AdvTest dataset
comprises 280,634 pairs of (documentation, function) sourced
from CodeSearchNet [22]. Notably, the dataset normalizes
Python function and variable names to enhance the testing
of model understanding and generalization capabilities.

Our fine-tuning efforts yielded two models: unixcoder-code-
search and unixcoder-clone-detection. Each model required
approximately 6 hours to complete the fine-tuning process on
an NVIDIA A40 GPU server.

B. Code-level Embeddings

To determine the most suitable model for generating code-
level embeddings in RepoSim, we conducted a performance
comparison (see Section III-E)) among our UnixCoder fine-
tuned models. Based on the results of this evaluation, we
selected the fine-tuned UnixCoder model specifically designed
for code search (unixcoder-code-search). RepoSim utilizes
the mean of these embeddings to generate a code-mean em-
bedding. The resulting embedding has a dimensionality of 768,
capturing the essence of the repository’s code representation.

C. Docstring-level Embeddings

In the process of selecting the appropriate model for
generating docstring-level embeddings in RepoSim, we ex-
plored a variety of well-known and high-performing pre-
trained sentence transformer models (refer to Table I). Through
performance evaluation (see Section III-E), we found that
the UnixCoder fine-tuned model, specifically developed for
the code search task, demonstrated the best performance
for docstring-level embeddings. Given its effectiveness, we
have selected the unixcoder-code-search model to generate

4unixcoder-base
5https://github.com/microsoft/CodeBERT/tree/master/UniXcoder/

downstream-tasks/code-search#1-advtest-dataset-2

docstring-level embeddings in RepoSim. Following a similar
approach as with code-level embeddings, RepoSim utilizes
this model to create docstring embeddings for each repository.
By computing the mean of these embeddings, a single doc-
string embedding (docstring-mean embedding) is generated to
represent the repository at the documentation level, with a
dimensionality of 768.

D. RepoSim Hugging Face Pipeline

We have also created a new RepoSim Hugging Face
pipeline 6, that implements the steps outlined in Figure 2.

(a) Initialisation of the pipeline

(b) Specification of one (or multiple) repositories.
Here we want to generate the embeddings for
lazyhope/python-hello-world repository.

(c) Output generated by our pipeline
.

Fig. 5: RepoSim Hugging Face pipeline.

Hugging Face pipelines provide a user-friendly approach
to utilize models hosted on the Hugging Face Model Hub,
encapsulating the necessary components for text inference
within a simple interface. Specifically, this pipeline allows for
the automatic generation of code and docstring embeddings for
any Python repository on GitHub. It can be employed indepen-
dently and is currently utilized by the RepoSim command-
line tool. Figure 5 showcases an example of how to effortlessly
generate embeddings using this pipeline for GitHub Python
repositories. The process involves an initialization step (as
depicted in 5a) to load our model LazyHope/RepoSim,

6https://huggingface.co/Lazyhope/RepoSim



and subsequently use it (as shown in Figure 5b) to generate
repository embeddings, along with other pertinent information,
as illustrated in Figure 5c.

E. RepoSim Evaluation

We conducted an extensive evaluation of various models to
determine their suitability for integration into RepoSim. For
code-level embeddings, we selected the two UnixCoder mod-
els fine-tuned in this study, namely unixcoder-code-search and
unixcoder-clone-detection (see Section III-B). For docstring-
level embeddings, we not only chose these two models but
also included the following ones: all-mpnet-base-v2 7, all-
distilroberta-v1 8, paraphrase-multilingual-mpnet-base-v2 9,
allenai-specter 10, gsarti/scibert-nli 11, and pritamdeka/S-
Scibert-snli-multinli-stsb 12. These are pre-trained language
models designed to generate document-level embeddings.

To evaluate the performance of these models, we utilized
the awesome-python [23], which comprises over 500 Python
repositories classified into different topics such as Algorithms,
Audio, Authentication, Job Scheduler, Natural Language Pro-
cessing, and Machine Learning. It is important to note that
each repository in this dataset has been assigned a single topic
for categorization purposes.

Fig. 6: Dataframe with pairs of awesome-python repositories
and their topics. topic1 column represents the topic of repo1,
while topic2 column represents the topic of repo2.

Figure 6 displays a dataframe containing pairs of repos-
itories from our dataset, along with their respective topics.

7https://huggingface.co/sentence-transformers/all-mpnet-base-v2
8https://huggingface.co/sentence-transformers/all-distilroberta-v1
9https://huggingface.co/sentence-transformers/

paraphrase-multilingual-mpnet-base-v2
10https://huggingface.co/allenai/specter
11https://huggingface.co/gsarti/scibert-nli
12https://huggingface.co/pritamdeka/S-Scibert-snli-multinli-stsb

Specifically, the first five rows showcase the boto/boto3
repository13, labeled with the topic Third-party Apis, alongside
other repositories and their corresponding topics.

To evaluate the effectiveness of different models in generat-
ing code and docstring embeddings, we conducted a series of
experiments 14 in which we modified RepoSim accordingly.
For these experiments, we utilized the awesome-python dataset
as the ground truth for determining semantically similar repos-
itories. If two repositories are categorized under the same
topic, their embeddings should exhibit similarity, with their
cosine similarity approaching one.

Figure 7 provides an example, illustrating the computed co-
sine similarities between repository pairs (e.g., boto/boto3
and gorakhargos/watchdog in row zero) using different
models. Since both UnixCoder fine-tuned models are em-
ployed at the code and docstring levels, we distinguish their
cosine similarity results as follows: unixcoder-code-search-
funcs and unixcoder-clone-detection-funcs for code-level sim-
ilarity; and unixcoder-code-search-docs and unixcoder-clone-
detection-docs for docstring-level similarity.

Fig. 7: Dataframe with pairs of awesome-python repositories
and their cosine similarities using different models.

To ensure the performance of the evaluated models, we em-
ployed the Receiver Operating Characteristic (ROC) curve and
Area Under Curve (AUC) metrics [24]. The ROC curve pro-
vides a graphical representation of the classification model’s
performance at different classification thresholds. It plots the
true positive rate (TPR) on the y-axis against the false positive
rate (FPR) on the x-axis. The AUC score, on the other hand,
quantifies the degree of separability achieved by the model.
A higher AUC score indicates a better ability to predict true
positives and true negatives

Figure 8 depicts the ROC curves for the selected mod-
els, demonstrating that the UnixCoder model fine-tuned
on code search (unixcoder-code-search-funcs) and docstrings
(unixcoder-code-search-docs) outperform the others. Table I
provides an overview of the corresponding AUC scores for
these models at both levels. The evaluation results clearly indi-
cate that our UnixCoder model, fine-tuned on the code search
task, exhibits superior performance in comparing similarities
between repository source code and documentation.

Upon closer analysis, the superiority of the unixcoder-code-
search model over the unixcoder-clone-detection model in
detecting code and docstrings repositories similarities can be
attributed to their divergent training objectives. The unixcoder-
code-search model undergoes fine-tuning specifically for code
search tasks, which encompass a wider range of similarity.
This model is trained to comprehend the semantic nuances of

13https://github.com/boto/boto3
14https://github.com/RepoAnalysis/RepoSim/blob/main/notebooks/

BiEncoder/Embeddings evaluation.ipynb
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Receiver Operating Characteristic of different models

unixcoder-code-search-funcs (AUC = 0.858)
unixcoder-code-search-docs (AUC = 0.844)
unixcoder-clone-detection-funcs (AUC = 0.792)
all-mpnet-base-v2 (AUC = 0.745)
all-distilroberta-v1 (AUC = 0.714)
unixcoder-clone-detection-docs (AUC = 0.696)
paraphrase-multilingual-mpnet-base-v2 (AUC = 0.674)
allenai-specter (AUC = 0.661)
pritamdeka/S-Scibert-snli-multinli-stsb (AUC = 0.642)
gsarti/scibert-nli (AUC = 0.582)

Fig. 8: ROC curves for repository similarity comparison. Each
line represent a model from Table I.

code, contributing to its exceptional performance. These fac-
tors collectively bolster its capacity to identify resemblances
among diverse codebases, rendering it more appropriate for
RepoSim’s code and docstring similarity detection tasks. As
a result, we have selected the unixcoder-code-search model for
generating code-level and docstring-level embeddings (steps 2
and 3) in RepoSim, including our RepoSim Hugging Face
pipeline (see Section III-D).

Model AUC
Docstring Code

gsarti/scibert-nli 58.2 —
pritamdeka/S-Scibert-snli-multinli-stsb 64.2 —

allenai-specter 66.1 —
paraphrase-multilingual-mpnet-base-v2 67.4 —

all-distilroberta-v1 71.4 —
all-mpnet-base-v2 74.5 —

unixcoder-clone-detection 79.2 69.6
unixcoder-code-search 84.4 85.8

TABLE I: AUC models scores at code and docstrings levels.

In Figure 9, we showcase the outcomes achieved by em-
ploying the selected model in RepoSim, revealing the top
five repositories with the highest similarity scores identified
from our dataset at both the code and docstring levels. As
depicted in the figure, the repositories lepture/authlib
and idan/oauthlib exhibit the highest similarity score.
These repositories share numerous common features, indicat-
ing significant similarities:

• Similar Functionality: Both lepture/authlib and
idan/oauthlib are Python libraries that provide func-
tionality related to OAuth implementation. They offer
features such as handling OAuth requests, managing
OAuth clients and servers, and supporting various OAuth
versions and extensions. This similarity in functionality
increases the likelihood of similar code and docstrings

• Shared Domain Knowledge: The developers of
lepture/authlib and idan/oauthlib likely
have a deep understanding of OAuth and related
concepts. They possess domain-specific knowledge,
best practices, and standards for implementing OAuth
functionality. This shared expertise results in similar code
patterns, design decisions, and docstring conventions
across both repositories.

• Common Design Patterns: OAuth implementation often
involves following established design patterns and spec-
ifications. Both repositories may adopt similar design
patterns and adhere to OAuth standards, leading to com-
parable code structures and docstring formats. This shared
adherence to industry conventions contributes to the high
similarity scores.

• Overlapping Dependencies: lepture/authlib and
idan/oauthlib may rely on similar third-party li-
braries and dependencies. These shared dependencies can
result in similar code patterns, usage of common libraries,
and even similar docstring formats. The presence of
overlapping dependencies increases the likelihood of code
and docstring similarities.

Therefore, given the similarities in functionality, do-
main knowledge, design patterns, and dependencies between
lepture/authlib and idan/oauthlib, RepoSim
successfully identifies these commonalities, resulting in high
similarity scores for both code and docstrings.

Fig. 9: The five most similar repositories from the awesome-
python list. The results are sorted based on code similarity.

IV. REPOSNIPY NEURAL SEARCH ENGINE

In this paper, we also present RepoSnipy 15, an innovative
web-based neural search engine designed to improve the ex-
ploration and discovery of Python repositories. It is built upon
the solid foundation of RepoSim, which represents Python
repositories at both the source code and documentation levels.
Leveraging the fine-tuned UnixCoder models, RepoSnipy
enables users to query a public Python repository hosted on
GitHub, initiating a sophisticated search process that utilizes
neural network techniques to identify popular repositories with
high semantic similarity.

The front end of RepoSnipy is meticulously crafted using
the Streamlit library 16, providing an intuitive and visually ap-
pealing interface for users to interact with. Under the hood, the
repository embeddings generated by RepoSim are efficiently

15https://github.com/RepoAnalysis/RepoSnipy/tree/main
16https://streamlit.io



stored and managed using the docarray framework 17, ensuring
rapid retrieval and seamless handling of user queries.

A. DataSet

To ensure a comprehensive and diverse dataset for accurate
comparison of user queries, RepoSnipy relies on a meticu-
lously constructed repository dataset. This dataset serves as
the foundation of RepoSim, providing the repository data
against which user queries are compared. Its creation process
involved a systematic approach, leveraging the capabilities of
the GitHub API. Specifically, we focused on Python reposito-
ries hosted on GitHub, selecting repositories with a substantial
following defined by having over 300 stars. To ensure the
legitimacy and compliance of the repositories, we filtered out
those lacking a license tag, as licensing plays a vital role in
software distribution and usage rights.

This dataset comprises 9,702 Python repositories and was
carefully selected based on predefined criteria, ensuring a
diverse representation of domains, topics, and development
practices, thus providing a comprehensive sample for subse-
quent analysis and experimentation. The process of running
all embeddings on an RTX 4090 server took approximately
30 hours. Our dataset follows the following schema:

• repository name (type: str) in the format owner/name
• list of topics (type: List[str]) obtained from metadata

using the GitHub API,
• number of stars (type: int) at the time of running RepoSim
• license (type: str) of the repository
• code embedding (type: TorchTensor[768]), which repre-

sents the code-mean embedding of the repositor
• doc embedding (type: TorchTensor[768]), which repre-

sents the docstring-mean embedding of the repository.
To facilitate efficient indexing and retrieval of repository

information, we developed a custom method that leverages
the powerful capabilities of the RepoSim Hugging Face
pipeline (see Section III-D). This method seamlessly trans-
formed the list of repository names into embeddings, capturing
the inherent semantic information encoded within the repos-
itories’ source code and documentation. These embeddings
were subsequently integrated into a structured docarray index,
enabling streamlined storage and indexing of multimodal
data, including repository metadata and embeddings. For the
convenience of the research community and practitioners, we
have provided this facility in the RepoSnipy18 that enables
the creation of a custom index with user-specified repositories.
This facility would empowers users to tailor the dataset to their
specific needs and explore the functionality and performance
of RepoSnipy on their own curated set of repositories.

B. Architecture

RepoSnipy comprises several interconnected components
working together to provide the desired functionality. The
architecture can be divided into two main components: User
Interface (UI) and Backend.

17https://docs.docarray.org
18https://github.com/RepoAnalysis/RepoSnipy/blob/main/data/

1) User Interface (UI): The UI component is responsible
for providing an intuitive and user-friendly interface for inter-
acting with RepoSnipy. It allows users to enter their search
queries and displays the search results in a visually appealing
manner. In RepoSnipy, the Streamlit library is utilized to
create the front end of the web-based interface, providing an
interactive and responsive experience for users.

2) Backend: The Backend component is responsible for
processing user queries, retrieving relevant repositories from
the dataset, and computing their similarity scores. It consists
of several subcomponents:

• Query Processor: This subcomponent handles the pro-
cessing of user queries, including parsing and understand-
ing the query’s context and intent.

• Embedding Extractor: This subcomponent extracts em-
beddings from the repositories in the dataset. It utilizes
the RepoSim pipeline (see Section III-D) to convert
repository names into embeddings, enabling efficient
comparison and retrieval of similar repositories.

• Similarity Scorer: This subcomponent calculates the sim-
ilarity scores between user queries and the repositories in
the dataset. It employs advanced similarity metrics, such
as cosine similarity, to determine the semantic similarity
between queries and repositories.

• Ranking Module: The ranking module ranks the retrieved
repositories based on their similarity scores, ensuring that
the most relevant and similar repositories appear at the
top of the search results.

The architecture of RepoSnipy emphasizes the seamless
integration of these components to deliver an effective and
user-centric search experience. The UI component enables
users to interact with the system, while the Backend com-
ponent handles the query processing, similarity computation,
and ranking. The dataset introduced in Section IV-A serves as
the underlying data source, facilitating the comparison of user
queries against a diverse collection of Python repositories.

C. RepoSnipy Evaluation

We evaluated RepoSnipy’s performance using a similar
approach as in the evaluation of RepoSim. To assess simi-
larity, we considered shared topics between repositories as a
proxy, assuming that repositories with shared topics are more
likely to be similar. We conducted evaluations for both code
and docstring similarities. Initially, we filtered out repositories
(using the dataset introduced in Section IV-A without code
or docstring embeddings, resulting in 9,690 repositories for
analysis.

For each pair of distinct repositories, we calculated co-
sine similarity scores based on their code and docstring
embeddings, yielding 46,943,205 code similarity scores and
46,943,205 docstring similarity scores. Additionally, we iden-
tified shared topics between repositories (excluding ’python’
and ’python3’) and used this information as binary similarity
labels, resulting in 46,943,205 code similarity labels and
46,943,205 docstring similarity labels.



To assess the performance, we derived the ROC and AUC
scores using the binary labels and similarity scores. The
AUC score provides a single number summarizing the overall
performance of the ROC curve. In our evaluations, the ROC-
AUC scores for code and docstring embeddings were 0.84
and 0.809, respectively (Figure 10). These results indicate
that the embeddings produced by RepoSnipy (powered by
RepoSim) effectively distinguish between similar and dissim-
ilar repositories based on shared topics.

(a) ROC curve evaluating code embeddings. AUC is 0.84.

(b) ROC curve evaluating docstring embeddings. AUC is 0.809.

Fig. 10: RepoSnipy ROC curves.

Although shared topics do not guarantee similarity between
repositories, this evaluation method serves as a reasonable
proxy for similarity in the absence of manually labeled data.

D. RepoSnipy in Action

To demonstrate the power and effectiveness of
RepoSnipy, we invite users to access the tool at 19.
Upon entering a query repository, RepoSnipy dynamically

19https://huggingface.co/spaces/Lazyhope/RepoSnipy

evaluates the semantic similarity between the query and a
vast array of repositories, presenting users with a curated
selection of the most popular repositories that closely align
with their search intent.

Fig. 11: RepoSnipy User Interface.
To initiate a search in RepoSnipy, users can simply

enter a repository in the format of <owner>/<repo> (e.g.,
numpy/numpy). After submitting the search, RepoSnipy
rapidly processes the query and generates a list of search
results ranked by their similarity to the user’s query. Each
search result is presented as a repository card, displaying key
information such as repository name, similarity score, topics,
stars, and license. Figure 11 illustrates this search process.

Fig. 12: Obtaining the most similar repositories to CodeBert.

Fig. 13: Obtaining the most similar repositories to obspy.

Figures 12 and 13 showcase the search results for
CodeBert and obspy GitHub repositories, respectively,
representing different scientific domains. CodeBert focuses
on natural language processing (NLP) and code analysis,
offering a toolkit for training models to understand and process
code-related tasks. On the other hand, obspy is specifically
designed for seismology, providing an open-source Python
framework for processing, analyzing, and visualizing seismic
data. The similarity between the selected repositories and
their respective domains can be observed by inspecting their
associated topics.



Furthermore, RepoSnipy allows users to customize the
search results by selecting the desired number of repositories
to display in the table and choosing the columns to be shown.
This feature provides users with flexibility and control over
the information presented to them.

Finally the checkbox in RepoSnipy (‘Add/Update this
repo to the index’), when clicked by a user, triggers the action
of encoding the latest version of the selected repository and
adding or updating it in the index. This functionality ensures
that the search index in RepoSnipy remains up to date with
the latest changes and additions to the repository. Therefore,
users can access the most recent code and documentation when
searching for similar repositories, ensuring that the search
results reflect the most current state of the repository. This
feature is particularly useful in dynamic and evolving software
development environments, where repositories frequently un-
dergo updates and revisions.

V. RELATED WORK

In this section, we discuss the relevant work in the field of
Python repository representation and semantic search engines,
compare them with our proposed solutions.

A. Repo2vec

Repo2vec [25] is a widely recognized tool for learning
distributed representations of Java software repositories using
deep learning techniques. It leverages the Skip-gram model
to embed source code and documentation into continuous
vector representations. While Repo2vec primarily focuses on
generating embeddings for code and documentation, it lacks a
comprehensive command-line interface for repository analysis
and lacks a web-based search engine component.

In contrast, RepoSim, our command-line toolbox, repre-
sents Python repositories at both the source code and doc-
umentation levels. It provides a holistic solution for reposi-
tory analysis, enabling users to extract embeddings, compute
similarities, and perform various tasks through a command-
line interface. Moreover, RepoSnipy, built upon RepoSim,
adds a web-based neural semantic search engine that facilitates
efficient and intuitive repository search and retrieval.

B. Topical

Topical [26] is another tool that addresses the representation
of repositories, specifically focusing on topic modeling. It
utilizes Latent Dirichlet Allocation (LDA) to extract latent
topics from the textual content of repositories.

While Topical focuses on learning repository embeddings
from source code using attention, RepoSim and RepoSnipy
provide a more comprehensive and integrated solution for
repository analysis and retrieval. They incorporate both code
and docstring-level embeddings, offer a wide range of func-
tionalities, and provide a user-friendly web-based interface for
efficient repository search based on semantic similarity.

C. RepoPal

RepoPal 20 is a tool that focuses on repository recommenda-
tion by utilizing collaborative filtering techniques. It leverages
repository metadata, user activity, and collaborative filtering
algorithms to provide personalized recommendations to users.
While RepoPal is valuable for recommendation purposes, it
does not address the fine-grained similarity analysis required
for comprehensive repository exploration.

In contrast, RepoSim, our command-line toolbox, pro-
vides functionalities beyond recommendation, allowing users
to explore and analyze repositories based on their code and
docstring similarities. RepoSnipy, built upon RepoSim,
extends these capabilities by offering a web-based search
engine that enables users to query public Python repositories
hosted on GitHub and find semantically similar repositories.
The combination of RepoSim and RepoSnipy offers a
powerful solution for repository exploration and retrieval.

D. CrossSim

CrossSim [4] aims to identify similar software repositories
based on various software engineering artifacts, including
source code, issue tracking data, and developer collaboration
patterns. It leverages a combination of textual similarity mea-
sures, graph-based similarity, and topic modeling techniques
to compute similarity scores between repositories

CrossSim, RepoSim, and RepoSnipy address different
aspects of repository analysis and retrieval. CrossSim focuses
on similarity analysis across multiple software engineering
artifacts, while RepoSim, and RepoSnipy specifically target
Python repositories, providing specialized tools for code and
documentation analysis.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced two novel open source tools,
RepoSim and RepoSnipy, that contribute to the scientific
software community by enabling the comparison and analy-
sis of software repositories, specifically focusing on Python
repositories. RepoSim serves as a command-line toolbox
for representing Python repositories at the source code and
documentation levels, while RepoSnipy is a web-based
neural semantic search engine built upon RepoSim.

The introduction of RepoSim and RepoSnipy brings sev-
eral significant benefits to the scientific software community.
Firstly, RepoSim provides researchers and developers with
a comprehensive set of functionalities to extract embeddings,
compute similarities, and perform various analysis tasks on
Python repositories. This allows for a deeper understanding of
code similarities, semantic relationships, and documentation
comprehension, which are crucial for code reuse, collabora-
tion, and software maintenance.

Furthermore, RepoSnipy extends the capabilities of
RepoSim by offering a user-friendly web-based interface
for querying public Python repositories hosted on GitHub
and finding semantically similar repositories. This empowers

20https://github.com/Qualia-Li/RepoPal



researchers and practitioners to quickly identify relevant repos-
itories for their specific development needs, saving time and
effort in discovering existing solutions and best practices. The
integration of neural network models and advanced natural
language processing techniques in RepoSnipy enhances the
search experience by capturing semantic information and
enabling more accurate retrieval of repositories based on
their similarities. This further facilitates the exploration and
discovery of scientific software repositories, encouraging col-
laboration, knowledge sharing, and promoting the reuse of
existing solutions.

Although RepoSim and RepoSnipy provide valuable
tools for the analysis and comparison of software repositories,
there are several avenues for future research and development
to further enhance their capabilities and expand their impact,
such as integration of additional programming languages or
enhanced their embedding techniques. While RepoSim and
RepoSnipy utilize state-of-the-art embedding techniques,
further exploration of advanced embedding models could be
beneficial. Investigating the use of transformer-based models,
graph neural networks, or domain-specific embeddings tai-
lored for software repositories could potentially improve the
accuracy and semantic understanding of the representations.
Also the integration of richer repository metadata can be stud-
ied. Currently, RepoSim and RepoSnipy primarily focus
on source code and documentation. Incorporating additional
metadata, such as software licenses, development activity,
package dependencies, and community metrics, could provide
more comprehensive insights into repository characteristics
and enable more advanced analysis and recommendation ca-
pabilities.
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