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ABSTRACT
We investigate an approach that uses low-level analysis
and the execution-cache-memory (ECM) performance
model in combination with tuning of hardware param-
eters to lower energy requirements of memory-bound
applications. The ECM model is extended appropri-
ately to deal with software optimizations such as non-
temporal stores. Using incremental steps and the ECM
model, we analytically quantify the impact of various
single-core optimizations and pinpoint microarchitec-
tural improvements that are relevant to energy con-
sumption. Using a 2D Jacobi solver as example that can
serve as a blueprint for other memory-bound applica-
tions, we evaluate our approach on the four most recent
Intel Xeon E5 processors (Sandy Bridge-EP, Ivy Bridge-
EP, Haswell-EP, and Broadwell-EP). We find that chip
energy consumption can be reduced in the range of 2.0–
2.4× on the examined processors.
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Optimization

1. INTRODUCTION AND REL. WORK
For new HPC installations contribution of power us-

age to total system cost has been increasing steadily
over the past years [10] and studies project this trend
to continue [7]. As a consequence energy-aware met-
rics have recently been gaining popularity. Energy-to-
solution, i.e. the amount of energy consumed by a
system to solve a given problem, is the most obvious

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

E2SC ’16 November 14th, 2016, Salt Lake City, UT, USA
© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123 4

of these metrics and will be used as quality measure
throughout this study.

Previous works view the application code as constant
and instead focus their energy optimization attempts
to parameter tuning on either the runtime environ-
ment, the hardware, or both [11]. The runtime envi-
ronment approach works by adjusting the number of
active threads across different parallel regions based on
the regions’ computational requirements [1]. Hardware
parameter tuning involves trying to identify slack, e.g.
during MPI communication, and using dynamic voltage
and frequency scaling (DVFS) to lower energy consump-
tion in such sections of low computational intensity [14];
similar strategies can be applied to OpenMP barriers
[2]. The parameters employed by these algorithms can
be based on measurements made at runtime [17] or set
statically [16]. One fact often ignored by DVFS control
software, however, is that hardware delays caused by
changing frequency states can often be significant [12]
which can lead to diminishing returns in the real world.
Another form of hardware parameter optimization in-
volves the tuning of hardware prefetchers [21].

In contrast to previous work, our approach focuses
on increasing single-core performance, primarily though
software optimization. Using the execution-cache-
memory (ECM) performance model to guide optimiza-
tions such as SIMD vectorization, cache blocking, non-
temporal stores, and the use of cluster-on-die (COD)
mode the bandwidth consumption of a single core is
maximized. This allows the chip to saturate main
memory bandwidth with the least number of active
cores in the multi-core scenario, thus reducing power as
well as the energy consumed by the chip. In a second
step, different hardware parameters such as the number
of active cores and their frequencies should be evaluated
to further reduce energy consumption. The approach
is demonstrated on a 2D Jacobi solver, which acts as a
proxy for many memory-bound applications. To pro-
duce significant results, all experiments were performed
on the four most recent server microarchitectures by
Intel, which make up about 91% of HPC installations
of the June 2016 Top 500 list.

The paper is organized as follows. Section 2 describes
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Figure 1: Bandwidth and energy-to-solution for different 2D
Jacobi implementations using a dataset size of 16 GB.

the blueprint of and the reasoning behind our energy-
efficiency optimization approach. Section 3 introduces
the ECM performance model that we use to guide op-
timizations. Section 4 contains an overview of the sys-
tems used for benchmarking. Core-level improvement
efforts are documented in Section 5, followed by a val-
idation of single-core results in Section 6. Implications
for the multi-core scenario are discussed in Section 7,
followed by the conclusion in Section 8.

2. OPTIMIZATION APPROACH
Per definition, the bottleneck for bandwidth-bound

applications is the sustained bandwidth bs imposed by
the memory subsystem. It is a well-established fact that
a single core of modern multi- and many-core systems
cannot saturate main memory bandwidth [19], neces-
sitating the use of multiple cores to reach peak per-
formance. The number of cores ns required to sustain
main memory bandwidth depends on single-core per-
formance: The faster a single-core implementation, the
more bandwidth is consumed by a single core. The more
bandwidth is consumed by a single core, the fewer cores
are required to saturate main memory bandwidth.

This relation is illustrated in Fig. 1, which depicts
measurement results obtained on a single socket of a
standard two-socket Broadwell-EP machine (cf. Sec-
tion 4 for hardware details). Fig. 1a shows memory
bandwidth as function of active cores for two differ-
ent 2D Jacobi implementations. Fig. 1b depicts the
energy-to-solution required for both implementations.
From this real-world example two important conclusion
can be drawn:

1. Memory-bound codes should be run using ns cores
Once the bandwidth bottleneck is hit, adding more
cores no longer increases performance.1 Instead using
more cores increases chip power consumption resulting
in a higher energy-to-solution. This effect is visible in
Fig. 1b.

2. Early saturation can lead to lower energy-to-solution
The optimized version saturates memory bandwidth
with six cores compared to the ten cores required by
1In practise performance will decrease slightly when using more
than ns cores, as prefetchers and memory subsystem have to deal
with additional memory streams which makes them less efficient;
this effect can be observed in Fig. 1a.

the naive counterpart. Six vs. ten cores being active
typically translates into a lower power draw for version
using fewer cores.2 Together with the fact that versions
(16 GB/bs), this results in a better energy-to-solution
for the optimized version.

After establishing these facts we propose the following
approach to optimize energy consumption: (1) Use the
ECM model to guide performance improvements for the
single-core implementation. (2) Attempt to lower per-
core power draw by tuning hardware parameters, e.g.
core frequency or COD mode. (3) Never run code with
more cores than necessary (ns).

3. THE ECM PERFORMANCE MODEL
The ECM model [19, 3, 18, 4, 5] is an analytic per-

formance model that, with the exception of sustained
memory bandwidth, works exclusively with architecture
specifications as inputs. The model estimates the num-
bers of CPU cycles required to execute a number of
iterations of a loop on a single core of a multi- or many-
core chip. For multi-core estimates, linear scaling of
single-core performance is assumed until a shared bot-
tleneck, such as e.g. main memory bandwidth, is hit.
Note that only parts of the model relevant to this work,
i.e. the single-core model, are presented here. Readers
interested in the full ECM model can find the most re-
cent version for Intel Xeon, Intel Xeon Phi, and IBM
POWER8 processors here [6].

The single-core prediction is made up of contribu-
tions from the in-core execution time Tcore, i.e. the
time spent executing instructions in the core under the
assumption that all data resides in the L1 cache, and
the transfer time Tdata, i.e. the time spent transferring
data from its location in the cache/memory hierarchy
to the L1 cache. As data transfers in the cache- and
memory hierarchy occur at cache line (CL) granularity
we chose the number of loop iterations nit to correspond
to one cache line’s ”worth of work.” On Intel architec-
tures, where CLs are 64 B in size, nit = 8 when using
double precision (DP) floating-point numbers, because
processing eight “doubles” (8 B each) corresponds to ex-
actly one CL worth of work.

Superscalar core designs house multiple execution
units, each dedicated to perform certain work: loading,
storing, multiplying, adding, etc. The in-core execu-
tion time Tcore is determined by the unit that takes the
longest to retire the instructions allocated to it. Other
constraints for the in-core execution time may apply,
e.g. the four micro-op per cycle retirement limit of In-
tel Xeon cores. The model differentiates between core
cycles depending on whether data transfers in the cache
hierarchy can overlap with in-core execution time. For
instance, on Intel Xeons, core cycles in which data is
moved between the L1 cache and registers, e.g. cycles

2In theory it is possible that an implementations using fewer cores
to saturate memory bandwidth is less energy-efficient than one
that uses more. Consider, for example, an optimization that dou-
bles single-core performance but triples the power drawn by the
core. ns is halved but energy to solution is 50% higher nonethe-
less. In practise we have however never observed such a scenario.
For all optimizations described in Section 5 the increase in single-
core power draw accompanying an optimization is negligible.



Table 1: Test machine specifications.

Microarchitecture (Shorthand) Sandy Bridge-EP (SNB) Ivy Bridge-EP (IVB) Haswell-EP (HSW) Broadwell-EP (BDW)
Chip Model Xeon E5-2680 Xeon E5-2690 v2 Xeon E5-2695 v3 Pre-release
Release Date Q1/2012 Q3/2013 Q3/2014 Q1/2016
non-AVX/AVX Base Freq. 2.7 GHz/2.7 GHz 3.0 GHz/3.0 GHz 2.3 GHz/1.9 GHz 2.1 GHz/2.0 GHz
Cores/Threads 8/16 10/20 14/28 18/36
Latest SIMD Extensions AVX AVX AVX2, FMA3 AVX2, FMA
Core-Private L1/L2 Caches 8×32 kB/8×256 kB 10×32 kB/10×256 kB 14×32 kB/14×256 kB 18×32 kB/18×256 kB
Shared Last-Level Cache 20 MB (8×2.5 MB) 25 MB (10×2.5 MB) 35 MB (14×2.5 MB) 45 MB (18×2.5 MB)
Memory Configuration 4 ch. DDR3-1600 4 ch. DDR3-1866 4 ch. DDR4-2133 4 ch. DDR4-2133
Theoretical Mem. Bandwidth 51.2 GB/s 59.7 GB/s 68.2 GB/s 68.2 GB/s
Sustained Copy Bandwidth 39.5 GB/s (77%) 43.4 GB/s (74%) 50.1 GB/s (73%) 51.5 (76%)
L1→Reg Bandwidth 2×16 B/cy 2×16 B/cy 2×32 B/cy 2×32 B/cy
Reg→L1 Bandwidth 1×16 B/cy 1×16 B/cy 1×32 B/cy 1×32 B/cy
L1↔L2 Bandwidth 32 B/cy=̂2 cy/CL 32 B/cy=̂2 cy/CL 64 B/cy=̂1 cy/CL 64 B/cy=̂1 cy/CL
L2↔L3 Bandwidth 32 B/cy=̂2 cy/CL 32 B/cy=̂2 cy/CL 32 B/cy=̂2 cy/CL 32 B/cy=̂2 cy/CL
L3↔Mem Bandwidth (copy) 14.5 B/cy=̂4.4 cy/CL 20.0 B/cy=̂4.4 cy/CL 21.7 B/cy=̂2.9 cy/CL 24.6 B/cy=̂2.6 cy/CL

in which load and/or store instructions are retired, pro-
hibit simultaneous transfer of data between the L1 and
L2 cache; these “non-overlapping” cycles contribute to
TnOL. Cycles in which no load or store instructions but
other instructions, such as e.g. arithmetic instructions,
retire are considered“overlapping”cycles and contribute
to TOL. The in-core runtime is the maximum of both:
Tcore = max(TOL, TnOL).

For modelling data transfers, latency effects are ini-
tially neglected, so transfer times are exclusively a func-
tion of bandwidth. Cache bandwidths are typically well
documented and can be found in vendor data sheets.
Depending on how many CLs have to be transferred,
the contribution of each level in the memory hierarchy
(TL1L2, . . . , TL3Mem) can be determined. Special care
has to be taken when dealing with main memory band-
width, because theoretical memory bandwidth specified
in the data sheet and sustained memory bandwidth bs
can differ greatly. Also, in practise bs depends on the
number of load and store streams. It is therefore recom-
mended to empirically determine bs using a kernel that
resembles the memory access pattern of the benchmark
to be modeled. Once determined, the time to transfer
one CL between the L3 cache and main memory can be
derived from the CPU frequency f as 64 B · f/bs cycles.

Starting with the Haswell-EP (HSW) microarchitec-
ture, an empirically determined latency penalty Tp is
applied to off-core transfer times. This departure from
the bandwidth-only model has been made necessary by
large core counts, the dual-ring design, and separate
clock frequencies for core(s) and Uncore all of which
increase latencies when accessing off-core data. The
penalty is added each time the Uncore interconnect is
involved in data transfers. This is the case whenever
data is transferred between the L2 and L3 caches, as
data is pseudo-randomly distributed between all last-
level cache segments; and when data is transferred be-
tween the L3 cache and memory, because the memory
controller is attached to the Uncore interconnect. In-
struction times as well as data transfer times, e.g. TL1L2

for the time required to transfer data between L1 and
L2 caches, can be summarized in shorthand notation:
{TOL ‖TnOL |TL1L2 |TL2L3 + Tp |TL3Mem + Tp}.

To arrive at a prediction, in-core execution and data
transfers times are put together. Depending on whether

there exist enough overlapping cycles to hide all data
transfers, runtime is given by either TOL or the sum of
non-overlapping core cycles TnOL plus contributions of
data transfers Tdata, whichever takes longer. Tdata con-
sists of all necessary data transfers in the cache/memory
hierarchy, plus latency penalties if applicable, e.g. for
data coming from the L3 cache: Tdata = TL1L2+TL2L3+
Tp. The prediction is thus TECM = max(TOL, TnOL +
Tdata). A shorthand notation also exists for the model’s
prediction:

{
T core
ECM eTL2

ECM eTL3
ECM eTMem

ECM

}
.

Converting the prediction from time (in cycles) to
performance (work per second) is done by dividing the
work per CL WCL (e.g. floating-point operations, up-
dates, or any other relevant work metric) by the pre-
dicted runtime in cycles and multiplying with the pro-
cessor frequency f , i.e. PECM = WCL/TECM · f .

4. EXPERIMENTAL TESTBED
All measurements were performed on standard two-

socket Intel Xeon servers. A summary of key speci-
fications of the four generations of processors can be
found in Table 1. According to Intel’s“tick-tock”model,
where a “tick” corresponds to a shrink of the manufac-
turing process technology and a “tock” to a new mi-
croarchitecture, IVB and BDW are “ticks”—apart from
an increase in core count and a faster memory clock, no
major improvements were introduced in these microar-
chitectures.

HSW, which is a “tock”, introduced AVX2, extending
the already existing 256 bit SIMD vectorization from
floating-point to integer data types. Instructions in-
troduced by the fused multiply-add (FMA) extension
are handled by two new, AVX-capable execution units.
Data paths between the L1 cache and registers as well
as the L1 and L2 caches were doubled. Due to limited
scalability of a single ring connecting the cores, HSW
chips with more than eight feature a dual-ring design.
HSW also introduces the AVX base and maximum AVX
Turbo frequencies. The former is the minimum guaran-
teed frequency when running AVX code on all cores;
the latter the maximum frequency when running AVX
code on all cores (cf. Table 3 in [9]). Based on workload,
the actual frequency varies between this minimum and
maximum value. For a more detailed analysis of the



1 for (y=1; y<Y-1; ++y)
2 for (x=1; x<X-1; ++x)
3 b[y][x]=0.25 * (a[y-1][x] + a[y][x-1] +
4 a[y][x+1] + a[y+1][x]);

Figure 2: C implementation for one 2D Jacobi iteration.

differences between the SNB/IVB and HSW microar-
chitectures see [4].

For all measurements on SNB and IVB, the CPU fre-
quency was fixed at the nominal CPU frequency. On
HSW and BDW, the CPU frequency was fixed to the
non-AVX base frequency;3 in none of the single-core
measurements that feature AVX code could we observe
a drop below the non-AVX base frequency. The mea-
sured sustained main memory bandwidth displayed in
Table 1 is that of the STREAM copy kernel [13] using
non-temporal stores, because its memory access pattern
corresponds to that of the 2D Jacobi solver. Energy
consumption was determined by accessing the running
average power limit (RAPL) interface through likwid-
perfctr [20]. Because node and memory power usage
fluctuates depending on node configuration and RAM
manufacturer, we chose to only present results pertain-
ing to chip power consumption, i.e. cores, core-private
caches, and Uncore (cf. 14.9 in [8]). All code is compiled
using the Intel C Compiler version 15.0.2.

5. SINGLE-CORE OPTIMIZATIONS
Figure 2 shows the source code for one 2D five-point

Jacobi sweep, i.e. the complete update of all grid points.
One grid point update computes and stores in b the new
state of each point from the values of its four neighbors
in a, which holds data from the previous iteration. For
results to be representative, the dataset size per socket
for all measurements is 16 GB, i.e. each of the two grids
is 8 GB in size and made up of 32768 × 32768 double-
precision numbers. Performance is expressed in “lattice
updates per second” (LUP/s), i.e. scalar inner kernel
iterations per second.

5.1 Baseline AVX Implementation
Using adequate optimization flags (-O3 -xHost -

fno-alias) it is trivial to generate AVX vectorized
assembly for the code shown in Figure 2 with recent
Intel compilers. This is why we decided to use an AVX
vectorized variant instead of scalar code as baseline.

With 256-bit AVX vectorization in place, one CL
worth of work (eight LUP/s), consists of eight AVX
loads, two AVX stores, six AVX adds, and two AVX
multiplication instructions.

To determine data transfers inside the cache hierar-
chy, we have to examine each load and store in more
detail. Storing the newly computed results to array b
involves the transfer of two CLs to/from main memory:
because both arrays are too large to fit inside the caches,
the store will miss in the L1 cache, triggering a write-
allocate of the CL from main memory. After the values
in the CL have been updated, the CL will have to be

3The guaranteed frequency when running code on all cores that
does not use AVX instructions.

evicted from the caches eventually, triggering another
main memory transfer.

The left neighbor a[y][x-1] can always be loaded
from the L1 cache since it was used two inner iterations
before as right neighbor; access to a[y+1][x] must be
loaded from main memory since it was not used before
within the sweep.

Based on work by Rivera and Tseng [15] Stengel et
al. introduced the layer condition (LC) [18] to help de-
termining where data for a[y-1][x] and a[y][x+1] is
coming from. The LC stipulates three successive rows
have to fit into a certain cache for accesses to these data
to come from this particular cache. Assuming cache k
can effectively hold data up to 50% of its nominal size
Ck, the LC can be formulated as 3 ·N · 8 B < 50% ·Ck.
For N = 32768, three rows take up 768 kB so on all
previously introduced machines (cf. line 8 in Table 1)
the LC holds true for the L3 cache.

ECM Model for SNB and IVB
To process one CL worth of data, eight AVX load,

two AVX store, six AVX addition and two AVX multi-
plication instructions have to executed. Throughput is
limited by the two load units. Each load unit has a 16 B
wide data path connecting registers and L1 cache, so
retiring a 32 B AVX load takes two cycles. Using both
load units, eight AVX loads take TnOL = 8 cy. Both
AVX stores are retired in parallel with the eight loads,
so they do not increase TnOL. Computation throughput
is limited by the single add port, which takes TOL = 6 cy
to retire all six AVX add instructions. Both AVX mul-
tiplications can be processed in parallel with two of the
six AVX add instructions.

As established previously, three CLs have to be trans-
ferred between L3 and memory: write-allocating and
later evicting b[y][x] and loading a[y+1][x]. On both
SNB and IVB, L3-memory bandwidth is 4.4 cy/CL (cf.
last line in Table 1). This results in TL3Mem = 13.2 cy
for both architectures. The same three CLs have to
be transferred between L3 and L2 cache; in addition,
CLs for a[y-1][x] and a[y][x+1] have to be trans-
ferred from the L3 to the L2 cache. Transferring five
CLs at a bandwidth of 2 cy/CL takes TL2L3 = 10 cy on
both SNB and IVB. At a L1-L2 bandwidth of 2 cy/CL,
moving these five CLs between L2 and L1 cache takes
TL1L2 = 10 cy. Using the ECM short notation to sum-
marize the inputs yields {6 ‖ 8 | 10 | 10 | 13.2} cy for both
SNB and IVB; the corresponding runtime prediction for
SNB and IVB is {8 e 18 e 28 e 41.2} cy.

For a 2.7 GHz SNB core the performance prediction

is PMem
ECM = 8 LUP/CL

41.2 cy/CL ·2.7 GHz = 524 MLUP/s. For IVB

the model predicts a performance of 582 MLUP/s.

ECM Model for HSW and BDW
On HSW and BDW, the address generation units

(AGUs) are the bottleneck for TnOL. Each load/store
instruction accesses an AGU to compute the referenced
memory address. With only two AGUs capable of per-
forming the required addressing operations available,
retiring all ten load/store instructions takes TnOL =
5 cy. HSW and BDW posses a single AVX add unit



just like SNB and IVB, so TOL = 6 cy.
The off-core latency penalty was empirically esti-

mated at approximately 1.6 cycles for both HSW and
BDW and is applied per CL transfer that takes place
over the Uncore interconnect, i.e. all transfers between
L3 and L2 caches as well as transfers between memory
and the L3 cache. The effective L3-Mem bandwidth is
thus 2.9+1.6 cy on HSW and 2.6+1.6 cy on BDW; the
effective L2-L3 is 2+1.6 cy on HSW and 2+1.6 cy on
BDW.

Transferring the three required CLs then results
in TL3Mem = 8.7 + 4.8 cy on HSW resp. TL3Mem =
7.8 + 4.8 cy on BDW. Moving five CLs between the
L2 and L3 caches takes TL2L3 = 10 + 8 cy on both
HSW and BDW. At a L1-L2 bandwidth of 1 cy/CL,
moving the same five CLs takes TL1L2 = 5 cy on
both microarchitectures. The ECM inputs are thus
{6 ‖ 5 | 5 | 10 + 8 | 8.7 + 4.8} cy for HSW and for BDW
{6 ‖ 5 | 5 | 10 + 8 | 7.8 + 4.8} cy. The corresponding run-
time predictions are {6 e 10 e 28 e 41.5} cy for HSW and
{6 e 10 e 28 e 40.6} cy for BDW. The performance pre-
dictions are 443 MLUP/s for HSW and 413 MLUP/s for
BDW.

5.2 Cache Blocking Optimization
One way to increase the performance of the single-

core implementation is to reduce the amount of time
spent transferring data inside the cache hierarchy. As
previously established, a[y-1][x] and a[y][x+1] are
loaded from the L3 cache, because the L1 and L2 caches
are too small to fulfill the LC for N = 32768. Using
cache blocking, it is possible to enforce the LC in ar-
bitrary cache levels. This is done by partitioning the
grid into stripes along the y-axis; the grid is then pro-
cessed stripe by stripe. The diameter of the stripes,
also known as blocking factor bx, is chosen is such a
way that the LC is met for a given cache level. If L2
blocking is desired, the L2 cache size of 256 kB requires
that bx should be chosen smaller than 5461.

Efficient blocking for the 32 kB L1 cache not as
straightforward. Although determining bx < 682 is
simple using the LC, naive L1 blocking in x-direction
has negative side effects. With most of the data for
one CL update coming from L1, the L2 cache is less
busy. This slack is detected by hardware prefetchers,
making them more aggressive, leading to data being
prefetched from main memory. With bx ≈ 680, the size
of one stripe is 680 · 32768 · 8 B = 170 MB—too large
for the L3 cache, which means that data prefetched
from main memory will be preempted from the cache
before it is used. This can be avoided either by dis-
abling some of the prefetchers or additionally blocking
in y-direction. We used the latter, because disabling
prefetchers might degrade performance elsewhere. To
guarantee data is used before being preempted, the
size of each chunk should be chosen smaller than 50%
of a single L3 segment,4 e.g. by < 50%·2.5 MB/(bx ·8 B).

4In the multi-core scenario, all cores might be active and store
data in the shared L3 cache; the capacity dedicated to a single
core is thus that of a single L3 segment adjusted by 50% to reflect
effective cache size.

ECM Model for SNB and IVB
Other than causing negligible loop overhead cache

blocking does not change the instructions that have to
be retired to process one CL; thus TOL and TnOL remain
unchanged.

L2 blocking reduces the number of CLs transferred
between L3 and L2 from five to three, lowering TL2L3

from ten to six cycles on both SNB and IVB. The run-
time prediction TMem

ECM for both SNB and IVB is reduced
from 41.2 to 37.2 cy, leading to a performance predic-
tion PMem

ECM of 580 MLUP/s for SNB and 645 MLUP/s
for IVB.

Similarly L1 blocking reduces the CL traffic between
L2 and L1 caches from five to three CLs, lowering TL1L2

from ten to six cycles on both SNB and IVB. Again,
the runtime prediction TMem

ECM for both microarchitec-
tures is reduced by four cycles from 37.2 to 33.2 cy. The
predicted performance PMem

ECM increases to 651 MLUP/s
on SNB and 723 MLUP/s on IVB.

ECM Model for HSW and BDW
The effect of L2 blocking is more pronounced on

HSW and BDW, because the cost of transferring a CL
is higher on these microarchitectures due to the la-
tency penalty. L2 blocking lowers TL2L3 from 10+8 to
6+4.8 cy on HSW and BDW. In turn, the runtime pre-
diction TMem

ECM for HSW is reduced from 41.5 to 34.3 cy
and from 40.6 to 33.4 cy on BDW. The performance
prediction PMem

ECM increases to 536 MLUP/s on HSW
and 503 MLUP/s on BDW.

Because the L1-L2 bandwidth increased from 2 cy/CL
on SNB/IVB to 1 cy/CL on HSW/BDW, the perfor-
mance improvement offered by L1 blocking is less pro-
nounced than on SNB and IVB. With the number of
CL transfers lowered from five to three with L1 block-
ing, TL1L2 is reduced from five to three cycles. The
runtime prediction TMem

ECM for HSW is reduced from 34.3
to 32.3 cy; on BDW from 33.4 to 31.4 cy. The predicted
performance PMem

ECM is increased to 570 MLUP/s on HSW
and 535 MLUP/s on BDW.

5.3 Cluster-on-Die Mode
As a workaround to the limited scalability of the phys-

ical ring interconnect introduced with Westmere-EX,
HSW and BDW switch to a dual-ring design. HSW
uses the so-called “eight plus x” design, in which the
first eight cores of a chip are attached to a primary ring
and the remaining cores (six for the model introduced in
Section 4) are attached to a secondary ring; BDW uses
a symmetric design. Two queues enable data to pass
between rings. In the default (non-COD) mode, the
physical topology is hidden from the operating system,
i.e. all cores are exposed within the same non-uniform
memory access (NUMA) domain.

To understand the latency problems caused by the in-
terconnect, we examine the route data travels inside the
Uncore. Using a hashing function data is is distributed
across all L3 segments based on its memory address.
When accessing data in the L3 cache, there is a high
probability it must be fetched from remote L3 segments.
In the worst case, this is a segment on the other ring so
there might be a high latency involved. In the case of a



L3 miss the situation gets worse. Each physical ring has
attached to it a memory controler (MC) and the choice
which MC to use is again based on the data’s address.
So a L3 miss in a segment on one physical ring does
not imply that this ring’s MC will be used to fetch the
data from memory. That leads to cases in which a large
number of hops and multiple cross-physical ring trans-
fers are involved when getting data from main memory.

One way to reduce these latencies is the new COD
mode introduced together with the dual-ring design on
HSW and BDW in which cores are separated into two
physical clusters of equal size. The latency reduction
is achieved by adapting the involved hashing functions.
Data requested by a core of a cluster will only be placed
in the cluster’s L3 segments; in addition, all memory
transfers are routed to the MC dedicated to the cluster.
Thus, for NUMA-aware codes, COD mode effectively
lowers the latency by reducing the diameter and the
mean distance of the dual-ring interconnect by restrict-
ing each cluster to its own physical ring. For a more
detailed analysis of COD mode see [4]. On the HSW
chip used for benchmarks, COD mode lowers the inter-
connect latency by 0.5 cy; on the employed BDW chip,
where a single ring still has eleven cores attached to it,
the latency is only reduced by 0.3 cy.

ECM Model for HSW and BDW
With COD enabled, the per-CL Uncore latency

penalty is reduced to 1.1 cy on HSW resp. 1.3 cy on
BDW. This leads to TL3Mem = 8.7 + 3.3 cy on HSW
resp. 7.8+3.9 cy on BDW. Because the Uncore is also
involved in L2-L3 transfers, the latency improvement
caused by enabling COD also positively influences
TL2L3. To transfer three CLs, 6+3.3 cy are required
on HSW resp. 6+3.9 cy on BDW. The resulting ECM
inputs are {6 ‖ 5 | 3 | 6 + 3.3 | 8.7 + 3.3} for HSW and
{6 ‖ 5 | 3 | 6 + 3.9 | 7.8 + 3.9} for BDW. The correspond-
ing runtime prediction is {6 e 8 e 17.3 e 29.3} on HSW
and {6 e 8 e 17.9 e 29.6} on BDW. The performance pre-
dicted by the ECM model is 628 MLUP/s for HSW and
567 MLUP/s on BDW.

5.4 Non-Temporal Stores
Streaming or non-temporal (NT) stores are special

instructions that avoid write-allocates on modern In-
tel microarchitectures. Without NT stores, storing
the newly computed result b[y][x] triggers a write-
allocate. The old data is brought in from memory and
travels through the whole cache hierarchy. Thus the
first benefit of using NT stores is that the unnecessary
transfer of b[y][x] from memory to the L1 cache no
longer takes place. In addition, NT stores will also strip
some cycles off the time involved getting the new result
to main memory. Using regular stores, the newly com-
puted result is written to the L1 cache, from where the
data has to be evicted at some point through the whole
cache hierarchy into memory. Using NT stores, CLs are
sent via the L1 cache to the line fill buffers (LFBs); from
there, they are transfered directly to memory and do
not pass through the L2 and L3 caches. Although the
benefits should apply equally to all microarchitectures,
there are shortcomings in SNB and IVB that make

single-core implementations using NT stores slower
than their regular stores counterpart. The positive
impact of NT stores can only be leveraged in multi-core
scenarios on these microarchitectures, which is why we
chose to omit ECM models and measurements for the
NT store implementation for SNB and IVB.

ECM Model for HSW and BDW
Transferring a[y+1][x] between the L1 and L2

caches takes 1 cy. Although the transfer is not strictly
between the L1 and L2 cache, the cycle spent transfer-
ring the CL for b[y][x] from the L1 cache to the line
fill buffer (LFB) is booked in TL1L2 as well, making for
a total L1-L2 transfer time of 2 cy. Loading a[y+1][x]
from the L3 to the L2 cache takes TL2L3 = 2 + 1.1 cy
on HSW and 2+1.3 cy on BDW. Getting the CL con-
taining a[y+1][x] from memory takes 2.9+1.1 cy on
HSW and 2.6+1.3 cy on BDW; again, although the
transfer of b[y][x] is strictly not between the L3
cache and memory, the transfer time to send the CL
from the LFB to memory is booked in TL3Mem, mak-
ing for a total L3-Mem transfer time of 5.8+2.2 cy
on HSW and 5.2+2.6 cy on BDW. In summary, the full
ECM inputs are {6 ‖ 5 | 2 | 2 + 1.1 | 5.8 + 2.2} cy on HSW
and {6 ‖ 5 | 2 | 2 + 1.3 | 5.2 + 2.6} cy on BDW; the corre-
sponding ECM runtime prediction is {6 e 7 e 10.1 e 18.1}
on HSW and {6 e 7 e 10.3 e 18.1}. The in-memory per-
formance prediction by the ECM model is PMem

ECM =
1016 MLUP/s on HSW and 928 MLUP/s on BDW.

6. SINGLE-CORE RESULTS
Table 2 contains a summary of the ECM inputs and

predictions discussed in Section 5, as well as measure-
ments of performance, power, and energy consumption
for one 2D Jacobi iteration using a 16 GB dataset. The
model correctly predicts performance with a mean er-
ror of 3% and a maximum error of 7%, which indicates
that all single-core performance engineering measures
work as intended. On SNB and IVB performance in-
creases of around 1.3× are achieved; on HSW with 2.2×
resp. BDW with 2.1× improvement the increases are
even more pronounced. Measurements obtained via the
RAPL interface indicate increases in power consump-
tion due to optimizations are negligible (in the range
of 2%). With power draw almost constant, this means
that the performance gains directly translate into en-
ergy improvements.

An interesting observation regarding single-core power
consumption5 can be made when comparing the dif-
ferent microarchitectures that can be explained using
Intel’s “tick-tock” model. Power decreases with “ticks,”
i.e. a shrink in manufacturing size and the accompany-
ing decreases in dynamic power; power increases with
“tocks,” i.e. major improvements in microarchitecture:
The “tick” from SNB which uses 32 nm to IVB which
uses 22 nm technology corresponds to a 10% decrease in
power consumption. HSW, the only “tock” in Table 2
uses the same 22 nm process as IVB but introduced
5The RAPL counters can not report power consumption of indi-
vidual cores but only that of the whole package. Thus reported
values also include power drawn by Uncore facilities, e.g. all L3
segments and the interconnect.



Table 2: Summary of ECM inputs, ECM predictions, as well as measured performance, power consumption, and energy-to-
solution for one 2D Jacobi iteration with a dataset size of 16 GB.

ECM ECM pre- PMem
ECM Measured Chip Chip Energy-

µarch Version input [cy] diction [cy] [MLUP/s] [MLUP/s] Power [W] to-Solution [J]
SNB Baseline {6 ‖ 8 | 10 | 10 | 13.2} {8 e 18 e 28 e 41.2} 524 514 35.9 75.0

L2 blocked {6 ‖ 8 | 10 |6 | 13.2} {8 e 18 e24 e37.2} 580 623 36.4 62.7
L1 blocked {6 ‖ 8 |6 | 6 | 13.2} {8 e14 e20 e33.2} 651 672 36.6 58.4

IVB Baseline {6 ‖ 8 | 10 | 10 | 13.2} {8 e 18 e 28 e 41.2} 582 539 32.7 65.3
L2 blocked {6 ‖ 8 | 10 |6 | 13.2} {8 e 18 e24 e37.2} 645 651 34.1 56.1
L1 blocked {6 ‖ 8 |6 | 6 | 13.2} {8 e14 e20 e33.2} 722 714 33.0 49.6

HSW Baseline {6 ‖ 5 | 5 | 10 + 8 | 8.7 + 4.8} {6 e 10 e 28 e 41.5} 443 435 50.9 125.6
L2 blocked {6 ‖ 5 | 5 |6+4.8 | 8.7 + 4.8} {6 e 10 e20.8 e34.3} 536 529 51.0 103.5
L1 blocked {6 ‖ 5 |3 | 6 + 4.8 | 8.7 + 4.8} {6 e8 e18.8 e32.3} 570 579 52.1 96.6
L1 b.+CoD {6 ‖ 5 | 3 | 6 + 3.3 | 8.7 + 3.3} {6 e 8 e17.3 e29.3} 628 625 51.3 88.0
L1 b.+CoD+nt {6 ‖ 5 |2 |2+1.1 |5.8+2.2} {6 e7 e10.1 e18.1} 1016 951 51.0 57.6

BDW Baseline {6 ‖ 5 | 5 | 10 + 8 | 7.8 + 4.8} {6 e 10 e 28 e 40.6} 413 407 44.2 116.5
L2 blocked {6 ‖ 5 | 5 |6+4.8 | 7.8 + 4.8} {6 e 10 e20.8 e33.4} 503 489 44.3 97.4
L1 blocked {6 ‖ 5 |3 | 6 + 4.8 | 7.8 + 4.8} {6 e8 e18.8 e31.4} 535 509 44.5 93.7
L1 b.+CoD {6 ‖ 5 | 3 | 6 + 3.9 | 7.8 + 3.9} {6 e 8 e17.9 e29.6} 567 561 44.6 86.0
L1 b.+CoD+nt {6 ‖ 5 |2 |2+1.3 |5.2+2.6} {6 e7 e10.3 e18.1} 928 862 45.4 56.6

major improvements in the microarchitecture (cf. Sec-
tion 4) which lead to a more than 50% higher power
draw. BDW, a “tick” which uses a 14 nm process uses
11% less power than HSW. While it is tempting to
generalize from these results, note that the reported
numbers are specific to the 2D Jacobi application and
the used chip models. We also believe that while a surge
in power consumption occurs with the HSW “tock” the
cause to be a combination of microarchitectural im-
provements and the higher core count.6

7. CHIP-LEVEL OBSERVATIONS
Although the ECM model can be used to predict

multi-core scaling behavior [6, 4, 18], due to space con-
straints chip-level discussion is restricted to empirical
results. The graphs in Figure 3 show the improvements
discussed in Section 5 and relate measured performance
and energy-to-solution for different core counts.7 IVB
(Fig. 3a) and HSW (Fig. 3b) are chosen as represen-
tatives to demonstrate that the different optimizations
have different impacts on performance and energy con-
sumption depending on the microarchitecture.

On IVB, running on ns = 5 instead of ten cores re-
duces energy consumption by 13% 44.4 J to 34.8 J; on
HSW, running on seven instead of 14 cores amounts to
a reduction of 16% from 57.0 J to 47.6 J. The positive
impacts of L1 blocking can be observed for both mi-
croarchitectures, corresponding to a further decrease of
energy consumption by 16% to 29.1 J on IVB resp. 10%
to 43.0 J on HSW. COD mode brings energy consump-
tion on HSW further down by 6% to 40.5 J.

When it comes to NT stores the differences in the mi-
croarchitectures become visible. On IVB, the per-core
performance of the implementation using L1 blocking
and NT stores (dark blue line in Fig. 3a) is lower than
that of the version using regular stores. A version using

6Despite only one core being active in the measurements, all L3
cache segments are active and draw power; a chip with more cores
will thus draw more power in single-core use cases.
7The leftmost measuring point of each graph corresponds to one
core. Following the line attached to a point to the next cor-
responds to one more core being active. For demonstration pur-
poses the purple graph in Fig. 3a has some core counts annotated.

NT stores without L1 blocking (bright blue line) does
not even manage to sustain memory bandwidth. Due to
this bad per-core performance, NT stores on SNB/IVB
have almost no positive impact on energy consumption!
On HSW, per-core performance as expected is exactly
1.5× faster with NT stores, enabling a lowering in en-
ergy consumption by 33% to 27.0 J.

Another difference in microarchitecture surfaces when
examining frequency-tuning for potential energy sav-
ings. Before HSW, i.e. on SNB and IVB, the chip’s
Uncore frequency was set to match the frequency of the
fastest active core. Because the Uncore contains L3 seg-
ments, ring interconnect, and memory controllers, L3
and memory bandwidth is a function of core frequency
on SNB/IVB. This effect can be observed when set-
ting the frequency to 1.2 GHz on IVB (magenta line in
Fig 3a): Despite providing the best energy-to-solution,
performance is hurt badly. On HSW, the Uncore is
clocked independently. This leads to a situation in
which (due to frequency-induced lower per-core per-
formance) more cores are required to saturate main
memory bandwidth (cf. magenta line in Fig.3b); how-
ever, the lower per-core power consumption translates
into overall energy savings of 11%, lowering energy-to-
solution to 24.0 J. These results indicate that energy
consumption could be further reduced if the chips of-
fered frequencies below their current 1.2 GHz floor.

Table 3 contains a summary of the final result per-
taining to energy saving for each microarchitecture.
The “reference” value corresponds to energy consump-
tion of the baseline implementation running on all cores
clocked at the chip’s nominal frequency. Energy-to-
solution of the most energy-efficient version is listed in
the“optimized”column along with the number of active
cores and their frequency that was used to obtain the
results in the “configuration” column.

8. CONCLUSION
We have applied a new energy-optimization approach

to a 2D Jacobi solver and analyzed its effects on a range
of recent Intel multi-core chips. Using the execution-
cache-memory (ECM) model single-core software im-
provements were described and their accuracy validated
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Figure 3: Performance vs. energy-to-solution for different
core counts on IVB (a) and HSW (b).

by measurements. For the first time, the ECM model
has been (a) extended to incorporate non-temporal
(NT) stores and (b) applied to a Broadwell-EP chip.
We found energy consumption can reduces by a factor of
2.1× on Sandy Bridge-EP, 2.0× on Ivy Bridge-EP, 2.4×
on Haswell-EP, and 2.3× on Broadwell-EP. Further, we
found that while NT stores can increase performance
on Sandy- and Ivy Bridge-based E5 processors, a direct
positive impact on energy consumption could not be
observed; only in combination with frequency tuning
do NT stores offer a better energy-to-solutions on these
architectures. Measurements indicate that this prob-
lem has been solved on Haswell-EP and Broadwell-EP.
Moreover, our results indicate that future microarchi-
tectures that keep core and Uncore frequencies decou-
pled could offer improved energy-efficiency if core fre-
quencies below the current 1.2 GHz floor were available.
Beyond these immediate results we have demonstrated
the viability of our energy-optimization approach.
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