
Active Probing Approach for Fault Localization in
Computer Networks*

Maitreya Natu
Dept. of Computer & Information Science

University of Delaware
Newark, DE, USA, 19711

natu@cis.udel.edu

Adarshpal S. Sethi
Dept. of Computer & Information Science

University of Delaware
Newark, DE, USA, 19711

sethi@cis.udel.edu

Abstract—Active probing is an active network monitoring
technique that has potential for developing effective solutions for
fault localization. In this paper we use active probing to present
an approach to develop tools for performing fault localization.
We discuss various design issues involved and propose
architecture for building such a tool. We describe an algorithm
for probe set selection for problem detection and present
simulation results to show its effectiveness. We demonstrate
through analysis and experiments that active probing has the
potential to greatly reduce the probe traffic and the fault
diagnosis time.

Keywords- active probing; fault localization; active monitoring;
probe station selection; problem detection; problem determination;

I. INTRODUCTION
Monitoring techniques are used in computer networks to

support a wide range of activities involving network design
and operation [7, 9, 17, 18]. Network monitoring can be
separated into two broad categories: Active and Passive
monitoring. Active monitoring involves sending traffic onto a
network to sample its behavior. This traffic is sent in the form
of probes which can vary from simple probes such as pings to
complex test transactions.

Passive monitoring does not produce additional traffic.
Rather it listens to traffic that transits through a particular point
on a network. At its simplest, counts are made of packets; in
more sophisticated implementations, analysis is done by
inspecting packet headers. Passive measurements are mainly
used to measure metrics pertaining to a certain network
element, e.g., at-a-point metrics such as link throughput, and
packet size statistics. However from an application point of
view, end-to-end quality of service metrics might be of
concern and for these the passive approach is inappropriate as
the presence of traffic between the two end-points is not
guaranteed. Active monitoring is typically used to obtain end-
to-end statistics such as latency, loss, and route availability.

*Prepared through collaborative participation in the Communications and

Networks Consortium sponsored by the U.S. Army Research Laboratory under
the Collaborative Technology Alliance Program, Cooperative Agreement
DAAD19-01-2-0011. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation thereon.

Besides generating traffic between selected points of
interest, there are other advantages of active monitoring. It
provides flexibility in the design of probe streams with
particular properties to match measurement requirements. For
example, after localizing a problem to a particular network
point by measuring quantities like average delay and loss on a
route, finer probes can be sent to identify the bottleneck and
available bandwidth[7, 17], or to estimate cross traffic[16].
The main disadvantage of active monitoring is its invasive
character. Probes may modify route conditions and perturb the
very traffic one is trying to monitor. To minimize these effects,
probe streams of low average bandwidth are used [5].

Active monitoring techniques use probing for a variety of
network monitoring applications. As discussed in Section II,
probing can be used broadly in two ways: active and pre-
planned probing. Active probing has the potential to develop
effective solutions for network monitoring applications due to
its fundamental end-to-end nature and flexibility. One such
application is fault localization. Fault localization identifies the
fault that can best explain the observed network disorders.
Active probing can be used to perform efficient fault
localization where probes can be selected in real time and sent
to diagnose the root cause of a failure.

In this paper, we present a general approach to using probing
technology discussing various ways of developing such tools
and their applications. We then propose architecture for using
active probing to perform fault localization in networks. Active
probing solutions for performing fault localization involve three
main steps: probe station selection, problem detection, and
problem determination. We discuss various design issues
involved in probe station selection. We then discuss various
factors affecting probe set selection for problem detection and
determination. We develop an algorithm to select probes to
perform problem detection and present simulation results to
show the accuracy and effectiveness of the proposed algorithm.
We demonstrate through analysis and experiments that active
proving can be a powerful and effective technique for fault
localization.

II. GENERAL APPROACH TO PROBING
Probing is used in network monitoring in a variety of ways

and for a variety of purposes [9,14,19,20]. Probing is an

information gathering approach, performed by using test-
transactions sent by a probe station to the nodes in the network
under observation. The probe results are then analyzed to infer
the state of the network. Network parameters and conditions
can be inferred from probe results, e.g., the variance in delay,
loss percentage etc.

Probing has been used in network monitoring applications
broadly in two ways:

• Preplanned probing: It involves offline selection of
a set of probes [3]. These probes are periodically sent
out in the network. This is followed by a passive data-
mining approach to infer the network state by
analyzing the probe results. This approach generates a
large amount of management traffic, a large part of
which might be wasteful. Another significant
drawback in this approach is the involved difficulty in
envisaging all possible problems and generating a
probe set for it. Also as the probes are sent at periodic
intervals of time, the inference procedure can involve
a delay. The involved delay can cause a certain degree
of inaccuracy in the network state inferred from the
probe results. Preplanned probing, however, imposes
less overhead on the manager for selecting probes.

• Active probing: It adapts the probing strategy to the

observed network state. Instead of sending probes for
locating all potential problems in the network, it sends
a minimal number of probes initially and then adapts
the probe set to the observed network state [3, 19]. The
probe stations then send probes that provide most
information gain. This approach can greatly reduce
management traffic and provide more accurate and
timely diagnosis. Key goal of active probing based
network measurement is to be able to obtain accurate,
reliable estimates using only a small number of probes
and using probe streams of low average traffic.

A. Probe Types
Various types of probes have been used in the past for

monitoring different network characteristics.
• 1-packet: V. Jacobson in his ‘pathchar’ tool used 1-

packet method, to estimate link bandwidth from round
trip delays of different sized packets from successive
routers along the path [6]. One packet methods are
based on the assumption that the transmission delay
grows linearly with the packet size.

• Packet pair: These methods are based on spacing

effect of the bottleneck link. They use the minimum
inter-departure time of consecutive packets sent back-
to-back on a link to estimate the bottleneck
bandwidth. Some methods estimate available
bandwidth based on the observation of inter-departure
time of consecutive probe packets [1,4].

• Packet train: A sequence of packet pairs is called

packet train. Different methods vary in their use of
packet trains based on how the packet pair gaps are

controlled by the sender, Methods like pathload [10],
IGI, PTR [8] use packet trains with uniform intervals.
In contrast in PathChirp [18] and Spruce [23], packet
intervals are statistically constructed, forming a non-
uniform packet train.

• Packet tailgating: This method uses packet trains

consisting of large packets interleaved with small
tailgating packets. Large packets exit midway due to
limited TTL but small packets travel to the destination
while capturing important timing information. Many
packet dispersion based bandwidth tools have been
developed in the past [10]. They are based on self-
induced congestion. Probe packets temporarily induce
network congestion if and only if the probing bit rate
exceeds the available bandwidth on the path, thus
increasing queuing delay significantly. The minimum
probing bit rate that causes network congestion hence
gives an estimate of available bandwidth.

• Hybrid methods: These methods exploit both the 1-
packet and packet-pair effects, e.g., Packet Quartet
[15] uses packet quartet probe class where probes are
replaced by probe and pacesetter pair. Different
estimation methods are built on this framework based
on delay variation and peak detection.

B. Probing at Different Levels of Granularity
End-to-end active probing is mainly used for behavioral

monitoring. Simple behavior like connectivity is monitored by
basic tools like ping. There are more complex behaviors that
can be monitored such as bandwidth, traffic levels, loss and
jitter, path MTU and other characterizations using different
types of probes.

Probing can be used to detect SLA violation, which might
be defined in terms of response time thresholds, packet loss
thresholds etc. Probes to test SLAs can compose of a set of
requests to the target application. In order to perform a deeper
diagnosis, e.g. to detect the exact bottleneck server, more
sophisticated probes can be sent. Such probes can be
specifically designed application requests that invoke the
specific servers that need to be monitored. For even deeper
diagnosis, probes can be sent to test specific EJBs, servlets,
SQL queries by sending appropriate test transactions, HTTP
requests etc.

Probing can also be used at the system or middleware level,
where probes can be sent to identity performance bottleneck at
disk, processors, memory or incorrect settings of thread pool,
heap size or other parameters.

Simple probes like pings or traceroutes are used to detect
network layer failures like link or node failures. Different
characteristics of probes like loss, delay etc. can be used to infer
various aspects of the network state, e.g. available bandwidth,
bottlenecks, lossy links, presence of noise etc.

C. Applications of Probing
Existing large scale active measurement programs [11, 12,

24] have used probe traffic to measure connectivity, delay and
loss statistics. Methods have also been employed to measure
bottleneck bandwidth [7, 17] and available bandwidth. Also
detailed statistics of delay and loss measurement can be done
using active probing. Measurements collected in the Internet
focus on topology, workload, performance, and routing.

Probing can be used to identify the composition of
application traffic, packet size distribution, packet inter arrival
time, performance, path-length etc. Traffic flow matrices can
also be computed using probe results to compute a table
indicating traffic flowing from a given source to given
destination.

Probes can also be used for tracking and visualizing
Internet topology: Tools like skitter [9] use traceroute like
probes to identify topology details, e.g., specific backbones,
traffic exchange points etc.

Routing behavior e.g., effects of outages on surrounding
ISPs, effect of topology changes on Internet performance,
consequences of new routing policies, etc. can also be detected
using probing. Probing can identify potential areas to improve
the network’s ability to respond to congestion and potential
vulnerabilities in the network.

Probing can provide effective fault management solutions
for fault diagnosis in a network. Probing solutions are
developed for automated monitoring and management of a
network at various layers. In the following sections, we discuss
how active probing can be used to build efficient solutions for
fault localization. We analyze the cost and benefits of active
probing and discuss various design issues to build effective
techniques for fault diagnosis.

III. FAULT LOCALIZATION
Fault localization is the process of analyzing external

symptoms of network disorder to isolate the faults responsible
for the symptoms’ occurrences. Fault localization is performed
at various layers of the protocol stack. Tools are built to
diagnose various symptoms ranging from end-to-end
connectivity failure to more sophisticated symptoms like SLA
violations. A commonly used approach to problem diagnosis is
event correlation [22], in which every managed device is
instrumented to emit an alarm when its status changes.
However this approach requires heavy instrumentation to make
each device capable to send alarms. Also, the alarms may not
reach the manager due to packet loss or inability of the device.

An alternative approach could be to use probing, where the
managers can send probes to network nodes to diagnose
network health. These probes are test transactions whose
outcome depends on certain network components. Thus success
or failure of a carefully selected set of such probes can be used
to infer the health of the monitored network components. As
discussed in Section II, probing solutions can be built using pre-
planned or active probing. Pre-planned probing can be
expensive and inefficient for the task of fault localization in

terms of the number of probes needed. However, active probing
shows potential to build effective solutions for fault
localization. In this section we discuss various design issues
involved in developing active probing solution for fault
localization.

Active probing can be used to generate efficient fault
localization solutions. As compared to traditional fault
localization, active probing based solutions impose lesser fault
management traffic and lesser delay in the fault diagnosis
process. Moreover, as the network manager can actively select
probes inferring the previous probe results, it can narrow down
to a finer granularity in localizing the fault, by selecting probes
specific to the localized area of the network.

Figure 1 shows the architecture for an active probing system
for fault localization. This system consists of 3 main
components: probe station selection, problem detection, and
problem determination. Probe station selection module selects
the best locations to deploy the probe stations using the
available dependency model information about the network
routes. Based on the selected probe stations, a set of available
probes from these probe stations are identified. Problem
detection component selects the smallest set of probes from the
available probes, which can be used to detect a failure in the
managed network. Problem detection module triggers problem
determination when a failure is detected. Problem
determination module infers the network state from the
observed probe results and the probe’s dependency
information. It then selects additional probes online to obtain
more information. It repeats this process of analysis and
selection till the fault localization is complete.

Figure 1: Active probing system architecture for fault localization

Fault localization using active probing involves two steps:
problem detection and problem determination. Problem
detection is the process of probing the network such that the
occurrence of failure of any network component can be
detected. Problem determination is triggered when some
failure is detected. Problem determination involves analyzing
probe results and sending additional probes to determine the
exact cause of failure.

Probe Station Selection
Dependency

model
(Route information)

Available probes
information

Inferred network
state

Problem Detection

• Probe selection
• Probe result analysis

to detect failure

Problem Determination

• Probe selection
• Probe result analysis

to localize fault

Probes

Probe

Probe
results

Probe
results

Trigger on
detecting failure

Localized faults

• Problem detection: During problem detection, probe
stations periodically probe the network by sending a
pre-selected set of probes. Probe results are analyzed
to detect the presence of a fault or performance
problem. The pre-selection of probe set for problem
detection can be done offline. As these probes are run
periodically even when the network is healthy, the
probe set should be minimized to impose minimum
network management traffic, but still be able to detect
all possible problems in the network.

• Problem determination: Once some problem is

detected by the initial probe set, probe results are
analyzed to infer the most probable explanation of the
observed probe results. These probe results only
provide an indication of some failure in the network,
but may not be able to locate the exact cause of
failure. Thus observing the probe results, new probes
are selected online to obtain more information for
performing problem determination. These probes are
selected to minimize the time required to diagnose the
fault while keeping the extra traffic as low as
possible. Moreover the probe selection is done online
to select the best set of probes that can give most
information for the problem determination process.

Thus developing active probing solutions involves three
main steps:

• Selecting probe stations
• Selecting probe set for problem detection
• Selecting probe set for problem determination

IV. SELECTING PROBE STATIONS
Location and responsibilities assigned to probe stations

must be decided while building an active probing solution.
These decisions are based on nature of routes, nature of
targeted failures, availability of dependency information etc.
Below we discuss various such factors that contribute to the
overall decision making of probe station selection:

• Nature of targeted failures: Probe station selection
depends on the nature of faults that need to be
diagnosed. Assuming a connected network, to detect a
single node failure, a single probe station can be
sufficient. However in the same network, to detect an
edge failure, we might need more than one probe
station because, while the probe paths from a single
probe station though can reach all other nodes, they
might not cover all the edges. For instance, consider
the network shown in Figure 2. Consider node 1 to be
a probe station. The bold lines form a spanning tree
rooted at node 1 and show routes used by probes
transmitted from node 1 to all other nodes in the
network. Probe station 1 can detect any single node
failure in this network. However, it can detect failure
of only those links that are used in reaching the other
nodes in the network, i.e., the links shown in bold.

• Maximum number of failures: The assumption of
maximum number of faults that need to be detected in

a network is an important factor in selecting the probe
stations. In a connected network, a single node failure
can be detected by just one probe station. However a
single probe station might not be sufficient to detect
two faults, if both faults occur on the same probe
path. For instance, in Figure 2 with node 1 as the only
probe station, consider a scenario where nodes 3 and
8 fail. This results in failure of probes from node 1 to
nodes 3, 8, and 9. Probe station 1 can only infer
failure of node 3 but can not make any inference
about the health of nodes 8 and 9.
Considering the extreme case where all nodes’ failure
needs to be detected, the probe stations then need to
be placed at the vertex cover of the graph formed
from the network topology. In that case, all nodes will
be one hop away from some probe station, making the
closest probe station detect that node’s health.

Figure 2: An example network with node 1 as probe station. The bold lines
show the links used by node 1 to reach other nodes in the network.

• Probe station failure: The problem becomes even

more challenging when the probe station failure is
taken into consideration. In case of probe station
failure, probe stations must be chosen to provide the
ability to detect such failures and make another probe
station perform the job of the failed probe station.

• Topological constraints: Another important criterion
involved in probe station selection is the topological
constraint. The nodes with less connectivity need
special treatment. Special topology structures like
chains and rings also demand specific probe station
placement requirements. One approach to simplify
this problem could be to devise a solution by reducing
the network into smaller sub-networks connected by
such specific network structures like rings, chains,
leaves etc.

• Static vs. dynamic probe station instantiations: The
probe station selection criteria differ if a probe station
location can be selected actively based on current
diagnosis requirements. As opposed to static probe
station selection, this approach provides more
flexibility, but deploying probe stations dynamically
on any node might not be possible at all places in the
network.

• Nature of routes: Probe station selection is also
affected by the nature of routes taken by probes.

1

2 3

64 5

8 7

9

Considering source routing, a node can probe another
node through multiple routes which enhances its
probing capacity. The symmetric or asymmetric
nature of routes also provides additional information
of the probing capacity of the probes. Special care
needs to be taken in the presence of loops. If the
routes dynamically change, due to load-balancers,
source routing, mobility etc., the probe station might
not be able to detect the same faults in the changed
routing conditions.

• Dependency information: The amount of routing
information available for decision making poses some
other practical problems in probe station selection.
The accuracy and confidence in the information is
expressed through the dependency model. Based on
the information available this model could be
deterministic or probabilistic. It can be complete or
incomplete. Moreover based on the nature of the
network, the model might change with time. Changes
can occur due to route changes or because of
availability of more precise information.

V. PROBE SET SELECTION
Once the probe stations are selected, another important step

is the selection of probes. These probes are sent by probe
stations and the probe results are analyzed to infer the network
health. Note that probes need to be selected such that they
should not impose significant network traffic. However for
providing uninterrupted services, it is desirable to localize the
fault as quickly as possible so that healing measures can be
deployed.

The probe selection process relies on the information
available about the paths taken by the probes. This information
is gathered by route discovery agents and is stored in a
dependency model. The dependency model represents the
dependency relationships between probe paths and the
managed network components that it probes [13, 21]. The
nature of this dependency information affects the probe
selection decision:

• Deterministic or Probabilistic dependency model: The
confidence in the information about the path taken by
probes determines the confidence in detecting the
possible problem and further localizing the exact
failure. Thus if the model is deterministic, the probe
set selection process is easier than when the model is
probabilistic. With a probabilistic model, in the
absence of any deterministic information about the
probe paths, the probe set which is most probable to
detect the network fault is selected.

• Fixed-Variable dependency model: Various network
conditions, e.g. load-balancers, mobility, source
routing etc., can cause a change in the routes taken by
probes. Moreover new nodes may enter and old nodes
may get removed from the managed domain. The
probe selection algorithm then needs to be made
adaptive to these changes.

• Completeness and accuracy of dependencies: Another
important factor that needs attention is the

completeness and accuracy of the dependency model.
At times route discovery agents might not be able to
fetch the compete routes. Moreover in a dynamic
environment, the routes may change, bringing an
inconsistency between the routes in the dependency
model and the actual routes. Different measures can
be taken to deal with possibly inconsistent and
incomplete routes. For instance, a certain degree of
redundancy can be introduced by having multiple
probes or probe stations to probe the same node.
Another measure could be to associate belief values to
the inferred hypothesis and reach conclusion only
after significant confidence is obtained. Performing a
regular update of the dependency model can also
improve the accuracy of the problem determination
solution.

A. Selecting Probe Set for Problem Detection
As discussed earlier, the problem of probe selection for

problem detection involves selecting a minimal set of probes
that can detect health of all managed components. These
probes may not be able to pin-point the exact cause of the
failure but should be able to detect the occurrence of some
failure. The problem of selecting minimum probe set for
problem detection is similar to the set cover problem, where
components probed by each probe form a set. The goal is to
come up with a minimum number of sets that cover all the
nodes. The set cover problem is NP-Hard. Moreover it can not
be approximated well. The execution time of the optimal
algorithm to select minimum probes by analyzing all possible
combinations increases exponentially with increase in network
size. Thus there is a need to develop efficient solutions to find
minimal probe set that is close to optimal and that executes in
reasonable time. Such algorithm for probe set selection can be
designed using heuristics.

In the past, approximations have been proposed by using
certain heuristics [2, 3]. Heuristics can be designed to compute
the information gain from selection of a probe. Various
measures can be used to compute the information gain, e.g.
count of un-probed nodes that are probed by a probe.
Information of the topology structure and the routes can also
be exploited. E.g., certain nodes in the network are probed by
very few probes. Since probe selection to probe such nodes
needs to be done from a very limited probe space, it should be
done before other nodes that have larger probe search space.

In case of a single probe station, consider a spanning tree
with the probe station as the root and where the branches
describe the routes taken by probes. One approach to probe
selection to cover all nodes in the network could be to send
probes from the probe station to the nodes that lie on the leaves
of the spanning tree. However with multiple probe stations,
this strategy might be wasteful as it might probe same nodes
multiple times in the region where the two spanning trees
overlap.

Also given the uncertainty in the routing information, a
certain number of redundant probes can also be sent that probe
nodes that are already being probed by another probe station.

An average, minimum and maximum number of probes
probing each network component can be decided by the
network manager while doing probe set selection.

B. Selecting Probe Set for Problem Determination
The problem determination process is invoked when any of

the probes among the probe set for problem detection fails.
This failure gives an indication of some fault in the network.
However the probe set for problem detection does not have
sufficient diagnostic power to localize the fault. Thus during
the process of problem determination, additional probes are
selected online, based on the analysis of previous probe results.
The probe set selection is done actively and with the goal of
minimizing the fault localization time. Moreover as the probe
selection is done online, it should not take long time for
selection. Various challenges arise in this task of active probe
selection and the complexity of the process is affected by
several factors:

• Maximum number of faults: The assumption of
maximum number of faults that can occur in the
network affects the problem determination process.
E.g. under the simplistic assumption of only a single
failure, linearly probing each node on the failed probe
path can identify the problem. This process can be
optimized by searching for failure in a binary search
fashion, i.e. by probing the node on the center of the
probe, and based on the probe results, selecting the
first half or the second half of the probe path for
sending the next probe. Similar strategy can be used
to detect two faults by probing the failed probes from
both ends.
For instance, consider the network in Figure 2. On
failure of probe from probe station 1 to node 9, nodes
on the path can be searched by sending probes to node
3, 8 and 9. The number of probes sent can be reduced
by probing in a binary search fashion. This involves
first sending a probe to node 8. The success or failure
of this probe narrows the search to node 9 or nodes 3
and 8 respectively. Success of probe to node 8
explains good health of node 3 and 8 and infers
failure of node 9. On the other hand failure of probe
to node 8 explains failure at either node 3 or node 8.
Another probe to node 3 can localize the fault to node
3 or node 8.
However to detect larger number of faults, more
complex strategies need to be adopted. Optimized
strategies can be devised for this problem, based on
the nature of probes and the faults.

• Spurious probe failures: The observation of network
state is frequently disturbed by the presence of
spurious symptoms which are caused by unreliable
communication, intermittent network faults, or by
overly restrictive thresholds. Such situations can
decrease the accuracy of the problem determination
process. The problem determination algorithm tries to
find explanation of all these spurious symptoms,
thereby creating explanation for many non-existent
faults.

• Nature of available dependency information: The
analysis of probes to infer the network state depends
very much on the nature of dependency information.
As discussed before, the dependency model stores
information about the relationship between probes
and network elements that are probed. The
correctness and completeness of this dependency
model affects the accuracy of problem determination.
Many route discovery agents fail to provide complete
routes due to certain network conditions. In a
dynamic environment, e.g. in a MANET, due to
mobility the routes taken by probes change. These
route changes introduce inaccuracy in the previously
built dependency model[13]. Thus building and
maintaining the dependency model is a challenging
task. The problem determination process needs to be
robust against such dependency model limitations.

• Old symptoms: A probe result explains the current
network state. However with time the network state
changes. This change could be because of mobility,
healing measures, entry of new nodes in the network
etc. Thus after some time a probe result gets old and if
still considered in the problem determination process,
can adversely affect its accuracy.

• Storage of probe results: The network state inferred
from probe results can be stored in different ways.
Certain event driven techniques maintain state by
encoding partial problem determination results derived
from the observed probe results. This provides a
condensed network state representation. However such
a representation looses the information of each probe
result contributing to the overall diagnosis. Instead,
maintaining information about the sequence of
individual probe results that contribute to overall fault
diagnosis can help refine the results with time when
more accurate information is available. Such state
representations allow deleting old and spurious
symptoms and updating the dependency information
of previously observed symptoms [13].

C. Problem Detection Algorithm
In this section, we present an algorithm for optimizing the

selection of probes for detecting the occurrence of a fault in the
network.

1) Challenges involved
• The problem of finding a minimal set of probes

covering all the network components is precisely the
Set-Cover problem, which is not only NP-Hard but
also can not be approximated well.

• With increasing size of the network, the number of
available probes also increases. This increases the
search space to select the minimal set of probes.

• In practice, it might not be possible to accurately
obtain the route followed by each probe. Thus a
probe success or failure might not have a
deterministic relationship to the success or failure of
the network elements it is expected to probe. This
relationship between probes and network

components then needs to be explained using a
probabilistic model.

• Probe analysis becomes more challenging in
presence of incomplete and inaccurate dependency
information. Issues like transient failures, spurious
symptoms, dynamic routing, load balancers, node
mobility further aggravate the problem.

2) Previous work
The minimal set of probes covering all the nodes can be

found by exhaustive search. All feasible combinations of
probes can be explored until the minimal set is reached. This
algorithm though optimal has a very high computational
complexity, making it prohibitive to be deployed practically.
This algorithm can be used only for very small networks.

Rish et. al. [2, 3] propose some general approaches to be
used for both probe set selection for problem detection and
problem determination. These approaches attempt to find
minimal set of probes using certain heuristics. [2] proposes
subtractive search that starts with all probes, considers each
probe in turn, and discards it if it does not add to the diagnostic
capability of the probe set. The approach is faster but its
effectiveness in finding minimal set depends very much on the
order in which probes are explored. Another approach
proposed in [2] is additive search, where at each step the probe
giving most informative decomposition is added to the probe
set. [19] proposes can active probing approach to select probes
for problem detection by incrementally selecting probes that
cover the nodes that are not yet covered.

In [25], a technique is presented to integrate passive and

active fault reasoning in order to reduce fault detection time,
improve diagnosis accuracy, and to minimize the intrusiveness
of fault reasoning. If the passive reasoning is insufficient to
explain the problem, the proposed approach selects optimal
probing actions to obtain better explanation.

3) Probe set selection criteria
Probe set selection criteria for problem detection varies from

that for problem determination. Probe set for problem
detection is selected such that all network elements are probed.
However problem determination requires a probe set that
uniquely diagnoses every network element. Probes for problem
detection are sent periodically and thus the management traffic
produced should be low enough that it does not affect the
performance of other applications. Moreover the time-
constraints on probe set selection for problem detection are
less stringent than that for problem determination. Problem
determination is done only when some problem in
encountered. Thus probes for problem determination should be
selected such that fault localization can be done in minimum
amount of time.

We propose a Greedy approximation algorithm that explores
the information contained in the dependencies between probes
and network components. The algorithm selects the network
element which is probed by least number of probes, using the
dependency information between probes and probed elements.

Out of all the probes probing element n, the algorithm selects
the one which goes through maximum number of nodes that
are not yet probed.

Different nodes are probed by different number of probes,
depending on the routes used. Nodes that are probed by less
number of probes narrow down the search space for probe
selection. Consider the case where a node n is probed by only
one probe. In this case, the only probe probing node n must
always be selected, irrespective of the number of nodes it
covers. Consider another case, where only two probes pass
through a node n. Then one of the two probes must be selected
to cover node n. In this situation, the probe covering a larger
number of uncovered nodes is the better choice. This leads to
the algorithm presented in Table 1.

As an example, consider the matrix in Figure 3, where rows
represent probes and columns represent nodes. Cell (i,j)=1
indicates that probe i probes node j. In this matrix, node 1 is
probed by only one probe, i.e., probe C. Thus probe C must be
selected. Nodes 1 and 5 are probed by probe C. Out of
remaining nodes, i.e., nodes 2, 3, and 4, node 2 is probed by
least number of probes (probe A and B). Thus next probe
should be selected to probe node 2. Probe A covers 2 non-
probed nodes while probe B covers 3 non-probed nodes. Thus
probe B is a better choice.

Figure 3: Matrix representing dependencies between probes and nodes such
that cell(i,j)=1 infers that probe i probes node j.

We assume a deterministic and complete dependency model for
this work and aim to relax this assumption in the continuing
work. We present results to show the effectives and execution
time of the Greedy algorithm. We first compare the algorithm
with the Additive search presented in [2] and the Exhaustive
search algorithm. Because Exhaustive search can not run on
network with large number of nodes, we ran the three searches
on a network with 8 nodes. We varied the average node degree
from 2 to 5, setting the maximum node degree to 8. We
observed the size of probe set computed by each algorithm. It
can be seen from Figure 4 that the size of probe set computed
by the Greedy algorithm is close to optimal and is smaller than
that computed by the Additive algorithm. Figure 5 shows the
time taken by the three searches in doing these computations
and it can be seen that the Greedy algorithm takes significantly
less time than the Exhaustive algorithm. The time taken by
Greedy algorithm is comparable to that of the Additive
algorithm.

 1 2 3 4 5
Probe A 0 1 0 1 0
Probe B 0 1 1 1 0
Probe C 1 0 0 0 1
Probe D 0 0 1 1 1
Probe E 0 0 1 0 1

TABLE I. ALGORITHM FOR PROBE SET SELECTION FOR PROBLEM
DETECTION

To test the algorithm on networks of larger sizes, we ran the
Greedy and Additive algorithm on networks with 50 nodes, by
varying the average node degree from 3 to 6, with maximum
node degree of 7. The comparison of the two algorithms is
shown in Figures 6 and 7. Figure 7 shows that execution time of
the Greedy algorithm is significantly less than the Additive
algorithm; while it can be seen from Figure 6 that the probe sets
computed by the Greedy algorithm are smaller than those
computed by the Additive algorithm.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 3 4 5

Node degree

N
um

be
r o

f p
ro

be
s

Greedy

Additive

Optimal

0

50

100

150

200

250

300

350

400

450

2 3 4 5

Node degree

Ti
m

e
(in

 m
se

c)

Greedy

Additive

Optimal

Figure 4: Comparison of probe set
size computed by Greedy, Additive,
and Optimal algorithms, for a
network with 8 nodes varying the
average degree from 2 to 5

Figure 5: Comparison of execution
time of Greedy, Additive, and
Optimal algorithms, for a network
with 8 nodes varying the average
degree from 2 to 5

0

5

10

15

20

25

3 4 5 6

Node degree
N

um
be

r o
f p

ro
be

s

Greedy

Additive

0

10000

20000

30000

40000

50000

60000

70000

80000

3 4 5 6

Node degree

Ti
m

e
(m

se
c)

Greedy

Additive

Figure 6: Comparison of probe set
size computed by Greedy and
Additive algorithms, for networks
with 50 nodes.

Figure 7: Comparison of execution
time of Greedy and Additive
algorithms, for networks with 50
nodes.

VI. CONCLUSION
This paper addresses development of active probing solution

for fault localization in computer networks. We presented
architecture for building such solutions and discussed various
design issues for probe stations’ selection and probe set
selection for problem detection and determination. As our
initial work we presented an algorithm for problem detection
using active probing. We also presented simulation results to
show the accuracy and effectiveness of the proposed
algorithm. Analysis and experiments show that active probing
can greatly reduce the number of probes and the time required
for fault localization as compared to the traditional techniques.

Directions for future work include developing algorithm for
probe station selection and real-time diagnosis algorithm for
problem determination. We also aim to develop algorithms that
can work with probabilistic, incomplete, and inaccurate
dependency model. Active probing offers significant potential
for problem determination, as well as other network
monitoring applications.

The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either
expressed or implied of the Army Research Laboratory or the U.S.
Government.

1. Inputs
a. N: The set of nodes
b. PS: The set of probe stations
c. AvailableProbes: Set of probes that can

be sent from probe stations to other
nodes in the network

2. Initialization:
a. SelectedProbes = Null
b. NonProbedNodes = N
c. For each probe p ∈ AvailableProbes,

Nodes(p) = the set of nodes ∈
NonProbesNodes probed by p

d. For each node j ∈ NonProbedNodes,
Probes(j) = the set of probes ∈
AvailableProbes that probe node j

3. For each node k ∈ PS
a. Remove k from NonProbedNodes

4. Select node l ∈ NonProbedNodes, that has
smallest |Probes(l)|

5. Select a probe q ∈ Probes(l), that has largest
|Nodes(q)|

6. Remove each node m ∈ Nodes(q) from
NonProbedNodes

7. Remove probe q from AvailableProbes
8. Add probe q to SelectedProbes
9. For each probe r ∈ AvaialbleProbes, update

Nodes(r) with the modified set of
NonProbedNodes

10. For each node n ∈ NonProbedNodes, update
Probes(n) with the modified set of
AvailableProbes

11. If ((NonProbedNodes ≠ Null) &
 (AvailableProbes ≠ Null))

a. Repeat steps 4-11
12. If (NonProbedNodes = Null)

a. Exit and return the SelectedProbes
13. If (AvailableProbes = Null)

a. Exit

REFERENCES
[1] J.C. Bolot. Characterizing end-to-end packet delay and loss in the

internet. High-Speed Networks, 2(3), 1993.
[2] M. Brodie, I. Rish, and S. Ma. Optimizing probe selection for fault

localization. In Distributed Systems Operations Management, pages
1147-1157, 2001.

[3] M. Brodie, I. Rish, S. Ma, G. Grabarnik, and N. Odintsova. Active
probing. Technical report, IBM, 2002

[4] R. L. Carter and M. E. Crovella. Measuring bottleneck link speed in
packet-switched networks. Performance Evaluation, 27&28:297-318,
1996.

[5] L. Cottrell. Comparison of some internet active end-to-end performance
measurement projects. In SLAC, Jul. 1999.

[6] A.B. Downey. Using pathchar to estimate internet link characteristics. In
ACM SIGCOMM, Cambridge, MA, 1999.

[7] N. Hu and P. Steenkiste. Towards tunable measurement techniques for
available bandwidth. In Bandwidth Estimation Workshop (BEst03), San
Diego, CA, 2003.

[8] N. Hu and P. Steenkiste. Evaluation and characterization of available
bandwidth probing techniques. IEEE JSAC Special Issue in Internet and
WWW Measurement, Mapping, and Modeling, 21(6), Aug., 2003.

[9] B. Huffaker, D. Plummer, D. Moore, and K. Claffy. Topology discovery
by active probing. In Symposium on Applications and the Internet, Nara,
Japan, Jan. 2002.

[10] M. Jain and C. Dovrolis. End-to-end available bandwidth:Measurement
methodology, dynamics, and relation with TCP throughput. In
SIGCOMM 2002, Pittsburgh, PA, Aug., 2002.

[11] W. Matthews and L. Cottrell. The PingER project: Active internet
performance monitoring for the HENP community. IEEE
Communications Magazine special issue on “Network Traffic
Measurements and Experiments”, May, 2000.

[12] T. McGregor, H.-W. Braun, and J. Brown. The NLANR network
analysis infrastructure. IEEE Communications Magazine special issue on
“Network Traffic Measurements and Experiments, May, 2000.

[13] M. Natu and A.S. Sethi. Adaptive fault localization in mobile ad hoc
battlefield networks. In MILCOM’05, Atlantic City, NJ, 2005.

[14] A. Pasztor and D. Veitch. High precision active probing for internet
measurement. In INET ’01, Stockholm, Sweden, 2001.

[15] A. Pasztor and D. Veitch. Active probing using packet quartets. In ACM
SIGCOMM Internet Measurement Workshop, Nov. 2002.

[16] V. Ribeiro, M. Coates, R. Riedi, and S. Sarvotham. Multifractal cross-
traffic estimation. In ITC Specialist Seminar on IP Traffic Measurement,
Modelling and Management 2000, Monterey, CA, Sep. 18-20 2000.

[17] V. Ribeiro, R. Riedi, and R. Baraniuk. Spatio-temporal available
bandwidth estimation with Stab. In ACM SIGMETRICS, Jun. 2004.

[18] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and L. Cottrell,
pathChirp: Efficient available bandwidth estimation for network paths. In
Passive and Active Measurement Workshop, 2003.

[19] I. Rish, M. Brodie, S. Ma, N. Odintsova, A. Beygelzimer, G. Grabarnik,
and K. Hernandez. Adaptive diagnosis in distributed systems. IEEE
Transactions on Neural Networks, 16(5):1088–1109, Sep. 2005

[20] I. Rish, M. Brodie, N. Odintsova, S. Ma, and G. Grabarnik. Real-time
problem determination in distributed systems using active probing. In
NOMS-2004, Seoul, Korea, Apr. 2004.

[21] M. Steinder and A.S. Sethi. Probabilistic fault diagnosis in
communication systems through incremental hypothesis updating.
Computer Networks, 45(4):537-562, Jul. 2004.

[22] M. Steinder and A.S. Sethi. A survey of fault localization techniques in
computer networks. Science of Computer Programming, Special Edition,
53(2):165-194, Nov., 2004.

[23] J. Strauss, D. Katabi, and F. Kaashoek. A measurement study of
available bandwidth estimation tools. In Internet Measurement
Conference (IMC) 2003, Miami, Florida, Oct. 2003.

[24] H. Uijterwaal and O. Kolkman. Internet delay measurements using test
traffic: Design note. Technical Report, RIPE-158, RIPE NCC, Jun. 1997.

[25] Y. Tang, E. S. Al-Shaer, and R. Boutaba. Active Integrated Fault
Localization in Communication Networks. In IEEE/IFIP Integrated
Management (IM'2005), May. 2005.

