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Abstract—This article proposes a scalable version of the
Dependence Clustering algorithm which belongs to the class
of spectral clustering methods. The method is implemented
in Apache Spark using GraphX API primitives. Moreover, a
fast approximate diffusion procedure that enables algorithms
of spectral clustering type in Spark environment is introduced.
In addition, the proposed algorithm is benchmarked against
Spectral clustering. Results of applying the method to real-life
data allow concluding that the implementation scales well, yet
demonstrating good performance for densely connected graphs.

I. INTRODUCTION

Efficient analysis and processing of large-scale datasets

requires scalable algorithms and computational frameworks.

To address this challenge, distributed large-scale data process-

ing frameworks have emerged in recent years. One of the

most widely-used frameworks/platforms for processing large-

scale data, Hadoop [1] is an open source implementation

of MapReduce [2]. Despite performing relatively well for

offline data, it handles real-time stream data poorly. Moreover,

Hadoop normally processes data from the disk which is ineffi-

cient for data mining applications that often require numerous

iterations. It has been reported by a number of works that

Hadoop-run algorithms sustain significant performance loss

due to disk I/O operations and network communications [3],

[4].

Apache Spark [5] is a more recent open-source distributed

framework for data analytics which enables, among other

things, fast and efficient processing of large streams of data.

The key features of Spark are in-memory computations and

fault-tolerance. Spark adopts Resilient Distributed Dataset

(RDD) [5], a distributed memory abstraction which supports

two types of operations: transformations and actions. Trans-

formations define a new RDD based on the existing one, and

actions either return a value to the driver program or export

data to a persistent storage. When a transformation is executed

a new RDD is created with its records distributed across the

main memory. An action operation causes each node to process

its local set of records and return the result. Spark also supports

in-memory caching of datasets which prevents slow disk reads

and performs much faster compared to Hadoop-like systems.

Spark proved itself to be effective for performing machine

learning and data mining tasks involving big datasets. Re-

cently, many works refer to Spark as a tool for creating

competent solutions for data analysis. Many clustering and

anomaly detection algorithms have been developed or adapted

to Spark due to its efficience and high performance. Apache

Spark MLlib library [6] has a number of implemented cluster-

ing algorithms such as k-Means, bisecting k-Means, Gaussian

mixtures (GMM), and Power Iteration Clustering (PIC). Some

other famous clustering algorithms have been implemented

in Spark framework but they do not belong to core Spark

libraries, e.g. CURE [7] and a scalable random sampling

variation of fuzzy c-Means [8].

Spectral clustering methods [9] detect structure of data

distribution based on information aquired from the spectrum of

the data affinity matrix. One of the hardest computational tasks

usually seen in spectral clustering methods is the necessity to

solve an eigenvalue problem of the Laplacian matrix derived

from the data affinity matrix. Therefore, spectral clustering al-

gorithms often need to be adapted when applied to large-scale

datasets. One way to improve efficience is reducing size of the

affinity matrix. Another solution is avoiding recomputation as

new data points arrive, making the method suitable for real-

time algorithms [10], [11]. A number of methods have been

developed in order to avoid high complexity caused by calcu-

lating spectrum of the Laplacian matrix and to make spectral

clustering applicable for large scale datasets. Among them

are approximation methods which perform spectral clustering

on either a subset of representative data points or randomly

sampled values of the affinity matrix and extend the obtained

results to the remaining data points [12], [13], [14], [15].

PIC [16] is an efficient method for clustering data which

embeds data points in a low-dimensional subspace derived

from the affinity matrix, similarly to other spectral clustering

methods. Under the hood, PIC applies 1D k-Means to a non-

converged top ranked eigenvector. In PIC embedding results

in approximation of a linear combination of all eigenvectors

of a normalized affinity matrix where eigenvalues serve as co-

efficients of the linear combination. Such approach is efficient

compared to traditional spectral clustering due to performing

only a small number of matrix-vector multiplications instead

of running iterations until convergence.

Dependence Clustering (DEP) [17] is a method which con-

siders geometric structures of data and is based on maximizing

the group dependence measure. The method assumes that any

two nodes in the graph can be connected through Markovian



transitions that enables calculation of dependence distance
[18] between graph nodes in a certain evolution step. The

level of connectivity scale in group assignment can be adjusted

improving the flexibility in regulating the level of detail. This

approach determines the optimal number of clusters while

dividing the data into clusters. This is particularly important

for exploratory research related to real world applications with

an unknown number of clusters beforehand. In this paper, a

Spark-based implementation of DEP 1 which allows better

performance for analysis of big datasets is introduced.
The main contributions of the paper consist of

1) Introducing and implementing in Apache Spark a fast

approximate diffusion that enables spectral clustering

type algorithms in Spark environment.

2) Implementing a scalable version of DEP in Apache

Spark framework.

The rest of the paper is organized as follows. Section

II provides descriptions of the main concepts and methods

used in the paper. Sections II-A - II-C explain the proposed

DEP clustering algorithm. Meanwhile, Spark implementation

is described in Section II-D. Section III is devoted to the

experimental results. It introduces evaluation metrics, data

sets and results of the performance tests. Finally, Section IV

completes the paper with conclusions and discussions.

II. METHODS

A. Preliminary concepts
We start with a graph defined by an affinity matrix A [19].

The graph is formed by a set of data points Ω = {xi|i =
1, ..., N ;xi ∈ R

n}. Therefore, the matrix A with entries from

R representing pairwise similarities has size N × N . We

define a Markov chain on this graph by transforming A to

the transition matrix P and the corresponding t-step transition

matrix Pt : P t
i,j = Pr(Xt = j|X0 = i), where a probability

variable X0 represents the initial state and Xt is a random walk

representing a node at the t-th transition. The transformation

from A to P is done by scaling rows of A so that elements

in each row sum up to one. Assuming that the whole chain is

ergodic and all transitions follow the Markovian property we

define statistical dependence Di,j,t = Dep(X0 = i,Xt = j)
[18] by the following equation:

Di,j,t =
Pr(X0 = i,Xt = j)

Pr(X0 = i)Pr(Xt = j)
. (1)

Statistical dependence captures inter-dependency of the node

in the initial state and the node at t-th transition. Let us denote

a group assignment vector by s = [s1, ..., sN ], where decision

variable si = 1 if data point i belongs to group 1 and si = −1
if it belongs to group 2. Note that in such notation (sisj+1)/2
is 1 if i and j are in the same group and is 0, otherwise. Thus,

given s and t, the group dependence for a particular choice of

s is defined as follows:

Dt =
1

2

∑

xi,xj∈Ω

(
Di,j,t − d0

)
(sisj + 1), (2)

1https://github.com/Korelena/spark

where Di,j,t is defined in (1), d0 = 1 + εd is the baseline

dependence level which is usually set to 1 and εd is a depen-

dence margin parameter. A constant d0 effectively normalizes

the statistical dependence for each pair of points equaling zero

when points are considered to be independent. More details

about parameter settings and optimization procedure can be

found in [17].

Group dependence described above captures aggregate inter-

dependency of points within the groups along with considering

the geometrical structure of the data. Hence, statistical depen-

dence serves as a measure of closeness between data points.

B. DEP for two groups

We start with describing the DEP algorithm for a simple

case of bisecting a graph. An optimal clustering solution

can be achieved through maximizing the group dependence

measure Dt by varying the group assignment s of all N points.

We constrain the norm of s to be equal to one: ||s||2 = 1
assuming for simplicity that εd = 0. Moreover, we relax the

original formulation (2) so that elements of s become real as

the actual optimization is carried out in the domain of real

numbers R. Then, we obtain a good partition by solving the

following maximization problem:

argmax
||s||=1

Dt = argmax
||s||=1

1

2

∑

i,j

(Di,j,t − 1)(sisj + 1).

It can be shown [17] that the problem above is equivalent to

argmax
||s||=1

sT (Pt(B(t))−1 − 11T )s,

where diagonal matrix B(t) : B
(t)
j,j = Pr(Xt = j) = [xT

0 P
t]j ,

x0 is the initial probability vector representing prior informa-

tion related to the initial states, and 1 is the all-ones vector.

This constrained optimization problem can be solved by using

one of the standard eigendecomposition numerical algorithms,

e.g. Power iteration or Arnoldi iteration [20], [27].

Finally, division of the data points is made based on the

signs of the eigenvector corresponding to the largest positive

eigenvalue of G defined by

G = Pt(B(t))−1 − 11T . (3)

The nonexistence of positive eigenvalues means no possible

benefits for increasing Dt from further divisions.

C. DEP for multiple groups

To obtain divisions to multiple groups, we apply a standard

subsequent division approach [21]. At every step we consider

binary divisions of every group already found during the

previous iterations, following the DEP algorithm described in

Section II-B. Among possible divisions we proceed with the

one that results in the maximal increase of group dependence

for the whole dataset, effectively performing greedy search.

For the purpose of preventing the algorithm from defining

too small or unclear clusters, we introduce a dependence gain

parameter δd ∈ [0, 1]. The minimal dependence gain required

to split a cluster into two subclusters is calculated as Δd =



δd
∑

gi,j>0 G, where G is defined in (3). Let us denote a set

of points that belong to a split candidate cluster by ΩC ⊆
Ω. We denote the within-cluster group configurations before

and after the division of ΩC into two subclusters by sC and

s′C, respectively. The division into the subclusters proceeds if

Dt(s
′
C)−Dt(sC) > NΔd, where Dt is defined in (2) and N

is size of Ω. Note that all elements from sC are equal to one.

D. Spark implementation

Our implementation is written in Scala and is inspired by

the implementation of PIC [16]. In addition, we implemented

a Python wrapper. We used GraphX Spark API as a backend

to store sparse dependence matrices in a distributed manner

and perform computations [22], [23]. GraphX exposes data-

parallel and graph-parallel paradigms that allow a versatile set

of operations to be done within a single framework.

Consider the data is represented as a graph G =< V,E >
where V and E define nodes and weighted edges, correspond-

ingly. We assume that data chunks of order O(|V |) can be

stored on a single machine. We also assume that sparsity

of data allows redistributing the data across O(log(|E|) ma-

chines. Typical real world large scale graphs tend to respect

skewed power-law distributions of node degrees [24], [25],

[26].

For computing the largest eigenvector of a matrix we used

the Power Iteration (PI) method [27]. PI is an iterative method

that works as follows. Starting with an arbitrary initial vector

v0 �= 0 it performs an update vk+1 = cAvk, where A is

the affinity matrix, c = ‖Avk‖−1 is a normalizing constant.

Due to simplicity of its operations, as only matrix-vector

multiplications are performed, the PI method can be used as

an integral part of scalable large-scale data analytics solutions.

The proposed implementation of the DEP algorithm is

summarized in a pseudo-code below.

Require: Normalized graph G =< V,E > cf. (3), Δd

1: Initialize a list of data structures holding information about

each group L = [l1], where the first group includes all

nodes l1.V = V and has group dependence l1.Dt =∑
ei,j∈E ei,j .

2: while true do
3: maxDepGain = 0

4: maxGroup = -1

5: for all li in L do
6: Take a subgraph G′ =< li.V, E

′ >⊆ G
7: Apply PI algorithm to G′ and obtain the highest

ranked eigenvector s.
8: Split nodes of G′ into two sets: V ′

1 for s < 0 and V ′
2

for s > 0
9: Take two subgraphs of G′: G′

1 =< V ′
1 , E

′
1 > and

G′
2 =< V ′

2 , E
′
2 >

10: Set D1
t =

∑
ei,j∈E′

1
ei,j and D2

t =
∑

ei,j∈E′
2
ei,j

11: Compute a dependence gain of this split as depGain

= D1
t +D2

t − li.Dt

12: if depGain > maxDepGain then
13: maxDepGain = depGain

14: maxGroup = i
15: end if
16: end for
17: if maxDepGain > NΔd then
18: Initialize entries for the two new subgroups of max-

Group in L

19: else
20: return L which contains entries for all found groups

21: end if
22: end while

Another computational problem that we addressed was a

diffusion operator [28]. Iterating Markov transition matrix by

taking powers of P has an effect of diffusing probability mass

from the high potential regions to the potential lower ones.

Since a direct multiplication of the large-scale sparse matrices

is computationally demanding we approximate the effect of

probability diffusion by the locally guided diffusion of affinity

in the original affinity space. Namely, we design a procedure of

joining disconnected nodes with the high transitive similarities,

i.e. on the path vi
ei,k−−→ vk

ek,j−−→ vj between disconnected

nodes vi and vj all the weights of the edges ei,k, ek,j and the

influx of the node vk are relatively high.

Fig. 1. Illustration of the diffusion procedure. Bold edges denote paths that
satisfy constraints for a new edge addition. Expressions along the bold lines
are the conditions that enabled emergence of new edges. Added edges are
marked dashed. Expressions along the dashed lines determine weights of
the newly formed edges. Node names in the boxes denote nodes that are
aggregated at a particular node aside.

The procedure goes as follows (see Fig. 1). First, for every

node vi we calculate an influx I(vi) as a sum of weights of

all in-bound edges. Then at every node vi we aggregate a

hash map of nodes vj such that there exists an outgoing edge

from vi to vj . IDs of the nodes vj serve as keys of the hash

map and weights of the edges ei,j serve as its values. Entries

of only those nodes are aggregated that pass a strength test

ei,j ×I(vi) > Δv . At the next step triples of edge, source and

destination nodes are considered, i.e. hash maps of two nodes

vi, vj and their connecting edge ei,j are brought together. A



new edge ei,k is added to the graph if ei,j > Δe and there is

an entry for the node vk in the hash map of vj . The weight of a

newly formed edge becomes the maximum aggregation among

all the paths that enable the new edge, i.e. maxvk(ei,k×ek,j).
This procedure is guided solely by the local neighbourhood

information. Under the assumption of the graph sparsity and

with a proper set of parameters it should scale well. Namely,

Δv along with Δe control sizes of the hash maps at each

node and the number of added edges. Thus, the procedure

effectively simulates diffusion and, at the same time, the graph

sparsity remains protected by allowing only strong edges to

emerge.

III. EXPERIMENTAL RESULTS

A. Experimental environment

In our experiments we used two setups. The local setup

is a standalone version of Spark that supports parallelization

across multiple cores. The test server had the following char-

acteristics: 1TB of RAM, 64 CPU cores (8 cores Intel Xeon

e7-8837 2.67GHz per CPU). For our tests we only reserved

16 cores/executors with 4GB RAM each and 16 GB RAM for

the driver program. The second setup is a cluster deployed on

Amazon Web Services (AWS) that had 4 slave nodes with 4

cores each and 12.4GB RAM per slave reserved for Spark. A

master node had 4 cores and 16GB RAM in total.

B. Evaluation metrics

Given true clustering labels/categories, we used the follow-

ing two evaluation metrics to measure performance of the

algorithms.

Purity [29], [30] focuses on the frequency of the most

common category in each cluster and is computed as follows.

First, each cluster is assigned to the most frequent category

in the cluster. Then the number of correctly assigned items is

counted and divided by the total number of clustered items N .

the Purity is defined by the following equation:

Purity(C,B) =
1

N

∑

k

max
j

|ck ∩ bj |,

where C = {c1, c2, . . . , cK} is the set of clusters and B =
{b1, b2, . . . , bJ} is the set of categories, ci is a set of labels

assigned to the i-th discovered cluster, and bj is a set of j-th

cluster categories.

Inverse Purity [30] focuses on the frequency of the most

common cluster in each category and is defined by the

following equation:

InversePurity(C,B) =
1

N

∑

j

max
k

|ck ∩ bj |.

Note, that Purity becomes higher when the number of clusters

is large and reaches its maximum when each item gets its own

cluster. Inverse Purity reaches its maximum when all items

belong to a single cluster. Therefore, a combination of the

two measures is normally used for more accurate results.

TABLE I
DIFFUSION TEST RESULTS REPORTED FOR THE REUTERS-1856 DATASET.

Parameters
Purity Inverse Purity

p t Δe Δv

1 0 - - 0.6775 0.8566

0.5 0 - - 0.2947 1.0

0.5 2 0.3 85.0 0.6439 0.7766

0.5 1 0.3 85.0 0.2947 1.0

0.75 0 - - 0.2947 1.0

0.75 1 0.3 70.0 0.6210 0.8336

C. Reuters data set

In our tests we refer to the tag Topics of the Reuters

dataset [31]. We prepared two datasets named Reuters-8852

and Reuters-1876. Reuters-8852 was formed in the following

way. Among all topics the following ten were selected: money-
fx, grain, crude, interest, trade, ship, acq, earn, wheat and

corn. Initially, 9400 articles were taken where at least one

of the selected topics was present. The affinity matrix for

the articles was defined as a cosine similarity among L2-

normalized term frequency (TF) document vectors.

We cleaned the data in the following way. First, we extracted

a subset of articles where only one of the selected topics was

present. Next, we generated TF features following the pro-

cedure of removing punctuation, tokenization and stemming

(Porter stemmer [32]). We skipped all the terms that appeared

in more than 40% of documents. Among the obtained TF

features we selected the 1000 most discriminative features

according to the χ2 test [33], which effectively resulted in

a reduced vocabulary of 1000 terms. Similarly, we generated

TF matrix for each of the 9400 documents considering only

terms from the reduced vocabulary. Finally, we obtained 8852

articles with at least one non-zero feature and built the affinity

matrix A which we used for testing the algorithm.

Reuters-1876 was derived in a similar way except that we

used 500 TF features and considered only four topics: grain,

crude, interest and trade. This dataset initially contained 2000

documents before all the empty documents were removed.

Finally, Reuters-1876 had 1876 documents.

D. Diffusion test

To verify correctness of the diffusion procedure we run the

tests on the Reuters-1876 dataset. Table I displays results of

applying DEP to the Reuters-1876 dataset undergoing different

subsampling and diffusion rates. Here the parameter p stands

for the sampling probability. The parameter t is the number

of diffusion iterations applied to a graph. Thus, t = 0 means

no diffusion was applied. First, we run the DEP algorithm on

the original Reuters-1876 dense graph data. Next, we run DEP

on the same dataset which was subsampled first by a factor

of two (p = 0.5) that significantly degraded clustering scores.

Applying DEP to the subsampled by a factor of two data with

diffusion under parameter settings: t=2, Δe=0.3, Δv=85.0

produced results comparable to the clustering results without



subsampling and diffusion. Moreover, running diffusion under

the same parameter settings but only ones (t = 1) still resulted

in degraded solution. The latter means that subsampling has

made severe damage to the graph structure.

We also applied DEP with and without diffusion to a less

degraded graph where only quater of the edges were randomly

discarded (p = 0.75) to verify the effect of the diffusion

scale parameter t. In this case running the algorithm without

diffusion resulted in much less accurate results compared to

the scores of a run with diffusion applied. In all the runs

εd=0.16, δd=0.13. These results confirm that the diffusion

procedure correctly reconstructs the graph structure.

E. Scalability test

We verify scalability of our implementation using both local

and cluster setups. To perform the test we first sparsify the

Reuters-8852 dataset by dropping all the edges that have

weights less than 0.35. After this step 3742377 edges and all

8852 nodes were retained. Next, we run the DEP algorithm

for the successively reduced dataset measuring execution times

(see Fig.2). We partitioned the dataset to 16 partitions. In this

experiment, other parameters were set to the following values:

εd = 0.35, δd = 0.00, t=0.

One can verify that the DEP algorithm scaled near linearly

in terms of the number of computations with respect to the

number of nodes. From Fig. 2 one can see that the difference

in timings between local and cluster setups is nearly constant

and is apparently caused by additional network communication

in cluster setup.
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Fig. 2. Execution time of DEP as a function of number of nodes in the
dataset.

F. Performance comparison

We compared clustering results of the DEP and Spectral

clustering [9] methods applied to the Reuters-1856 dataset.

TABLE II
PERFORMANCE COMPARISON RESULTS REPORTED FOR THE

REUTERS-1856 DATASET. MEAN AND (STANDARD DEVIATION) ARE

SHOWN FOR PURITY AND INVERSE PURITY.

Method Purity Inverse Purity

DEP 0.6775 (0.0) 0.8566 (0.0)
Spectral clustering 0.3070 (0.0079) 0.6825 (0.2000)

The results are displayed in Table II. For each method we

reported mean and standard deviation values of Purity and

Inverse Purity computed over 100 iterations. DEP was more

accurate compared to Spectral clustering with regard to both

measures. Moreover, low standard deviation implies that DEP

was more stable compared to Spectral clustering.

IV. CONCLUSION

In this paper we described a scalable Spark-based imple-

mentation of the DEP algorithm for clustering data points.

The implementation is backed by the efficient Graphx API

that supports graph-parallel and data-parallel paradigms. The

method belongs to the class of spectral clustering algorithms

and performs iteratively greedy binary splits to subgroups,

thus, also resembling divisive hierarchical clustering scheme.

We introduced an approximate diffusion algorithm that acts

over affinity data matrix and simulates Markov transitions. One

should, however, carefully choose parameters in order to avoid

memory overflow and to stay in bounded computational re-

sources requirements. An interesting research direction would

be to further explore various schemes for carrying out the

diffusion.

The tests with real data show that the proposed implemen-

tation performs well. Moreover, our algorithm outperformed

Spectral clustering which is a common, yet, strong benchmark

in cluster analysis. The proposed algorithm can be applied for

cluster analysis of large data sets. The potential applications

of the algorithm span analysis of text, social networks and

network security data, which is a focus of future research.
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