
Collision-Free Navigation using Evolutionary
Symmetrical Neural Networks

Hesham M. Eraqi
Department of Computer Science
The American University in Cairo

New Cairo, Egypt
heraqi@aucegypt.edu

Mena NAGIUB
Valeo Schalter und Sensoren GmbH

Bietigheim-Bissingen, Germany
mena.nagiub@valeo.com

Peter Sidra
Department of Computer Science
The American University in Cairo

New Cairo, Egypt
peter.sidra.18@ucl.ac.uk

Abstract—Collision avoidance systems play a vital role in
reducing the number of vehicle accidents and saving human lives.
This paper extends the previous work using evolutionary neural
networks for reactive collision avoidance. We are proposing
a new method we have called symmetric neural networks.
The method improves the model’s performance by enforcing
constraints between the network weights which reduces the
model optimization search space and hence, learns more accu-
rate control of the vehicle steering for improved maneuvering.
The training and validation processes are carried out using
a simulation environment - the codebase is publicly available.
Extensive experiments are conducted to analyze the proposed
method and evaluate its performance. The method is tested in
several simulated driving scenarios. In addition, we have analyzed
the effect of the rangefinder sensor resolution and noise on the
overall goal of reactive collision avoidance. Finally, we have
tested the generalization of the proposed method. The results
are encouraging; the proposed method has improved the model’s
learning curve for training scenarios and generalization to the
new test scenarios. Using constrained weights has significantly
improved the number of generations required for the Genetic
Algorithm optimization.

Index Terms—collision avoidance navigation, evolutionary,
symmetrical, neural networks, genetic algorithms.

I. INTRODUCTION

Designing a control software for a self-driving vehicle is a
complex task. The software should concurrently tolerate many
scenarios and exceptional cases. It also should maintain and
meet reasonable software complexity and resource constraints.

Collision avoidance is a feature that allows a vehicle to
move without colliding with the environment. Vehicles can be
any robotic system like autonomous cars, unmanned vehicles,
etc. [4]. Reactive collision avoidance controls the motion of the
vehicle directly based on the current sensor data to react to
unforeseen changes in unknown and dynamic environments.
The environment dynamics do not cooperate with the ego-
vehicle (i.e., the vehicle that learns) to achieve collision avoid-
ance. Therefore, reactive collision avoidance has a good per-
formance in real-time maneuvering through such scenarios [3].
Neural networks are good candidates for controlling vehicles
for collision avoidance, especially in dynamic environments,
due to their generalization capabilities. They can generalize
to many scenarios. However, this generalization comes at the
cost of the complexity of initial weights selection and training

of the networks using many possible examples. Therefore,
generalization is usually achieved using complex training algo-
rithms. Evolutionary algorithms can be an excellent alternative
to the selection of the weights and the training of the network
[8].

II. RELATED WORK

An overview of the literature is provided in [7] for combin-
ing deep Artificial Neural Networks (ANN) and Evolutionary
Algorithms, specifically Genetic Algorithms (GA), drawing
out the common themes and the emerging knowledge about
what seems to work and what does not. Multi-layer neural
networks, like deep Convolutional Neural Networks (CNN),
possess several properties which make them particularly suited
to complex pattern classification problems. As for the evo-
lutionary algorithms, they are well suited to the problem of
training feed-forward networks as they are good at exploring
a large and complex space in an intelligent way to find values
close to the global optimum [6]. Furthermore, evolutionary
algorithms can be used to create neural network controllers
for simulated cars [9]. They have evolved controllers with
robust performance over different tracks and can work better
on particular tracks. Finally, a flexible method for solving
the traveling salesman problem using genetic algorithms has
been introduced as they can be used to train neural networks
producing evolutionary artificial neural networks [5].

A new evolutionary-based algorithm has been developed
to simultaneously evolve the topology and the connection
weights of ANNs through a new combination of Grammatical
Evolution (GE) and GA [2]. GE is adopted to design the
network topology while GA is incorporated for better weight
adaptation.
In our previous paper [1] we have introduced a new method
for vehicle reactive collision avoidance using Evolutionary
Neural Networks (ENN). A single front-facing rangefinder
sensor is the only input required by the method. The sensor
provides the neural network with spatial proximity readings
measured at multiple horizontal angles. The neural network
learns how to control the vehicle steering wheel angle by
directing the vehicle such that it does not collide with
the dynamic environment. The neural network guides the
vehicle around the environment, and a genetic algorithm is

ar
X

iv
:2

20
3.

15
52

2v
2 

 [
cs

.R
O

] 
 1

1 
A

pr
 2

02
2



used to pick and breed generations of more intelligent vehicles.

In this paper, we are extending the work done in [1] through
the introduction of the new method of the symmetric neural
networks. This new method constrains the relation between the
neurons’ weights by enforcing mathematical odd-symmetry
for the weights of each neuron. The expectation is that the
method will enhance obstacle detection performance and im-
prove the robustness against sensor noise. The training process,
analysis, and validation are carried out using simulation.
We have conducted 17 experiments to validate the proposed
method analyze and evaluate its performance. The results are
encouraging; the proposed method has successfully allowed
vehicles to learn collision avoidance in different scenarios that
are unseen during training. The scenarios include a vehicle that
learns how to navigate safely (i.e., without collision) through a
free static track and tracks with obstacles. In addition, we have
simulated noise for some sensors to evaluate the robustness of
the method and its generalization capabilities.

III. SYSTEM OVERVIEW

ANN can be considered an optimization problem in looking
for the best weights to achieve some task. GA [10] is consid-
ered as a search algorithm for solution-optimization, which
makes GA capable of training a neural network [7]. ENN,
Neuroevolution, or neuro-evolution, is a form of machine
learning that uses evolutionary algorithms to train ANN, in
other words, estimating the weights of the neural network.
It is most commonly applied in artificial life, and intelligent
computer games and hence has potential contributions towards
self-driving vehicles.

The chromosome format is chosen to be the vector of real
numbers with a sequence of all of the neural network weights.
The sequence is sorted layer by layer. The weights of each
layer are sorted such that all of the weights going into a
neuron are consecutive. The activation function used is an odd
version of the sigmoid function, Eq. 1, where the final value
is calculated as

σ (x) = sigmoid (x)− 0.5 (1)

Figure 1 shows an example for a 4× 4× 2 neural network
and its chromosome.

A. Symmetric Neural Networks

Searching for a fitting neural network model using GA can
be challenging, especially for large networks like deep neural
networks. However, by taking into account that inputs of the
neurons represent the distance measurement along with the
different directions of the rangefinder reflections, a spatial
symmetry can be enforced between the weights assigned to
input which could improve the network’s performance.

Symmetry can be enforced by giving each input an equal
chance of affecting the neuron’s activation, improving nav-
igation performance, especially in challenging cases, like
corners and intersections, and also in the case of noisy inputs.
Constraining the weights through symmetry also helps reduce

I1

I2

I3

I4

H1

H2

H3

H4

O1

O2

WI1H1, WI2H1, WI2H1, WI2H1, WI1H2, WI2H2, WI3H2, WI4H2, 
WI1H3, WI2H3, WI3H3, WI4H3, WI1H4, WI2H4, WI3H4, WI4H4,
WH1O1, WH2O1, WH3O2, WH4O2

Fig. 1. Example of a 4 × 4 × 2 neural network and its chromosome genes
representation.

the search space for the fitting chromosome since the overall
chromosome size would be shortened to almost half since
half of the chromosome genes are already predefined through
enforcing symmetry.

To study this method a network has been designed to test the
inversion of the steering angle output Osteer = −Osteer swapped
when the inputs are swapped i.e. I1, I2, ...In → In, In−1, ...I1.
This behavior has been achieved by constraining the hidden
layers links’ weights such that for each neuron in the hidden
layers and output layer, the first half of its set of weights is
the additive inverse of the second half of its set of weights.
We have called such constrained network design symmetric
neural networks.

B. Symmetric Neural Networks Mathematical Analysis

This mathematical analysis illustrates the concept of
symmetric neural networks. Considering the network shown
in Figure 2, where F (x) defines the network output.

Outx = F
(∑m

i=1WHiOutx · F
(∑n

2
j=1WIjHi

· Ij +WI(n+1−j)Hi
· In+1−j

))
∵WI(n+1−j)Hi

= −WIjHi
,∀j ∈ {1→ n

2 }

∴ Outx = F
(∑m

i=1WHiOutx · F
(∑n

2
j=1WIjHi

· Ij −WIjHi
· In+1−j

))
(2)

When inputs are swapped I1, I2, ...In → In, In−1, ...I1

Outx swapped = F
(∑m

i=1WHiOutx · F
(∑n

2
j=1WIjHi

· In+1−j −WIjHi
· Ij
))

∴ Outx swapped = F
(∑m

i=1WHiOutx · F
(
−
∑n

2
j=1WIjHi

· Ij −WIjHi
· In+1−j

))
∵ F (x) is odd as the case with Eq. 1

∴ F (−x) = −F (x)

∴ Outx swapped = F
(∑m

i=1WHiOutx · −F
(∑n

2
j=1WIjHi

· Ij −WIjHi
· In+1−j

))

∴ Outx swapped = −F
(∑m

i=1WHiOutx · F
(∑n

2
j=1WIjHi

· Ij −WIjHi
· In+1−j

))
(3)

∴ Outx swapped = −Outx (4)



So, according to the above analysis, in equations (2), (3),
and (4), it is evident that when the input values are swapped,
due to the constrained weights, the output will be inverted
as well, allowing for a robust change in direction improving
obstacle avoidance. Therefore, experiments are conducted to
evaluate this result and test its impact on the control system’s
performance. Furthermore, the equation (2) formula is recur-
sive; where outputs of one layer are used as input to the next
layer, it can be applied to multiple hidden layers networks
(deep networks).

I1

I2

In

H1

H2

Hm

WI1H1, WI2H1, ... WInH1, WI1H2, WI2H2, ... WInH2, … WI1Hm, WI2Hm, … 
WInHm, WH1O1, WH2O1, … WHmO1, WH1O2, WH2O2, … WHmO2, … 
WH1On, WH2On, … WHmOk

O1

O2

Ok

Fig. 2. Generic Neural Network Architecture.

C. Genetic algorithms framework

We have developed a simulation setup to evaluate the fitness
of each chromosome in a generation. The fitness function,
Eq. 5, has been chosen to minimize time and maximize the
distance covered by the vehicle.

Fitness = distance2

time (5)

where distance is measured from the track’s starting point,
and time is measured in simulation ticks. GA is used to pick
and breed generations of more intelligent vehicles. The vehicle
uses a rangefinder sensor that calculates N intersections depths
with the environment and then feeds these values as inputs
to the neural network. The inputs are then passed through a
multi-layered neural network and finally to an output layer
of 2 neurons: steering force to left and right. These forces
are used to turn the vehicle by deciding the vehicle’s steering
angle. Figure 3 shows the proposed system overview for our
method during the system-training phase. Once trained, the
neural network is able to generate steering commands from
the input rangefinder sensor readings. Figure 4 shows this
configuration.

IV. SIMULATION SETUP

A. Vehicle model

A simple 2D bicycle model was used to model the vehicle’s
longitudinal and lateral motion where T is the vehicle’s center
of gravity. The 2D bicycle model assumes a front driving
model for the vehicle. The model controls the vehicle driving
parameters [x, y, θ, δ]. Where x, and y are the current state

Simulator

Population GA

Neural 
Network

Range Finder
Steering Angle

Calculation 
Head

N Predicted Steering

Fig. 3. System overview during the training phase. GA is used to generate
the population. The population is composed of chromosomes representing the
weights of the Neural Network. Each chromosome is used to initialize the
weights of the network. Then the network predicts the maneuvering of the
vehicle. The maneuver results are fed to the simulator to calculate the fitness
of the used chromosome using the genetic algorithm.

ENN
Range 
Finder

Drive By 
Wire System

N Predicted Steering

Fig. 4. The trained network is used to generate steering commands from a
single front-facing proximity sensor.

center of the vehicle, θ is the heading angle, and δ is the
steering angle. This model is effective for controlling small
robotic vehicles in normal driving scenarios. At the simulation
start, the vehicle is positioned at the start of the track.

B. Sensor model

Five different sensor models have been tested, two ideal
sensors and three noisy sensors. All the used sensors are based
on the point cloud model, where the sensor sensation points
are reflected with the surrounding environment and return the
distance value of each beam in pixels. For the ideal sensors, a
basic beam sensor is tested where the number of range beams
is configurable, with a constant field of view angle of 180◦.
The beams are equally distributed across the field of view.
Also, a pseudo camera sensor is tested where the horizontal
field of view is 100◦, and the horizontal sight range is 1.5
times the track width in pixels. For the noisy sensors, a pseudo
LIDAR sensor is used, with a configurable number of points in
the point cloud with 145◦ field of view angle. A white noise
model is applied to the range using the Normal distribution
model with one as mean and 0.05 for standard deviation. The
noise model affects the accuracy of the distance measured
by the sensor for each point in the point cloud. In addition,
a pseudo-long-range RADAR is used with a configurable
number of points in the point cloud and 110◦ field of view
angle. The range noise model follows the Normal distribution
with one as mean and 0.1 for standard deviation. Also, a
pseudo-medium-range RADAR is used with a configurable
number of points in the point cloud and 160◦ field of view
angle. The range noise model is used following the Normal
distribution with zero as mean and 0.15 for standard deviation,



which means that for this sensor, the noise can result in range
points wrongly sensed at zero distance.

V. EXPERIMENTAL WORK

Several experiments are conducted to evaluate the method of
the symmetric neural networks, its impact on the performance
of the required tasks, and its robustness to the noise. In
addition, the learning approach has been tested to study its
impact on our method. The main objective is to inspect
the feasibility of a reactive collision avoidance system using
our proposed method. Initially, an elementary and relatively
straightforward experiment is conducted using a simple map
and an ideal sensor. The objective of this experiment is to
examine the capability of a vehicle to learn the task of self-
navigation through a static environment that does not include
any obstacles or sensor noise. This task is less challenging than
the collision avoidance task because the ego-vehicle does not
have to deal with any uncertainty. This experiment evaluates
several neural network models to select a model for the rest of
the experiments. The initial experiment has helped us decide
on an appropriate model: a three-layer ANN with sigmoid
activation function, Eq. 1 for all neurons. Figure 5 shows the
network architecture.

FC 15

Aright

Aleft

Range 
Sensor Point 
Cloud x 25

Hidden 
Layer

Output Layer

Input Layer

Fig. 5. The Symmetric Neural Network is based on Feed Forward Neural
Network Architecture used to drive the test vehicle using the front rangefinder
sensor readings as input. The architecture is composed of 3 Layers. First Layer
is the input layer connected to the range finder sensor raw data. The input
layer is connected to a fully connected layer. The Fully connected layer is
connected to the final output neurons.

It is noted that the experiment’s results do not change if the
number of layers is changed, but sometimes the same results
are obtained faster. The higher the number of hidden layers,
the better representation of the data the network can achieve.
Nevertheless, this leads to a more complex optimization prob-
lem that is harder and slower for GA to solve. Our GA uses a
population of 200 chromosomes where mutation probability is
0.1, crossover probability is one, and the crossover site follows
a normal distribution with a mean of 0.95 and a standard
deviation of 0.05. The selection is based on tournaments of
size ten candidates, and children of next generations always
replace their parents. The fitness function is chosen to be
the square of the distance from the start of the track to the
vehicle’s first collision point divided by the vehicle lifetime.

The experiments are done on challenging maps with static
obstacles, and specific turn points to challenge the vehicle into
changing the speed and the steering angle dramatically while
driving. The experimental work results encourage and validate
the effectiveness of the proposed method.

A. Constrained vs. unconstrained network model

This experiment aims to compare the effectiveness of the
proposed constrained network model vs. the conventional un-
constrained network model (ANN) on the learning behavior of
the vehicle. The vehicle should navigate a static environment
without colliding with the environment’s objects or bound-
aries. The environment is represented by a track composed
of several horizontal and vertical edges and static obstacles
represented by rectangles of varying dimensions. Figure 6
shows one example of several experimental tracks used. The
experiment has been done using the ideal simple sensor and
has been done for ten different challenging test tracks.

Fig. 6. example of tracks used for experiments. The track is composed
of horizontal and vertical lines representing the walls and static objects to
increase the level of the challenge. The green dot represents the starting
position of the vehicle. The red dot represents the destination.

The experimental results are shown in Figure 7. As illus-
trated, the vehicle has successfully learned navigation in less
than five generations using the constrained symmetrical net-
work model versus more than 40 generations in conventional
neural networks. These results are expected since the symme-
try enforces robust steering decisions, and also chromosome
size required for the symmetric network is shorter due to
the symmetry property, so the search space is smaller, and
as a result, fewer generations are required to reach a fitting
chromosome. In addition, in some maps like maps 7, 8, and 9,
the vehicle has failed to successfully navigate to the end of the
track even after 100 generations using conventional networks,
as shown in Figure 8. Therefore, test maps 7, 8, and 9 have not
been presented in the generations’ results for the unconstrained
networks since the vehicle has failed to navigate them.

B. Generalization across different tracks

In this experiment, we test the generality of our method
across multiple different tracks unseen during training. The
training track and results are shown in Figure 9. As illustrated
in Figure 10 shows the driving parameters used to drive the



Fig. 7. Vehicle navigation performance with a constrained network (sym-
metric neural network). Front basic sensor with 25 beams is used. In the
worst case, the system has required eight generations to reach a winning
chromosome that can be used for map navigation, which is expected since
the symmetry enforced a shorter chromosome size and so it has simplified the
search space of the genetic algorithm, which has reduced the required number
of generations to reach a fitting chromosome.

Fig. 8. Vehicle navigation performance without constrained network (using
traditional artificial neural network). Compared to the symmetric neural
networks, using traditional networks the system required a greater number
of generations to reach a winning chromosome that can be used for map
navigation.

vehicle through the track. The vehicle can generate steering
angles that can accurately maneuver the tracks in challenging
situations, like corners, and near obstacles, as illustrated in
Figure 9.

The same chromosome has been then tested in 3 different
randomly generated tracks and results are shown in Figure 11,
Figure 12, Figure 13, Figure 14, Figure 15 and Figure 16.

The results show that our method generalizes well to the
random tracks unseen during training. Furthermore, the vehicle
successfully has navigated the three tracks without collision
while maintaining the desired steering control behavior. The
impact of the symmetric neural network is evident from the
stability of the steering angle. Furthermore, the network has
been able to generalize to different scenarios using the same
chromosome.

C. Generalization versus different sensor resolution

This experiment aims to study the effect of the input
rangefinder sensor resolution on the learning process using

Fig. 9. Vehicle maneuvering steps for map six using Front Basic Sensor with
25 Beams.

Fig. 10. Driving steering angles based on the weights chromosome for map
six using Front Basic Sensor with 25 Beams.

Fig. 11. Vehicle maneuvering steps for map seven using Front Basic Sensor
with 25 Beams.

Fig. 12. Driving steering angles based on the weights chromosome for map
seven using Front Basic Sensor with 25 Beams.



Fig. 13. Vehicle maneuvering steps for map eight using Front Basic Sensor
with 25 Beams.

Fig. 14. Driving steering angles based on the weights chromosome for map
eight using Front Basic Sensor with 25 Beams.

Fig. 15. Vehicle maneuvering steps for map nine using Front Basic Sensor
with 25 Beams.

Fig. 16. Driving steering angles based on the weights chromosome for map
nine using Front Basic Sensor with 25 Beams.

symmetric neural networks. The vehicle has been set to nav-
igate the track shown in Figure 17 while varying the number
of sensor beams each time. The angle between adjacent beams
is equal. The sensor’s horizontal range is chosen 180° in our
experiment.

Fig. 17. The challenging training track used for chromosome testing.

As shown in Figure 18, using a sensor with seven or fewer
beams required longer training time due to insufficient input
data to the network, as a smaller number of beams will not
be able to describe the obstacles along the track adequately.
On the other hand, a more significant number of beams (i.e.,
15 or more) allows the vehicle to learn and reach acceptable
fitness.

Fig. 18. Basic sensors with different beam settings. The basic sensor is used
for navigating the challenging track in Figure 17. The basic sensor is used with
five beams, seven beams, ten beams, 15 beams, and 20 beams. As illustrated,
using 5 and 7 beams, the system has required many generations to reach a
chromosome that can navigate the map. However, as the number of beams
increases, fewer generations are required to reach a winning chromosome.

D. Generalization versus sensor noise

The objective of this experiment is to test the tolerance
of our method to sensor noise. We have conducted several
test runs in the track shown in Figure 6 while using different
sensor models. The constrained and non-constrained neural
network models have been tested. The observation is that
with using the constrained model, as in Figure 19, symmetric
neural networks have required a fewer number of generations
compared to unconstrained neural networks as in Figure 20.
However, as for the pseudo-Long-range noisy RADAR and
pseudo-medium-range noisy RADAR, as they have been tested
as well, there have not been any possible results since the noise
has been extremely high such that there has been no fitting



chromosome found. It has been observed that as the noise
increases, the chromosome’s fitness has degraded as in Figure
21. Another experiment has been conducted where the same
fitting chromosome has been used to drive the vehicle using
the pseudo LIDAR sensor with a different number of point
cloud points. Figure 22 shows that as the size of the point
cloud increases, the symmetric neural network can overcome
the noise in the pseudo LIDAR and perform adequately. The
impact of the noise is evident from the oscillations of the
fitness values with each generation. The noise has caused the
fitness to be unstable from one generation to another. The
fitness trend has been oscillating, unlike in the ideal sensors,
where the fitness trend is rising from one generation to another.

Fig. 19. Basic Sensor, with 15 beams, Front Camera with 15 pixels, and
Front Noisy LIDAR with 15 beams are tested. The testing is done using
symmetric neural networks. As illustrated, the Basic sensor and front camera
can converge in fewer generations, while the LIDAR, due to noise, has
required more generations. However, for the Long Range Noisy RADAR and
Medium Range Noisy RADAR, they have not converged due to the very high
noise level.

Fig. 20. When the same sensors have been tested using traditional neural
networks, it has been very complex for them to converge, as illustrated, they
have required a larger number of generations. The same results have been
observed for the Long Range and Medium Range Noisy RADAR.

E. Chromosome Selection Algorithm

Several chromosome selection approaches are tested to train
the symmetric neural networks in this experiment. The exper-
iment aims to study which genetic selection approach would
suit symmetric neural networks training. The first approach,

Generations

F
itn

es
s

0

100000

200000

300000

20 40 60 80 100

Basic Sensor FrCamera100 FrLiDAR160 FrLrRadar110 FrMrRadar145

Fig. 21. Different sensors performance and learning state. The diagram
describes the relationship between the maximum fitness reached by each
sensor and the number of generations required to reach such fitness. As
illustrated, as the noise level increases, the ability of the sensor to converge to
a high fitness chromosome decreases. The oscillations in the fitness between
the generations are due to noise. The random noise has caused changes in
fitness from one generation to another.

Fig. 22. Degradation of the fitness of the pseudo LIDAR sensor. The Front
Noisy LIDAR has a noise model of 0.05 standard deviation. At a higher
number of range points, the LIDAR can converge to the fitting chromosome.

the tournament approach, where the most ten fitting chromo-
somes are selected for crossover and mutation to enhance their
features, replacing the parents, and the rest of the population is
populated from a new random set. The second approach is the
elitism approach, where the ten most fitting chromosomes are
selected for crossover and mutation, but rather than replacing
them with the offspring, they are kept for the next generation.
Therefore, the new generation is composed of the selected
parents + the offspring + the newly populated chromosomes.
The third approach is the Roulette Wheel selection, as the
higher the parent’s fitness, the higher the probability of being
selected for breeding. In this method, the algorithm was not
constrained to selecting the top 10 candidates, but the chromo-
somes were sorted and mated on binary bases, where every two
highly fitting chromosomes were mated together to generate
two new offspring. No new randomly generated chromosomes
are required in this approach. Figure 23 shows the performance
of the vehicle while using the pseudo camera range sensor
to drive through a challenging track. Figure 24 shows the
driving parameters generated by the symmetric neural network



model to control the vehicle. Finally, figure 25 shows the
comparison between the different selection approaches used to
find the most fitting chromosome—the lower the number of the
required generations, the better the approach. As illustrated,
the elitism approach has given a better performance.

Fig. 23. Vehicle maneuvering steps for map 6 using Front Camera with 25
points.

Fig. 24. Driving steering angles based on the weights chromosome for map
6 using Front Camera with 25 Beams.

Fitness

G
en

er
at

io
ns

0

5

10

15

20

25

50000 100000 150000 200000 250000

Tournament Elitism Roulette Wheel 

Fig. 25. impact of selection method on the number of generations required
for finding a fitting chromosome. The diagram compares the number of the
required generations required to reach the maximum fitness for the different
selection methods. The lower the number of generations, the better the
method’s performance. As illustrated, Elitism has reached the lowest number
of generations to converge to a fitting chromosome.

VI. CONCLUSIONS

In this paper, we have proposed a new method of sym-
metric neural networks based on evolutionary techniques. It
has validated the vehicle reactive collision avoidance method

with accurate and noisy sensors. Extensive experiments of
varying conditions and objectives are conducted to evaluate the
proposed method. The results demonstrated in the paper reflect
the potential for our proposed method. The vehicle learns
to drive collision freely in a static environment. Promising
progress is achieved in developing general collision avoidance
behavior. The symmetric property of the network has reduced
the size of the chromosome and reduced the number of the
required generations to find a fitting chromosome.

FUTURE WORK

Future work will deploy the experiments in more realistic,
dynamic, and complex simulation environments. Also, we
plan to upgrade the GA operators to further improve our
method’s performance. In addition, it is planned to study the
evolutionary methods for spiking neural networks and apply
the method to real-world small robots.

REFERENCES

[1] M. Eraqi H., Emad Eldin Y. and N. Moustafa M. (2016). Reactive Col-
lision Avoidance using Evolutionary Neural Networks . In Proceedings
of the 8th International Joint Conference on Computational Intelligence
- Volume 1: ECTA, (IJCCI 2016) ISBN 978-989-758-201-1, pages 251-
257. DOI: 10.5220/0006084902510257

[2] Fardin Ahmadizar, Khabat Soltanian, Fardin AkhlaghianTab, Ioannis
Tsoulos, Artificial neural network development by means of a novel
combination of grammatical evolution and genetic algorithm, Engineer-
ing Applications of Artificial Intelligence, Volume 39, 2015, Pages 1-13,
ISSN 0952-1976, doi.org/10.1016/j.engappai.2014.11.003..

[3] Z. Lu, Z. Liu, G. J. Correa and K. Karydis, ”Motion Planning for
Collision-resilient Mobile Robots in Obstacle-cluttered Unknown En-
vironments with Risk Reward Trade-offs,” 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020, pp. 7064-
7070, doi: 10.1109/IROS45743.2020.9341449.

[4] T. Xu, S. Zhang, Z. Jiang, Z. Liu and H. Cheng, ”Collision Avoidance
of High-Speed Obstacles for Mobile Robots via Maximum-Speed Aware
Velocity Obstacle Method,” in IEEE Access, vol. 8, pp. 138493-138507,
2020, doi: 10.1109/ACCESS.2020.3012513.

[5] Richa Mahajan and Gaganpreet Kaur. Article: Neural Networks using
Genetic Algorithms. International Journal of Computer Applications
77(14):6-11, September 2013, doi: 10.5120/13549-1153

[6] H. Tian, S. Pouyanfar, J. Chen, S. Chen and S. S. Iyengar, ”Auto-
matic Convolutional Neural Network Selection for Image Classifica-
tion Using Genetic Algorithms,” 2018 IEEE International Conference
on Information Reuse and Integration (IRI), 2018, pp. 444-451, doi:
10.1109/IRI.2018.00071.

[7] X. Zhou, A. K. Qin, M. Gong and K. C. Tan, ”A Survey on Evolutionary
Construction of Deep Neural Networks,” in IEEE Transactions on
Evolutionary Computation, doi: 10.1109/TEVC.2021.3079985.

[8] X. Shen, Y. Zheng and R. Zhang, ”A Hybrid Forecasting Model for
the Velocity of Hybrid Robotic Fish Based on Back-Propagation Neural
Network With Genetic Algorithm Optimization,” in IEEE Access, vol.
8, pp. 111731-111741, 2020, doi: 10.1109/ACCESS.2020.3002928.

[9] J. Togelius and S. M. Lucas, ”Evolving robust and specialized car
racing skills,” 2006 IEEE International Conference on Evolutionary
Computation, 2006, pp. 1187-1194, doi: 10.1109/CEC.2006.1688444.

[10] Vose, Michael D. The simple genetic algorithm: foundations and theory.
In IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, MIT press, 1999.


	I Introduction
	II Related Work
	III System Overview
	III-A Symmetric Neural Networks
	III-B Symmetric Neural Networks Mathematical Analysis
	III-C Genetic algorithms framework

	IV Simulation Setup
	IV-A Vehicle model
	IV-B Sensor model

	V Experimental Work
	V-A Constrained vs. unconstrained network model
	V-B Generalization across different tracks
	V-C Generalization versus different sensor resolution
	V-D Generalization versus sensor noise
	V-E Chromosome Selection Algorithm

	VI Conclusions
	References

