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Abstract—In this paper, a new approach for autonomous 

anomaly detection is introduced within the Empirical Data 

Analytics (EDA) framework. This approach is fully data-driven 

and free from thresholds. Employing the nonparametric EDA 

estimators, the proposed approach can autonomously detect 

anomalies in an objective way based on the mutual distribution 

and ensemble properties of the data. The proposed approach 

firstly identifies the potential anomalies based on two EDA 

criteria, and then, partitions them into shape-free non-

parametric data clouds. Finally, it identifies the anomalies in 

regards to each data cloud (locally).  Numerical examples based 

on synthetic and benchmark datasets demonstrate the validity 

and efficiency of the proposed approach. 

Keywords—autonomous anomaly detection; Empirical Data 

Analytics (EDA); nonparametric; data cloud. 

I.  INTRODUCTION 

Anomaly detection is an important problem of statistical  
analysis [1]. Anomaly detection techniques mainly target 
discovering rare events [2]. In many real situations and 
applications, i.e. detecting criminal activities, forest fire, 
human body monitoring, etc., the rare cases play a key role. 
Anomaly detection is also closely linked to clustering process 
since the members of a cluster are rather routine, normal or 
typical [2] and, thus, data either belong to a cluster or are 
anomalous. 

Traditional anomaly detection is based on the statistical 
analysis [3], [4]. It relies on a number of  prior assumptions 
about the data generation models and requires certain degree 
of prior knowledge [3]. However, those prior assumptions are 
only true in the ideal/theoretical situations, i.e. Gaussian, 
independently and identically distributed data, but the prior 
knowledge is more often unavailable in reality. 

There are some supervised anomaly detection approaches 
published in the recent decades [5]–[7]. Those techniques 
require the labels of the data samples to be known in advance, 
which allows the algorithms to learn in a supervised way and 
generate the desired output after training. The supervised 
approaches are usually more accurate and effective in 
detecting outliers compared with the statistical methods. 
However, in real applications, the labels of the data are usually 
unknown. The existing unsupervised anomaly detection 
approaches [8]–[10], however, require a number of user inputs 
to be pre-defined, i.e. threshold, error tolerance, number of 

nearest neighbors, etc. Selection of the proper user inputs 
requires good prior knowledge; otherwise, the performance of 
those approaches is affected. 

Empirical data analytics (EDA) framework [2], [11]–[13] 
is a recently introduced nonparametric, fully data-driven 
methodology for data analysis. EDA is entirely based on the 
empirically observed data and their ensemble properties 
without any prior assumptions. It is a powerful extension of 
the traditional probability theory and statistical learning. 

In this paper, the nonparametric EDA estimators, 
cumulative proximity, unimodal density and multimodal 
density [2], [11]–[13] are employed to identify the potential 
anomalies from the empirically observed data at the first stage 
of the process. Then, we use those potential anomalies to form 
shape-free data clouds using a newly introduced 
nonparametric data partitioning approach [14]. The concept of 
the data cloud was introduced in [15] as the collection of data 
samples based on their mutual distribution and ensemble 
properties. Finally, the local anomalies are identified in 
regards to the data clouds. Numerical examples demonstrate 
that the proposed approach can autonomously and objectively 
detect both individual and collective anomalies (remote, small 
clouds) and also global anomalies as well as anomalies that 
are centrally located. 

The remainder of this paper is organized as follows. 
Section II briefly describes the theoretical basis. The 
procedure of the proposed approach is introduced in section III 
in detail. Section IV presents numerical examples and the 
discussion is given in section V. This paper is concluded by 
section VI. 

II. THEORETICAL BASIS 

In this section, we will describe the EDA estimators [2], 
[11]–[13] employed by the proposed approach: 

i) cumulative proximity [2], [11]. 

ii) unimodal density [12], [13]; 

iii) multimodal density [12], [13]. 

First of all, let us consider the real Hilbert space d
R  and 

assume a particular dataset denoted as:  1 2, ,..., d

K Rx x x , 

where ix  denotes the thi  data sample and K  is the total 

number of data samples. Within this dataset, often there are 
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more than one data sample which have the same value, namely 

| i ji j  x x . The set of unique data samples is denoted as:  

 1 2, ,..., d

L Ru u u  and the corresponding frequencies are 

defined as:  1 2, ,..., Lf f f  ,  where 
1

L

i

i

f K


 , L K . In this 

paper, the Euclidean distance is used for derivation clarity, 
however other types of distances can be considered as well. 

A. Cumulative Proximity 

The cumulative proximity of a particular data sample ix  is 

defined as the sum of square distances from ix  to all the 

existing data samples in d
R  [2], [11]: 

   
2 2 2

1

K

i i j i

j

K X


     x x x x                (1) 

where  
2

1

d
l l

i j i j

l

x x


  x x  is the Euclidean distance 

between ix  and jx ;
1

1 K

i

iK 

 x  ;  
2

1

1 K

i

i

X
K 

  x . 

B. Unimodal Density 

Unimodal density within EDA framework [12], [13] is an 
important measure centered at the main mode of the data 
distribution defined as the inverse of normalized cumulative 
proximity: 
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where the coefficient  2 is used in the numerator of  UM

iD x  

due to the fact that each distance is counted twice in the sum 
of cumulative proximities of all the data samples and the 
following equality holds [13]: 

   
2 22

1 1 1

2
K K K

k k j

k k j

K X
  

    x x x                 (3) 

From equation (2) one can see that the unimodal density is 
in the form of a Cauchy function when using Euclidean 
distance. However, this is not a prior assumption about the 
type of the distribution and only holds for Euclidean type of 
distance. 

C. Multimodal Density 

The multimodal density [12], [13] of a unique data sample 
is defined as a weighted unimodal density by the 
corresponding frequency. It has the ability of disclosing the 
local modes of the data distribution directly from the data 
without using iterative searching algorithms [12], [13]. The 

multimodal density at a particular unique data sample iu  is 

expressed as: 

   
2

2
1

MM UM i

i i i
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D f D

X
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


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                            (4) 

Consider the original dataset  1 2, ,..., Kx x x , for 

 j k i j k  x x u , the following equation holds: 

     MM MM UM

j k i iD D f D x x u                                (5) 

D. Chebyshev Inequality 

It is well-known that, the Chebyshev inequality [16] is very 
important for detecting anomalies empirically [2], [17], [18]. 
Using the Euclidean distance, the inequality has the following 
form: 

 2 2 2

2

1
P n

n
  x                                                  (6) 

where 
22 X    . The Chebyshev inequality describes the 

probability data samples to be more than n  distance away 

from the mean value,  . As a corollary, if 3n  , the 

maximum probability of x  to be at least 3  away from   is 

no more than 
1

9
. In other words, on average, out of 9 data 

samples, one may be anomalous, but no more than 1 (at most 
1). 

III. THE PROPOSED METHOD 

In this section, we will describe the proposed autonomous 
and data-driven anomaly detection approach in detail. Its 
procedure consists of 3 stages as follows. 

A. Identifying Potential Anomalies 

In the first stage, the global mean and average scalar 

product,   and X  of  1 2, ,..., Kx x x  are calculated. Then, 

the multimodal densities, MMD , at  1 2, ,..., Lu u u  are obtained 

using equation (4). By extending the multimodal densities at 

 1 2, ,..., Lu u u  to the original dataset  1 2, ,..., Kx x x , the 

multimodal densities at  1 2, ,..., Kx x x  are obtained as 

  MMD x . After ranking   MMD x  in ascending order, we 

select the first half of 
2

1

n
 of the data samples with the 

smallest MMD  being the first half of the potential anomaly 

collection (see equation (6)), denoted as  
1

PA
x . Here, n  is a 

small integer corresponding to the “ n ” in the Chebyshev 

inequality. In this paper, we use 3n   because the “ 3 ” rule 

has been widely adapted in various anomaly detection 
applications [2], [17], [18]. It has to be stressed that in 

traditional approach, 3n   does directly influence detecting 

each anomaly. In the proposed approach, this is simply the 



first stage of sub-selection of potential anomalies (an upper 
limit according to equation (6)). 

As the multimodal density is less sensitive to the degree of 
sparsity of local data distribution, an additional criterion is 
necessary for detecting the isolated data samples. We consider 
the weighted local unimodal density as the second criterion for 
identifying potential anomalies. 

Firstly, the average square Euclidean distance between 

each pair of data samples within  1 2, ,..., Kx x x is obtained 

from the following equation: 

 

 22 1
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2
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For each unique data sample
iu , one can obtain a hyper-

sphere defined by the center 
iu  and the radius of 

2

d
 as its 

local influence area. All other unique data samples within this 

hyper-sphere are categorized as iu ’s unique neighbors:  

 
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i

d
IF

THEN is neighbouring to
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 
u u

u u

                                   (8) 

We denote all the nearby data samples satisfying the 

condition (8) as the set  
L

i
u  with a cardinality iN . Based on 

 
L

i
u  , the local unimodal density at iu  is calculated as: 
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where 
L

i  denotes the mean of  
L

i
u  and 

L

iU  denotes their 

average scalar product.  

By taking both, the sparsity of data distribution of the local 

area around iu  and the frequency of occurrence into 

consideration, the local unimodal density at iu  is weighed by 

its frequency and the amount of its unique neighbors as: 

 
 

 
1iWL L

i i i

N
D f D

L


  u u                                      (10) 

where the coefficient 
 1iN

L


is for ensuring the value of 

 WL

iD u to be linearly and inversely correlated to the degree 

of sparsity of the data distribution. By expanding the weighted 

local unimodal densities, WLD , at  1 2, ,..., Lu u u  to the original 

dataset  1 2, ,..., Kx x x  accordingly, the set   WLD x  is 

obtained. After re-ranking the   WLD x  in the ascending 

order, the first half of 
2

1

n
 of the data samples with smallest 

WLD  are selected as the second half of the potential anomaly 

collection, denoted as  
2

PA
x .  

Finally, by combining   
1

PA
x  and  

2

PA
x  (together 

2

1

n
 or 

less of the data), we obtain the whole set of potential 

anomalies,  
PA

x , which forms the upper limit of possible 

anomalies according to equation (6). 

B. Forming Data Clouds 

In this subsection, we will check if the identified potential 
anomalies can form data clouds. The main procedure of the 
recently introduced free-shape data partitioning algorithm 
within the EDA framework is summarized as follows [14].  

Free-shape data partitioning algorithm  

i. Calculate the multimodal density MMD  at  
PA

x using 

equation (4); 

ii. Find the potential anomaly 1

PA
x  with the maximum 

multimodal density  1

MM PAD x ; 

iii. Remove 1

PA
x  from  

PA
x  and send 1

PA
x  to  

PA

descending
x ; 

iv. 1

R PAx x ;  

v. While  
PA
x   

1. 1i i    

2. Find the potential anomaly, denoted as 
PA

ix  that is 

nearest to R
x ; 

3. Remove 
PA

ix  from  
PA

x  and send 
PA

ix  to  

 
PA

descending
x ; 

4. 
R PA

ix x ; 

vi. End While 

vii. Filter  
PA

descending
x  using equation (11) and obtain data 

samples at which MMD  hold its local maxima, denoted 

as  
LM

x : 

     1sgn MM PA MM PA

j jIF D D  x x  

     1sgn 1MM PA MM PA

j jD D   x x  

     1sgn 1MM PA MM PA

j jAND D D   x x  

 MM PA

jTHEN D has one of its local maxima at x (11) 

where  

1 0

sgn 0 0

1 0

x

x x

x




 
 

. 

ix. While  
LM

x is not fixed: 



1. Form data clouds from  
PA

x  by using  
LM

x  as 

focal points: 

                      
 

   arg min ;
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i i icloud label
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y x

x y x x (12) 

2. Obtain the centers (means),    and the average 

scalar products,  P  of the data clouds; 

3. Calculate the multimodal densities at the cloud 
centers: 
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2
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S
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                (13) 

where ic is the center of the thi  data cloud and iS  is 

the (number of members). 
4. Find the neighbors of each center using the 

following equation: 

 

1i j

j i

IF
d

THEN is neighboring



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    

  
c c
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                      (14) 

where  ,i j c c c ; i j ; d  is the average 

Euclidean distance between two centers;   is the 

standard deviation of the distances. 

5. Filter out the local maxima  
LM

c  satisfying the 

following condition: 

    
       

 

max ,
Neighbour

MM MM MM

i i
i

i

IF D D D

THEN is one of the local maxima

  
 

c c c

c

(15) 

where   
Neighbour

MM

i
D c denotes the set of 

multimodal densities at the centers neighboring ic . 

6.    
LM LM

x c  ; 

x. End While 

xi. Form data clouds from  
PA

x  using  
LM

x . 

After the data clouds are formed from  
PA

x  based on the 

free-shape data partitioning algorithm [14], the proposed 
anomaly detection algorithm enters the last stage. 

C. Identifying Local Anomalies in regards to the Identified 

Data Clouds 

In the final stage, we check if the potential anomalies are 
isolated or form minor data cloud(s) between themselves. All 

the data clouds formed from  
PA

x  are being checked and 

anomalies are identified and declared/confirmed.  

Let us assume that there are N  data clouds formed from 

 
PA

x denoted as , 1,2,...,i i NC .  

We declare all potential anomalies as actual anomalies 
unless they form data clouds between themselves with a 
support above the average: 

 
 

i average

i

IF S S

THEN is formed by anomalies



C
                           (16) 

where the average support of those data clouds is calculated as 

1

1 N

average i

i

S S
N 

  . 

IV. CASE STUDIES 

In this section, a number of numerical examples based on 
synthetic and benchmark datasets conducted to evaluate the 
performance of the proposed algorithm are summarized. We 
have to stress that the proposed anomaly detection approach is 
unsupervised and autonomous; the anomalies are identified 
merely based on the empirically observed data samples. 
Therefore, in the numerical experiments presented in this 
paper, the labels of the data samples are unknown. 

A. Synthetic Dataset 

The first numerical example is based on a synthetic 
Gaussian dataset, which contains 720 samples with 2 
attributes. There is 1 larger cluster and 2 smaller ones 
grouping 700 data samples between them. In addition, 4 
collective anomalous sets formed by 18 samples as well as 2 
single anomalies were identified. The models of the three 
major clusters extracted from the data ( , ,S  ) are as follows 

(in the form of model,  ~ ,x N    and support, S ): 

Major cluster 1: 
0.09 0

~ 0 3 ,
0 0.09

  
     

  

x N  , 400 samples; 

Major cluster 2: 
0.16 0

~ 2.5 3 ,
0 0.16

  
     

  

x N , 150 samples; 

Major cluster 3: 
0.16 0

~ 2.5 0 ,
0 0.16

  
     

  

x N , 150 samples; 

The models of the 4 collectives anomalous sets are: 

Anomalous set 1: 
0.09 0

~ 0 1 ,
0 0.09

  
     

  

x N , 5 samples; 

Anomalous set 2: 
0.09 0

~ 4.5 0 ,
0 0.09

  
     

  

x N , 4 samples; 

Anomalous set 3: 
0.01 0

~ 4.5 4 ,
0 0.01

  
     

  

x N , 5 samples; 

Anomalous set 4: 
0.01 0

~ 1 1 ,
0 0.01

  
     

  

x N , 4 samples. 

and the two single anomalies are [2 5]  and [1.5 2] . 

This dataset is visualized in Fig. 1, where the anomalies 
are circled in by red ellipses. It is important to stress that, 
collective anomalies and single anomaly close to the global 
mean of the dataset are very difficult to detect using traditional 
approaches.  



 
Fig. 1. Visualization of the synthetic dataset 

 
Fig. 2. Identified potential anomalies (Stage 1) 

 
Fig. 3. Checking the potential anomalies for possible data clouds between 

them (Stage 2) 

 
Fig. 4. Identified anomalies (Stage3) 

 
Fig. 5. The identified anomalies by the ODRW algorithm 

Using the proposed approach, 61 potential anomalies 
identified in the first stage are depicted in Fig. 2 (the green 

dots). In stage 2, 10 data clouds are formed from the potential 
anomalies as presented in Fig. 3, where the dots with the 
different colors are the data samples from different data 
clouds. There are 31 anomalies identified in the final stage of 
the proposed approach as shown in Fig. 4 (red dots).   

Figs. 1-4 show that, the proposed approach successfully 
identified all the anomalies in this dataset, because both, the 
mutual distribution and the ensemble properties of the data 
samples have been considered. 

For further evaluation of our proposal, two well-known 
traditional approaches are used for comparison: 

i) The well-known “ 3 ” approach [2], [17], [18];  

ii) Outlier detection using random walks (ODRW) 
approach [9]. 

It has to be stressed that the “ 3 ” approach is based on 

the global mean and global standard deviation. The outlier 
detection using random walks approach requires three 
parameters to be pre-defined: i) error tolerance,  ; ii) 

similarity threshold, T and iii) number of anomalies, 0N . In 

this numerical example, the three parameters are set to: 
610  , 0.9T   and 0 31N   to make the results  

comparable. 

The global mean and the standard deviation of the dataset 

are  1.1077   2.3263  and  1.3401   1.3228 , and the 

“ 3 ” approach failed to detect any anomalies.  

The result using the ODRW approach is shown in Fig. 5, 
where the red dots are the identified anomalies. As we can see, 
this approach ignored the majority of the anomalies (circled 
within the yellow ellipsoids). 

B. User Knowledge Modelling Dataset [19] 

We use the real dataset about the students’ knowledge 
status about the subject of Electrical DC Machines published 
in [19] as the second example. This dataset contains 403 
samples that has 5 attributes: 

i) STG: The degree of study time for goal object materials;  

ii) SCG: The degree of repetition number of user for goal 
object materials; 



TABLE  I.  DETECTED ANOMALIES 

# ID Values Label 

1 [0.0000    0.0000    0.0000    0.0000    0.0000] Very Low 

2 [0.0800    0.0800    0.1000    0.2400    0.9000] High 

5 [0.0800    0.0800    0.0800    0.9800    0.2400] Low 

17 [0.0500    0.0700    0.7000    0.0100    0.0500] Very Low 

187 [0.4950    0.8200    0.6700    0.0100    0.9300] High 

210 [0.8500    0.0500    0.9100    0.8000    0.6800] High 

222 [0.7700    0.2670    0.5900    0.7800    0.2800] Middle 

242 [0.7100    0.4600    0.9500    0.7800    0.8600] High 

399 [0.9000    0.7800    0.6200    0.3200    0.8900] High 

403 [0.6800    0.6400    0.7900    0.9700    0.2400] Middle 
 

 
Fig. 6. Visualization of anomalies per attribute 

 

TABLE  II.  THE PERFORMANCE COMPARISON 

Approach NA P FA R t 

3σ 1 100% 0.00% 98.55% 0.00 

ODRW 10 50.00% 1.50% 92.75% 0.27 

The proposed 10 90.00% 0.30% 86.96% 0.09 

 
 

iii) STR: The degree of study time of user for related objects 
with goal object; 

iv) LPR: The exam performance of user for related objects 
with goal object; 

v) PEG: The exam performance of user for goal objects. 

and 1 label - UNS: The knowledge level of user. There are 
four levels of the user knowledge, i) High (130 samples), ii) 
Middle (122 samples), iii) Low (129 samples) and iv) Very 
Low (50 samples), the mean values of the data samples of the 
four levels are: 

i) High:  0.4069  0.4305  0.5098  0.5429  0.7998high  ;  

ii) Middle:       0.3746 0.3672 0.4911 0.3857 0.53     1  4middle  ; 

iii) Low:  0.3268 0.3228 0        .4250 0.4  493 0.253  6low  ; 

iv) Very Low:      0.2592 0.2619 0    .3540 0.2688 0.09   58very
low

 . 

The existing anomalies in four classes are listed by their 
IDs as follows: 

i) High: 2, 10, 14, 34, 182, 187, 190, 210, 230, 246, 258, 
313, 317, 318, 378, 379, 384, 391, 399, 400. 

ii) Middle: 4, 13, 50, 57, 62, 65, 124, 130, 162, 207, 208, 
211, 212, 214, 222, 223, 245, 250, 257, 272, 286, 362, 
372, 373, 403. 

iii) Low:  3, 5, 18, 53, 61, 128, 129, 131, 198, 204, 244, 
319, 374, 395, 401. 

iv) Very Low: 1, 17, 117, 197, 209, 288, 310, 312, 314. 

Using the proposed approach, we identified 10 anomalies 
as tabulated in Table I. The visualization of the anomalies per 
attribute is depicted in Fig. 6. We have to stress that the labels 
(Table I) of the data are not used in the anomaly detection and 
we just use them for posterior comparison. 

From Table I, we can see, the detected anomalies have 
significantly lower or higher values compared with other 
members of the classes to which they may belong. 9 out of the 
identified 10 anomalies are in the anomaly lists above. 

The “ 3 ” approach and the ODRW approach are again 

used for comparison. In this numerical example, the three 

parameters of the ODRW approach are set as: 
610  , 

0.9T   and 0 10N  . The details of the comparison are 

tabulated in Table II. The performance evaluation is based on 
the following four measures [9]: 

i) Number of identified anomalies (NA): NA TP FP  ; 

ii) Precision (P): the rate of true anomalies in the detected 

anomalies, 
T F

TP
P

P P



; 

iii) False alarm rate (FA): the rate of the true negatives in 

the identified anomalies, 
FP

FA
TN FP




; 

iv) Recall rate (R): the rate of true anomalies the 

algorithms missed, 
FN

R
FN TP




; 

v) Execution time (t): in seconds. 

where TP and FP are the numbers of true and false positives; 
TN and FN  are the numbers of true and false negatives.  

The “ 3 ” approach only identified 1 anomaly, which is: 

 230 0.9900  0.4900  0.0700  0.7000  0.6900x   

and it missed all other existing anomalies. 



TABLE  III.  THE PERFORMANCE COMPARISON 

Approach NA P FA R t 

3σ 141 30.05% 6.57 % 60.19% 0.01 

ODRW 36 0.00% 2.41% 100.00% 31.14 

The proposed 36 63.89% 0.87% 78.70% 0.24 

 

TABLE  IV.  THE PERFORMANCE COMPARISON 

Approach NA P FA R t 

3σ 176 34.66% 2.73% 49.17% 0.01 

ODRW 84 58.33% 0.83% 59.17%| 863.76 

The proposed 84 71.43% 0.57% 50.00% 1.08 

 

 
Fig. 7. Visualization of anomalies per attribute 

C. Wine Quality Dataset [20]  

This dataset is related to the quality of red Portuguese 
“Vinho Verde” wine. This dataset has 1599 data samples with 
11 attributes: i) fixed acidity, ii)  volatile acidity, iii) citric 
acid, iv) residual sugar, v) chlorides , vi) free Sulphur dioxide, 
vii)  total Sulphur dioxide, viii) density, ix) pH, x) Sulphates,  
xi) alcohol and 1 label: the score of quality from 3 to 8.  

This dataset is not balanced as there are much more normal 
wines than excellent or poor ones. There are 10 samples with 
score 3, 53 samples with score 4, 681 samples with score 5, 
638 samples with score 6, 199 samples with score 7 and 18 
samples with score 8. 

The number of existing anomalies in each class are listed 
as follows: i) Score 3: 1; ii) Score 4: 3; iii) Score 5: 50;  iv) 
Score 6: 42; v) Score 7: 9; vi) Score 8: 3. In total, there are 108 
anomalies. 

The results of the three anomaly detection approaches 
based on the wine quality dataset are tabulated in Table III. In 
this example, the three parameters of the ODRW approach are 

set as:  
610  , 0.9T   and 0 36N  . 

D. Wilt Dataset [21] 

 

This dataset comes from a remote sensing study involving 
detecting diseased trees in Quickbird imagery. There are two 
classes in the dataset: i) “diseased trees” class (74 samples) 
and ii) “other land cover” class (4265 samples) [21]. Each 
sample has 5 attributes:  

i) GLCM-Pan: GLCM mean texture (Pan band) ; 

ii) Mean-G: mean green value; 

iii) Mean-R: mean red value;  

iv) Mean-NIR: mean NIR value; 

v) SD-Pan: standard deviation (Pan band). 

There are 120 anomalies with the label “other land cover” 
and no anomaly in the “diseased trees” class. 

Using the proposed approach, 84 anomalies are detected in 
this dataset. The identified anomalies are visualized in Fig. 7 
per attribute. 

Similarly, the performance of the proposed approach is 
compared with the two algorithms used in section IV. A. The 
results are tabulated in Table IV. In this numerical example, 
the three parameters of the ODRW approach are set as:  

610  , 0.9T   and 0 84N  . 

V. DISCUSSION 

From Tables II, III and IV one can see that the proposed 
approach is able to detect the anomalies with higher precision 
and lower false alarm rate compared with the“ 3 ” approach 

and the ODRW approach. 

The “ 3 ” approach is the fastest due to its simplicity. 

However, the performance of the “ 3 ” approach is decided 

by the structure of the data as it focuses only on the samples 
exceeding the global 3  range around the mean. However, 

when the dataset is very complex i.e. contains a large number 
of clusters, or the anomalies are close to the global mean, 
“ 3 ” approach fails to detect all outliers.  

In contrast, the proposed approach can identify the 
anomalies based on the ensemble properties of the data in a 
fully unsupervised and autonomous way. It takes not only the 
mutual distribution of the data within the data space, but also 
the frequencies of occurrences into consideration.  It provides 
a more objective way for anomaly detection. More 
importantly, its performance is not influenced by the structure 
of the dataset and is equally effective in detecting collective as 
well as individual anomalies.  

VI. CONCLUSION 

In this paper, a fully autonomous anomaly detection 
approach within EDA framework is introduced. This approach 
is entirely data-driven and unsupervised. It employs the non-
parametric EDA estimators to disclose the underlying data 
pattern and identify the potential anomalies based on the 
mutual distribution and ensemble properties of the data. By 
analyzing the data set/stream in two stages: 

i) Detecting potential anomalies; 



ii) Identifying and declaring local anomalies after forming 
possible data clouds from the potential anomalies; 

the proposed approach offers a deeper analysis and more 
precise result.  

Numerical examples demonstrate the excellent performance of 
the proposed approach as well as its high computational 
efficiency. The proposed approach is highly suitable to real 
situations where prior knowledge of the data is unavailable. It 
can be an effective pre-processing tool as well. 
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