
Platform for Building Large-Scale Agent-Based
Systems

Carolina Zato, Alejandro Sánchez, Gabriel Villarrubia,
Sara Rodríguez and Juan Manuel Corchado

Department of Computer Science and Automation
University of Salamanca

Salamanca, Spain
{carol_zato, asanchezyu, gvg, srg, corchado}@usal.es

Javier Bajo
Department of Computing Science
Pontifical University of Salamanca

Salamanca, Spain
jbajope@upsa.es

Abstract—This paper presents an agent platform called
PANGEA (Platform for Automatic coNstruction of
orGanizations of intElligent Agents). This platform allows to
developed multiagent systems modeled as Virtual Organizations.
The concepts of roles, organizations and norms are fully
supported by the platform assuring flexibility and scalability.
Moreover, a communication protocol based on IRC gives high
performance and reliability to this kind of distributed systems.

Keywords-component; agent platform, distributed systems,
virtual organizations, IRC protocol.

I. INTRODUCTION
Distributed multi-agent systems have become increasingly

sophisticated in recent years, with the growing potential to
handle large volumes of data and coordinate the operations of
many organizations [24]. Distributed intelligent systems are
intelligent systems built on a distributed computer system.
They are based on the use of cooperative agents, and are
organized in hardware or software components. In the system,
each agent independently handles a small set of specialized
tasks and cooperates to achieve the system-level goals and a
high degree of flexibility [26]. Multiagent systems have
become the most effective and widely used form of developing
this type of application in which communication among
various devices must be both reliable and efficient. One of the
problems related to distributed computing is message passing,
which is in turn related to the interaction and coordination
among intelligent agents. Consequently, a multiagent
architecture must necessarily provide a robust communication
platform and mechanisms to control and correct any problems.

There is additionally a rapidly growing use of mobile
devices with limitless connection possibilities and computing
power. This creates another problem for distributed systems,
which must now be able to accept requests from different
devices. From a practical perspective, multiagent systems face
yet another challenge, that of obtaining light intelligent agents
that can be deployed in this type of device without
relinquishing their capabilities.

This article presents a multiagent platform based on a
Virtual Organization paradigm. The platform includes a robust
communication model that allows intelligent agents to connect
from a variety of devices. These agents can be developed both

quickly and in any language using the tools provided by the
platform.

The remainder of the paper is structured as follows: the
next section introduces some existing platforms. Section 3
presents an overview of the main characteristics of the
platform. Finally, section 4 explains some results and
conclusions.

II. RELATED WORKS
As previously mentioned, the multiagent system was based

on a Virtual Agent Organization [7]. Consequently, the
platform makes it possible to create open systems that resolve
the inflexibility of a multiagent system whose characteristics
must be modeled during the design and implementation phases,
but are difficult to adapt during the execution phase. This can
be achieved by virtual agent organizations, which provide
communities, roles, norms and other organizational and
institutional concepts [6] that are modeled in way that allows
the architecture to offer flexibility for the configuration of its
use during the execution phase.

This is a step forward with regards to flexibility, although it
entails greater effort in the coordination and interaction among
agents, which in turn implies a greater number of messages,
itself a key factor in distributed systems. This usually requires a
common language, an Agent Communication Language, or
ACL. Much work has been done in developing ACLs that are
declarative, syntactically simple, and readable by people.
KQML [11] and FIPA-ACL [13] are two of the most widely
used ACLs in multi-agent systems [10].

The platforms for the development of the most successful
multiagent architectures to date, including FIPA-OS [9], JADE
(Java Agent Development Framework) [12], Jadex [15], use
FIPA-ACL. Other platforms such as Cougaar [25] use KQML
language or JASON [27][28], which uses SACI (Simple Agent
Communication Infrastructure) [14] based on KQML.

Focusing on platforms that create Virtual Organizations we
find the same scenario. MadKit [20], Jack Teams [23], J-
Moise+ [22], THOMAS [21] use one of the previous
implementations.

PANGEA will not pretend to present a new communication
protocol; instead it will introduce the IRC protocol within
multiagent systems. This protocol is widely used in other

distributed environments and has already demonstrated its
reliability and robustness. What is proposed is its use within the
platform, providing advantages, such as ease of
implementation and reliability, given that it has been widely
used in online communities with good functionality.

III. DESCRIPTION OF THE PLATFORM
In general terms, the proposed platform includes the

following characteristics:

• Different models of agents, including a BDI and CBR-
BDI architecture.

• Control the life cycle of agents with graphic tools.

• A communication protocol that allows broadcast
communication, multicast according to the roles or
suborganizations, or agent to agent.

• A debugging tool.

• Module for interacting with FIPA-ACL agents.

• Service management and tools for discovering
services.

• Web services.

• Allow organizations with any topology.

• Organization management.

• Services for dynamically reorganizing the
organization.

• Services for distributing tasks and balancing the
workload.

• A business rules engine to ensure compliance with the
standards established for the proper operation of the
organization.

• Programmed in Java and easily extensible.

• Possibility of having agents in various platforms
(Windows, Linux, MaccOS, Android and IOS)

• Interface to oversee the organizations.

When launching the main container of execution, the
communication system is initiated; the agent platform then
automatically provides the following agents to facilitate the
control of the organization:

• OrganizationManager: the agent responsible for the
actual management of organizations and
suborganizations. It is responsible for verifying the
entry and exit of agents, and for assigning roles. To
carry out these tasks, it works with the
OrganizationAgent, which is a specialized version of
this agent.

• InformationAgent: the agent responsible for accessing
the database containing all pertinent system
information.

• ServiceAgent: the agent responsible for recording and
controlling the operation of services offered by the
agents.

• NormAgent: the agent that ensures compliance with all
the refined norms in the organization.

• CommunicationAgent: the agent responsible for
controlling communication among agents, and for
recording the interaction between agents and
organizations.

• Sniffer: manages the message history and filters
information by controlling communication initiated by
queries.

We want to create a service oriented platform that can take
maximum advantage of the distribution of resources. To this
end, all services are implemented as web services. This makes
it possible for the platform to include both a service provider
agent and a consumer agent, thus emulating a client-server
architecture. The provider agent knows how to contact the web
service; once the client agent’s request has been received, the
provider agent extracts the required parameters and establishes
the contact. Once received, the results are sent to the client
agent.

Figure 1. Platform Overview

A. Communication Platform
This section will focus on describing the communication

platform and protocol. As observed in Figure 1, the
communication platform includes two main agents: the
CommunicationAgent and the Sniffer. The first is in charge of
checking the connections to confirm that the agents are online
and see which ones have disconnected. It is also in continual
communication with the NormAgent to ensure that the agents
respect the lines of communication and comply with the
standards. The Sniffer is in charge of recording all
communication, offers services so that other agents can obtain
history information, and facilitates the control of information
flow for programmers and users.

The IRC protocol was used to implement communication.
Internet Relay Chat (IRC) is a Real Time Internet Protocol for

private void conect (Object sender, EventArgs e){
irc.OnJoin += new JoinEventHandler(OnQueryMessage);
irc.OnQueryMessage += new IrcEventHandler(OnQueryMessage);
irc.OnRawMessage += new IrcEventHandler(OnRawMessage):
irc.Connect(host.Text, 6667);
irc.Login(agent,Text, null);
irc.Listen()
}

simultaneous text messaging or conferencing. This protocol is
regulated by 5 standards: RFC1459 [1], RFC2810 [5],
RFC2811 [4], RFC2812 [2] y RFC2813 [3]. It is designed
primarily for group conversations in discussion forums and
channel calls, but also allows private messaging for one on one
communications, and data transfers, including file exchanges
[25]. The protocol in the OSI model is located on the
application layer and uses TCP or alternatively TLS [29]. An
IRC server can connect with other IRC servers to expand the
user network. Users access the IRC networks by connecting a
client to a server. There have been many implementations of
clients, including mIRC or XChat. The original protocol is
based on flat text (although it was subsequently expanded), and
used TCP port 6667 as its primary port, or other nearby ports
(for example TCP ports 6660-6669, 7000) [26]. The standard
structure for an IRC server network is a tree configuration. The
messages are routed only through those nodes that are strictly
necessary; however, the network status is sent to all servers.
When a message must be sent to multiple recipients, it is sent
similar to a multidiffusion; that is, each message is sent to a
network link only once [29]. This is a strong point in its favor
compared to the no-multicast protocols such as SimpleMail
Transfer Protocol (SMTP) or the Extensible Messaging and
Presence Protocol (XMPP).

One of the most important features that characterize the
platform is the use of the IRC protocol for communication
among agents. This allows for the use of a protocol that is easy
to implement, flexible and robust. The open standard protocol
enables its continuous evolution. There are also IRC clients for
all operating systems, including mobile devices.

All messages include the following format: prefix command
command-parameters\r\n. The prefix may be optional in some
messages, and required only for entering messages; the
command is one of the originals from the IRC standard.

Another advantage in using IRC involves the ease in
implementing communication. The platform’s code generating
tool makes it possible to easily create an outline of an agent,
with the communication code requiring few lines of code. The
Figure 2 displays the code for an agent in C#. It is clear that the
functionality of the code consists in associating different events
to the OnqueryMessage method, intercepting when an agent
receives a message or enters an organization, and effectively
handling that action from the OnqueryMessage method. The
Connect method specified the host and the communication
server port, which is responsible for all agents to connect and
communicate. The OnRawMessage event is responsible for
intercepting all server responses.

Figure 2. Example of the connection code for an C# agent

IV. RESULTS AND CONCLUSIONS
In order to test communication among the agents deployed in
the platform, a test case was designed, as shown in Figure 2.
The first building contains a machine with an Intel Core 2 CPU
6600 2.4GHz processor with 4Gb RAM and a 64 bit operating
system connected to a network with a symmetrical speed of 2
Mb. The communication server is installed on this machine.
Located in the same building but on a different network, there
are 4 PCs each containing 15 agents. In another building
located 4 kms away, 2 laptops, each containing 30 agents, and
a PC with 600 agents are connected. In a third building, 10
agents join the platform from a connected PC; 4 agents are
connected from Android Smartphones, and 2 from iPhones.
The purpose of the study is to test communication.
Consequently, the 736 agents involved do not carry out
complex computational tasks; instead they simply request
information from web-based news services or other basic
services configured within the platform.

Figure 3. Test Case

Two tests were carried out. The first was performed on a
Monday with agents active during a 24 hour period, while the
second was performed on a Friday with agents functioning
during an 18 hour period, so that different network conditions
could be analyzed. As previously explained, the agents can be
developed in any language that uses sockets to enable
communication. The following table displays the number of
agents according to the language implemented, and the number
of disconnected agents. The third column lists the number of
resent messages. Since all messages should arrive to the
destination agent, the platform configures time-outs to resend
the messages. This column, therefore, represents the number of
messages that were unable to be sent on the first attempt, and
have remained in the server’s time-out system waiting to be
sent and receive confirmation.

TABLE I. RESULTS

Agent
Type

Numb
er of

deploy
ed

agents

Number of down
agents

Number of resend
messages

Test 1 Test 2 Test 1 Test 2

.NET 210 2 4 21 18

Agent
Type

Numb
er of

deploy
ed

agents

Number of down
agents

Number of resend
messages

Test 1 Test 2 Test 1 Test 2

C# 200 3 3 24 20
Objective
C 2 0 0 2 5

Phyton 140 1 0 13 15

Java 180 1 1 18 11
Java
Android 4 0 0 3 4

The evolution of the number of messages that the server

transmitted during the first test can be seen in Figure 4. For
each hour, the average number of messages is shown.

Figure 4. Message though the server

We can conclude that the PANGEA agent platform that we are
developing has great potential to create open systems, and
more specifically, virtual agent organizations. This platform
includes various tools that make it easy for the end user to
create, manage and control these systems. One of the greatest
advantages of this system is the communication platform that,
by using the IRC standard, offers a robust and widely tested
system that can handle a large number of connections and
ensure scalability.

ACKNOWLEDGMENT
This work has been partially supported by the MICINN

project TIN 2009-13839-C03-03

REFERENCES
[1] Oikarinen, J. and D. Reed, "Internet Relay Chat Protocol", RFC 1459,

May 1993.
[2] Kalt, C., "Internet Relay Chat: Client Protocol", RFC 2812, April 2000.
[3] Kalt, C., "Internet Relay Chat: Server Protocol", RFC 2813, April 2000.
[4] Kalt, C., "Internet Relay Chat: Channel Management", RFC 2811, April

2000.
[5] Kalt, C., "Internet Relay Chat: Architecture", RFC 2811, April 2000.
[6] Ferber, O. Gutknecht, F. Michel. 2004. From Agents to Organizations:

an Organizational View of Multi-Agent Systems, in: P. Giorgini, J.
Muller, J. Odell (Eds.), Agent-Oriented Software Engineering VI, Vol.
LNCS 2935 of Lecture Notes in Computer Science, Springer-Verlag:
214–230.

[7] Foster, I., Kesselman, C. and Tuecke, S. 2001. The anatomy of the grid:
Enabling scalable virtual organizations, Int. J. High Perform. Comput.
Appl, vol. 15, no.~3: 200--222

[8] O'Brien, P. D. and Nicol, R. C. FIPA ‚ Towards a Standard for Software
Agents. BT Technology Journal, vol. 13, issue 3, pp. 51-59. Springer
Netherlands, 1998.

[9] Emorphia, FIPA-OS. http://fipa-os.sourceforge.net/
[10] Berna-Koes, M.; Nourbakhsh, I.; Sycara, K. "Communication efficiency

in multi-agent systems," Robotics and Automation, 2004. Proceedings.
ICRA '04. 2004 IEEE International Conference on , vol.3, no., pp. 2129-
2134 Vol.3, 26 April-1 May 2004 doi: 10.1109/ROBOT.2004.1307377

[11] Finin, T., Fritzson, R. and McEntire, R. KQML as an agent
communication language. In Proceedings of the 3rd International
Conference on Information and Knowledge Management, November
1994.

[12] Dale, J., Knottenbelt, J. and Fujisu Labo. April Agent Platform.
http://designstudio.lookin.at/research/relate%20survey/Survey%20Agent
%20Platform/April%20Agent%20Platform.htm (accessed 02 01 2012)

[13] (1997) Foundation for intelligent physical agents. [Online]. Available:
http://www.fipa.org.

[14] SACI – Simple Agent Communication Infrastructure.
http://www.lti.pcs.usp.br/saci/

[15] Braubach, L., Pokahr, A. and Lamersdorf, W. Jadex: A Short Overview.
In Procceding Main Conference Net.ObjectDays 2004, pp. 195-207,
2004.

[16] O. Gutknecht and J. Ferber. MadKit: Organizing heterogeneity with
groups in a platform for multiple multi-agent systems. Technical Report
R.R.LIRMM 9718, LIRM, December 1997.

[17] Busetta, P., Rönnquist, R., Hodgson, A., and Lucas, A. (1998). JACK
Intelligent Agents - Components for Intelligent Agents in Java.
Technical report, Agent Oriented Software Pty. Ltd, Melbourne,
Australia

[18] Jomi Fred Hubner, Jaime Simao Sichman, and Olivier Boissier. A model
for the structural, functional, and deontic specification of organizations
in multiagent systems. In Guilherme Bittencourt and Geber L. Ramalho,
editors, Proceedings of the 16th Brazilian Symposium on Artificial
Intelligence (SBIA'02), volume 2507 of LNAI, pages 118-128, Berlin,
2002. Springer.

[19] Hübner, J.F., Bordini, R.H., Picard, G.: Using Jason and MOISE+ to
develop a team of cowboys. In: Hindriks, K., Pokahr, A., Sardina, S.
(eds.) Proceedings of the Seventh International Workshop on
Programming Multi-Agent Systems (ProMAS 08), Agent Contest, held
with The Seventh International Joint Conference on Autonomous Agents
& Multi-Agent Systems (AAMAS 2008), LNAI, vol. 5442, pp. 238–
242. Springer, Heidelberg (2009)

[20] Gutknecht O. and Ferber, J. MadKit: Organizing heterogeneity with
groups in a platform for multiple multi-agent systems. Technical Report
R.R.LIRMM 9718, LIRM, December 1997.

[21] Giret, A. An open architecture for Service-Oriented Virtual
Organizations. Programming Multi-Agent Systems: 7th International
Workshop, ProMAS 2009

[22] Hübner, J.F. J -Moise+ Programming organisational agents with Moise+
& Jason. Technical Fora Group at EUMAS'07.

[23] Agent Oriented Software Pty Ltd. JACK™ Intelligent Agents Teams
Manual. s.l. : Agent Oriented Software Pty Ltd, 2005

[24] Helsinger, A.; Thome, M.; Wright, T. "Cougaar: a scalable, distributed
multi-agent architecture," Systems, Man and Cybernetics, 2004 IEEE
International Conference on , vol.2, no., pp. 1910- 1917 vol.2, 10-13
Oct. 2004 doi: 10.1109/ICSMC.2004.1399959

[25] Helsinger, A.; Wright, T.; , "Cougaar: A Robust Configurable Multi
Agent Platform," Aerospace Conference, 2005 IEEE , vol., no., pp.1-10,
5-12 March 2005 doi: 10.1109/AERO.2005.1559614

[26] Gruver, W., “Technologies and Applications of Distributed Intelligent
Systems”, IEEE MTTChapter Presentation, Waterloo, Canada, 2004

[27] Bordini, R. H., Hübner, J. F., and Vieira, R. 2005. Jason and the Golden
Fleece of agent-oriented programming. In Bordini, R. H., Dastani, M.,
Dix, J., and El Fallah Seghrouchni, A., eds., Multi-Agent Programming:
Languages, Platforms and Applications. Springer-Verlag. chapter 1, 3-
37.

[28] Bordini, R. H., Hübner, J. F., and Wooldridge, M. 2007. Programming
Multi-Agent Systems in AgentSpeak Using Jason. John Wiley & Sons,
Ltd.

