
A Kinodynamic Planning-Learning Algorithm
for Complex Robot Motor Control

Javier González-Quijano, Mohamed Abderrahim, Fernando Fernández, Choukri Bensalah
University Carlos III of Madrid (jgonza1,mohamed,choukri@ing.uc3m.es, ffernandez@inf.uc3m.es)

Abstract—Robot motor control learning is currently one of the
most active research areas in robotics. Many learning techniques
have been developed for relatively simple problems. However,
very few of them have direct applicability in complex robotic
systems without assuming prior knowledge about the task, mainly
due to three facts. Firstly, they scale badly to continues and
high dimensional problems. Secondly, they need too many real
robot-environment interactions. Finally, they are not capable of
adapting to environment or robot dynamic changes. In order to
overcome these problems, we have developed a new algorithm
capable of finding from scratch open-loop state-action trajectory
solutions by mixing sample-based tree kinodynamic planning
with dynamic model learning. Some results demonstrating the
viability of this new type of approach in the cart-pole swing-up
task problem are presented.

I. INTRODUCTION

Mixing planning and model learning is indeed the core of
model based learning techniques. Here, the planning process
employs internal models, even if they are still immature. Every
time the plan is executed, the model is updated with the new
obtained experience. Later, a new planning process starts and
so on. These planning-learning cycles finish when the model
is good enough to generate an appropriate action sequence
to reach the goal. Techniques which do not rely in prior
knowledge or do not make use of an initial solution are most of
the times formulated as a Markov Decision Process. Almost all
algorithms solve the problem with dynamic programming re-
lated techniques. This is indeed too costly as these techniques
scale very badly to continuous high dimensional problems,
mainly due to their recursive nature.

The objective of this work is to develop a new algorithm
based on the same ideas than model-based learning techniques,
but making the planning process more efficient, even in the
case of continuous high dimensional state-action spaces. In this
sense, the main contribution of this work is to demonstrate that
fusing randomized sample-based tree kinodynamic planners
and model learning results in a new efficient way of motor
control learning in complex robotic systems. The advantages
provided by this algorithm should not depend on any specific
randomized sample-based tree kinodynamic planner or model
learning technique. Nevertheless, our developed algorithm,
KiPLA (Kinodynamic Planning-Learning Algorithm), is im-
plemented using the Blind-RRT planner in conjunction with
the Local Weighted Projection Regression (LWPR) technique
for the model learning process, which certainly helps on the
scalability of the system.

II. RELATED WORK

Many different approaches have been developed for motor
control learning problems in past years. A very nice attempt to
accomplish the objective of classifying them has recently been
perform by Schaal et. al. [1]. Basically, there exist three main
learning schemes: model-free learning, model-based learning
and mix learning approaches. Model-based approaches learn
a dynamic transition model of the system at the same time
that exploit it using planning. They often require less real
interaction with the environment than model-free approaches
as the behaviour of the system can be simulated with such
models. This fact encourages the choice of this type of meth-
ods for robotics. The models are usually learned using function
approximation techniques [2], [3] derived from the machine
learning field. Generally, an optimal control policy, which
maximizes the expected cumulative reward, may theoretically
be calculated by making use of dynamic programming [4]
related techniques. The control policy is generally encoded by
a value function which tells the robot the expected cumulative
reward from its current state while applying the optimal policy.
Nonetheless, the scalability of such type of techniques to
problems with high dimensional state-action spaces is still a
matter of study. This is mainly due to the well known ”curse
of dimensionality problem” [4]. The problem becomes even
much more difficult in the case of continuous state and/or
action spaces [5].

Kinodynamic planning is a relatively new field which is
gaining popularity. Randomized sampling-based planners are
often used to solve path-planning problems in continuous high-
dimensional configuration spaces. Since LaValle published the
Random Rapid Trees [6], some extensions of this popular
path planning algorithm have been developed for the purpose
of solving kinodynamic problems [7]. Due to the fact that
kinodynamic constraints do really bias the expansion of the
trees towards certain areas much more than towards others,
most of this type of kinodynamic planners focus their attention
in improving the state-space coverage. A recent approach
regarding this issue is based on identifying less variance data
distributions using PCA analysis [8]. Some other approaches
are based on identifying less density areas for biasing the
expansion of the tree towards those areas. In this case, the
employment of grid-based data structures are the preferred
choice [9], [10]. It is also possible to find some approaches
for kinodynamic planning that use learning to model the
environment constraints. Here, the expansion of the tree is still
done on the assumption of a known dynamic model. Nonethe-



less, it is possible to combine these type of randomized
sample-based kinodynamic tree planners with dynamic model
learning, which may help to efficiently learn motor control
policies without assuming prior knowledge. However, in the
best of our knowledge, this attempt has not been done before.
Next, in Section III, the KiPLA algorithm, which is precisely
focused on carrying out this combination, is presented.

III. DESCRIPTION OF KIPLA

KiPLA (Kinodynamic Planning-Learning Algorithm) is in-
deed a new type of model-based learning technique which em-
ploys randomized sample-based tree kinodynamic planning in-
stead of traditional dynamic programming related techniques.
KiPLA begins planning with an unknown forward dynamic
model. This model is used to generate plans which are not
valid at the beginning of the learning process. Applying these
plans enables to gather experimental data which is employed
to update such model [11]. For learning the model, the
Local Weighted Projection Regression (LWPR) algorithm [12],
which will be explained later, is employed. This planning-
learning cycle is represented in Figure 1.

Fig. 1. Overview of the KiPLA algorithm. The planning and model learning
cycle need to be repeated until convergence.

The KiPLA planning-learning cycle must be repeated until
convergence. This means that the plan must offer a solution
which is theoretically and in practise capable of reaching the
goal. In Figure 2, some state space results corresponding to a
learning episode of the cart-pole swing up task problem, before
convergence has been achieved, are shown. The planning tree
is represented with blue lines. At this point, the forward
dynamic model is still not mature enough to provide valid
solutions capable of leading the real system to the goal state. It
is possible to appreciate this fact by looking at the differences
between the planned state trajectory (yellow line), which ends
at the goal state, with respect to the real state trajectory
followed by the cart-pole system (red line).

Each time the planner is queried, in every cycle, after the
model has been updated with experimental data, the obtained
plans make more sense as they are constructed using all the
knowledge available. After some iterations in this procedure,
the planner starts providing plans which execution leads to
congruent solutions that are capable of bringing the robot to
the goal state.

The main advantage of KiPLA with respect to other clas-
sical model-based learning techniques is that it can quickly

Fig. 2. Differences between the state planned trajectory and the real state
trajectory during the learning process (before convergence has been achieved).

find solutions even in continues high dimensional state-action
spaces. Furthermore, the LWPR is an incremental regression
method which enables KiPLA to adapt to changing dynamics.
The main disadvantages are that no optimal solutions are
ensured and that only open-loop solutions (i.e. controller
action sequences) are provided. Nevertheless, the advantages
of this algorithm are good enough to consider its employment
in several motor control learning problems. One of the most
interesting features regarding the learning process is that the
exploration is indeed the result of exploiting an immature
model. The main advantage of this feature is that the trade-off
between exploring and exploiting is implicitly guided.

A. Model learning through Local Weighted Projection Regres-
sion

Function approximation techniques can handle the identi-
fication of complex dynamical systems. Local approximation
techniques are a preferred choice for modelling such systems.
In this work, we have employed the well known Local
Weighted Projection Regression technique to learn the robot
system dynamics in a forward way. One of the key points of
this algorithm is that it works with incremental updates, which
enables KiPLA to adapt to changing environments and/or robot
dynamics changes. The main difference of this algorithm with
other similar ones is that it finds lower dimensional distribu-
tions of the training data and then performs the regression, thus
reducing the number of local models needed to approximate
the whole function. The LWPR method uses experienced data,
denoted by the tuple {xt, at, xt+1}, as training data for the
regression algorithm. The input is formed by the state and
action vectors in instant time t and the output, what we
want to approximate, represents the state change rate. The
LWPR algorithm assumes that the objective function can be
approximated using a weighted average of different linear
models:

ŷ(x) =

K∑
k=1

wk(x)ŷk(x)/

K∑
k=1

wk(x), (1)

where yk are the hyperplanes representing the linear models:

yk(x) = b0k + bTk (x− ck), (2)



and wk represents the kernel function which will weight the
influence of each of the linear models:

wk(x) = exp(−1

2
(x− ck)TDk(x− ck)) (3)

Given a query point, x, every linear model calculates a
prediction yk(x). For nonlinear function approximation, the
core concept of the learning system is to find approximations
by means of piecewise linear models. Learning involves auto-
matically determining the appropriate number of local models
K, the parameters bk of the hyperplane in each model, and also
the region of validity, called receptive field (RF), parametrized
as the distance metric Dk in the Gaussian kernel. Local models
are then created when needed, as is deeply described in [13].

B. Blind-RRT kinodynamic planner

The Blind-RRT planner, a special kinodynamic planner
we have developed for this work, takes inspiration from the
kinodynamic version of RRTs [7]. It is randomized sample-
based tree kinodynamic planner capable of quickly obtaining
suboptimal plans, even in continues high-dimensional state-
action spaces, under strong robot and environment kinody-
namic constraints. The Blind-RRT uses a forward dynamics
model to expand its branches. The main advantage with respect
to the kinodynamic version of RRTs is that it ensures a better
state-space coverage.

The way the Blind-RRT planner expands its branches is
very similar to the RRT one. Both algorithms select the node
that will be expanded in the same way. First, a random state
is generated. Then, the nearest state node to this random state
node in the tree is found. This step is the same as in the case
of the classical RRT expansion. However, there is still a big
difference when creating a new branch. Blind-RRT does not
expand in the direction of the random state node that was
used to select the expanding node. This process is described
in Figure 3. A fix number of candidate actions, fulfilling the
action-space constraints, are picked randomly. Then, a forward
model is used to create new candidate branches (represented
with discontinues lines). In the direct extension of RRTs to
kinodynamic planning, the branch that most approximate to
the random state should be chosen. However, due to strong
biases in the candidate branches, this way of selecting the best
branch does not ensure an appropriate state-space coverage.
Our modification, in contrast, evaluates the final state of each
of the candidate branches. The best branch is considered the
one which maximizes the distance of its final state node
to the nearest one in the tree. The best branch has been
represented by a red discontinuous line. The distances of
the final state nodes of each of the branches to its nearest
neighbour (d1, d2 and d3) are represented by the ratio of the
drawn circumferences, where d1 > d2 > d3.

IV. EXPERIMENTAL RESULTS

The cart-pole swing-up task problem is very similar to the
inverted pendulum one. Both systems are classic problems
in control theory. The cart-pole system is indeed an inverted

d2

d1 d3 

Srand

Snear

Fig. 3. Blind-RRT expands its nodes by generating random candidate
branches. The one with an end state node that is more distant from any other
node is finally expanded

pendulum connected with a passive joint to a cart. Unlike the
problem of the cart-pole balancing task problem, the swing-up
task is more difficult as it involves finding a complex policy
in a large state-space volume. One of its main advantages is
that it is widely used for benchmarking control and learning
algorithms. The equations that have been used to simulate the
dynamics of the system are described in [14]. Coulomb friction
and viscous friction have also been taken into account.

Fig. 4. Representation of cart-pole system. The joint that connects the pole
with the cart is passive. The input to the system is the horizontal force applied
to the cart

Relevant system variables are contained in a four dimen-
sional state space and one action space dimension. The state
vector X(θ, θ̇, x, ẋ) represents the angular position of the
pendulum, its angular velocity, the linear velocity of the cart
and its linear position. The action vector is only formed by
the linear force, F , exerted over the cart.

The KiPLA algorithm has been applied to the cart-pole
swing-up task problem. After the learning process concludes,
the real execution of the plans leads to state trajectories which
match the planned ones. The state-space results, which are
four dimensional, have been projected onto two-dimensional
graphs. Despite the fact that there exist six possible two-
dimensional projections, only four of them have been repre-
sented in Figure 5. The initial state is represented by a black
circle. The complete planning tree is represented with thin blue
lines. The yellow continues line represents the planned state
trajectory, which is one of the branches of the tree. The red



discontinues line represents the real state trajectory followed
by the cart-pole system as as result of applying the plan.

Fig. 5. State-space results of the KiPLA algorithm applied to the cart-pole
swing-up tasks problem. Top-left, top-right and bottom-left graphs represents
the pole angular position versus the pole angular velocity, the cart linear
velocity and the cart-linear position respectively. In bottom-right graph the
pole angular velocity is represented versus the cart linear position.

A graphical sequence of the cart-pole system achieving the
goal state has been represented in Figure 6. Notice that the
pole is first balanced to the right to get enough energy to be
able to completely swing-up in the left direction. This complex
policy is needed as the control signal (i.e. the force applied
to the cart) was limited, not allowing to swing-up the pole
directly.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

Fig. 6. KiPLA finds a compex policy to achieve goal. Balancing first to
the right side is necessary for gaining enough energy to finally be able to
swing-up the pole in the right direction

Due to the stochastic nature of the algorithm, the total
number of learning episodes required for achieving the goal
state is not constant. In the case of the experiment represented
in Figure 5 and in Figure 6, the KiPLA algorithm was executed
5 times. The average number of needed learning episodes
was 143. The maximum number of episodes was 235 and
the minimum was 83. These results demonstrate that this new
algorithm is capable of learning motor control tasks.

V. CONCLUSIONS AND FUTURE WORK

This work has proposed a new original approach to allow
complex robotic systems to quickly learn new motor control
policies without assuming prior knowledge about the task. The
original concept of KiPLA is based on mixing randomized
sample-based tree kinodynamic planning and model learning.
In particular, this version of KiPLA has been implemented
with our developed Blind-RRT kinodynamic planner and the
Local Weighted Projection Regression Algorithm. The Blind-
RRT algorithm allows to efficiently look for solutions in con-
tinuous high dimensional state-action spaces. The employment
of the LWPR algorithm for the model learning process also
enables KiPLA to scale well to these kind of state-action
spaces. Future work will be focused in providing KiPLA with
active learning capabilities based on probabilistic plans. This
will help to decide which action sequence should be chosen in
order to improve the model in the regions of interest using less
trials. In addition, the probabilistic may also help to control
the risk of executing certain actions, thus allowing for safety
exploration.

VI. ACKNOWLEDGMENTS

The research leading to these results has been partially sup-
ported by the HANDLE project, which has received funding
from the European Communitys Seventh Framework Program
(FP7/2007-2013) under grant agreement ICT 231640

REFERENCES

[1] S. Schaal and C. G. Atkeson, “Learning control in robotics,” IEEE
Robotics and Automation Magazine, 2012.

[2] Modern Multivariate Statistical Techniques: Regression, Classication,
and Manifold Learning. Springer–Verlag, 2008.

[3] D. Nguyen-tuong, “Model learning in robot control,” Ph.D. dissertation,
University of Freiburg, 2011.

[4] Dynamic programming. Princeton University Press, 1957.
[5] J. C. Santamaria, R. S. Sutton, and A. Ram, “Experiments with rein-

forcement learning in problems with continuous state and action spaces,”
Adaptive Behaviour, 1998.

[6] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

[7] S. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” in
IEEE International Conference on Robotics and Automation, vol. 1,
1999, pp. 473–479.

[8] Y. B. K. E. Li, “Balancing state-space coverage in planning with
dynamics,” in International Conference in Robotics and Automation.
MIT Press, 2010, pp. 233–241.

[9] I. A. Sucan and L. E. Kavraki, “Kinodynamic motion planning by
interior-exterior cell exploration,” in Workshop on the Algorithmic Foun-
dations of Robotics.

[10] A. M. Ladd and L. E. Kavraki, “Motion planning in the presence of
drift, underactuation and discrete system changes,” in Robotics: Science
and Systems. MIT Press, 2005, pp. 233–241.

[11] From Motor Learning to Interaction Learning in Robots. Springer-
Verlag, 2010, ch. Learning Forward Models for the Operational Space
Control of Redundant Robots.

[12] S. Vijayakumar and S. Schaal, “Locally weighted projection regression:
An o(n) algorithm for incremental real time learning in high dimensional
space,” in In Proceedings of the Seventeenth International Conference
on Machine Learning (ICML, 2000, pp. 1079–1086.

[13] S. Vijayakumar, D. A., and S. Schaal, “Lwpr: A scalable method for
incremental online learning in high dimensions,” Edinburgh University
Press, Tech. Rep., 2005.

[14] R. V. Florian, “Correct equations for the dynamics of the cart-pole
system,” Center for Cognitive and Neural Studies, Tech. Rep., 2007.


