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Abstract—this paper identifies the problem of unnecessary 

high power overhead of the conventional frame-based 

radioisotope identification process and proposes an event-based 

signal processing process to address the problem established. It 

also presents the design flow of the neuromorphic processor.   
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I. INTRODUCTION 

The detection and identification of radioisotope material 
play an important role in national security; to help counter the 
terrorist threat of dirty bombs (radiological dispersal devices) 
as well as potential nuclear devices. Radiation detectors are an 
important technology to determine the type and dose of 
radiation. The motivation of this research is to develop 
building blocks which will help drive down the power 
consumed by intelligent radiation detectors in order to help 
reduce their size and improve the capabilities for application 
in mobile scenarios. 

The power consumption of sensor-supporting electronics 
for signal amplification and processing currently limits the 
capabilities of mobile detectors for nuclear materials. Our 
project partner company Kromek has developed a range of 
handheld gamma and neutron detector, such as the D3S, for 
Defense Advanced Research Projects Agency (DARPA) as 
part of the Securing the Cities program. With a 1450 mAh 
battery and 100 mA processor the device has a typical running 
time of around 12 hours, long enough for such a device to be 
carried by a police officer during a typical shift but limiting 
the applications beyond this. 

II. BACKGROUND 

A. The Problem 

As illustrated in Fig. 1a, the conventional frame-based 
radioisotope identification (ID) process involves the following 
steps:  

1) Scintillation: the invisible gamma photon interacts 

with the scintillation material causing the emission of one or 

several photons in the visible range. 

2) Photon detection: light photons are detected by the 

photodetector and continuous voltage signals are produced, 

see Fig. 1a. 

3) Analogue to digital conversion (ADC) and 

integration: for each detection event the analogue electrical 

signal, which may represent the sum of several scintillation 

events from a single incident gamma photon, is converted to 

a digital signal, and integrated over time to give a value for 

each event proportional to the energy of the incident gamma 

photon. 

4) Histogram generation: the counts of gamma events at 

each energy channel are accumulated to generate an energy 

histogram or spectrum for a given time window. 

5) Radioisotope Identification: each target radioisotope 

has a signature histogram making radioisotope identification 

a histogram classification problem. Many algorithms can be 

applied to this kind of task, notably the Poisson-Clutter Split 

(PCS) algorithm [1] has been applied to the radioisotope 

identification histogram classification task in the past. 
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Fig. 1. Conventional Frame-based Process and Proposed Event-based 

Process 

In this frame-based algorithm described in Fig. 1, the ADC 

and integration computational units are normally implemented 

using the synchronous techniques and the energy histogram 

needs to be generated for each frame. The main problem with 

this approach is that these data processing units continuously 

consume power, even when the event arrival rates are very low 

or zero. 

B. Proposed Method 

We propose an event-driven algorithm that could process 

signals asynchronously. This means that processing is 

initiated only when detection events take place, giving the 

potential for improved energy efficiency. Fig. 1b shows the 

proposed isotope ID process where the continuous analogue 

voltage signal is converted into ‘events’ which are then 

processed by neuromorphic hardware for isotope 



 

identification. The details of neuromorphic processor design 

are as presented in section III. 

III. METHODOLOGY 

Neuromorphic hardware is an emerging field of research 
that seeks to design computing devices with brain-inspired 
architectures. Emulating biological neural networks in silicon 
hardware, neuromorphic architectures are expected to solve 
complex problems with low power consumption in an event-
driven manner [2]. The most established application domain 
for event-based models is that of computer vision where 
event-based cameras and processing can be used such that 
only per-pixel brightness changes are measured 
asynchronously, avoiding the redundancy seen in traditional 
frame-based approaches [3][4]. Due to their spatiotemporal 
nature and intermediate level of abstraction between 
biological plausibility and the Artificial Neural Networks 
(ANNs) of machine learning, Spiking Neural Networks 
(SNNs) are a popular model  for the implementation of these 
low power event-based systems [5]. Fig. 2 illustrates the 
proposed design flow of an event-based neuromorphic 
processor for radioisotope identification. 
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Fig. 2. Design Flow of the Event-based Neuromorphic Processor 

A. Dataset 

As shown in Fig.3, the dataset was recorded using two 

different measurement setups, with and without a Polymethyl 

Methacrylate (PMMA) phantom, which is designed to 

represent the upper torso of a user. Spectra for each 

radioisotope source under test were recorded every second for 

120 seconds. Subsequent measurements were made at 

varying distances, which are 10 cm, 25 cm, 50 cm, 1 m and 

1.5 m, with each source. 

1) Analogue Electrical Signal: Fig. 4 shows a screen shot 

for the Silicon Photomultiplier (SiPM) anode output signal, 

collected across a 50 Ω load resistor. The gamma event 

shown has several thousand photons. The SiPM is an 

avalanche device with a gain of about 106. 

2) Energy Histogram Dataset: There are 4096 channel 

bins in the raw dataset, which is based on the 12-bit ADC. 

They are calibrated into 3238 energy bins. Fig. 5 illustrates 

an energy histogram of the radioisotope source Americium-

241 during 120 seconds at the distance of 10 cm with PMMA 

phantom.    
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Fig. 3. Test Geometry for Photon Alarm  

 
Fig. 4. Analogue Electrical Signal 

 
Fig. 5. Energy Histogram of radioisotope source Americium-241 

B. Data Pre-processing 

1) Data Smoothing and Dimension Reduction: the 

performance of the classifier could be afftected by the 

variations from Poisson count statistics [6]. Data smoothing 

techiniques, such as local regression smoother and wavelet 

smoother, can be applied to remove the noise to maximise the 

performance under the limited hardware resources. To reduce 

the complexity of the design and save power, the dimension 

reduction techniques such as Poisson PCA can be utilised to 

remove the redundant features of the dataset [7] [8]. 

2) Analogue-to-event Conversion: the multiple threshold 

technique in [9] can be used to convert the analogue 

representation of the single Gamma photon energy level into 

the event domain. Each energy threshold can be considered 

as a signature. In this event domain, the signature of the target 

radioisotope is manifested in form of spike trains. The SNN 



 

is trained to recognize those spike trains to provide the 

radioisotopic classification. 

3) Event Data Encoding: in parallel with the 

implementation of the data pre-processing, the spike trains of 

the radioisotope manifestation can also be encoded based on 

energy histograms from the frame-based process. This 

process extracts the information at time, encodes the data into 

spikes and stretches them into event data streams. It can be 

utilized as test dataset for the SNN emulation at very early 

stage, which can speed up the development process prior to 

the analogue-to-event implementation being available. 

C. Artificial Neural Network (ANN) Training 

As mentioned in the Section II – A4, the energy histogram 
generated by accumulating counts for each channel over a 
certain integration time in the frame-based process can be used 
for radioisotope identification. ANNs can be trained to 
recognize the energy histogram of given radioisotopes and 
provide the isotope classification. The reasons for choosing 
ANNs for this task are 1) ANNs perform well at classification 
tasks in analogous computer vision applications; 2) ANN 
training methods and development tools are well established 
and the development process can proceed much faster than 
designing an SNN from scratch; 3) Tools and techniques for 
ANN-to-SNN conversion are becoming available [10]. 

D. ANN-to-SNN Conversion  

SNNs represent neural activity as a series of spikes over 

time and so are inherently temporal, ideal for an event-based 

task such as radioisotope identification. Eligibility 

propagation is a promising method for training SNNs with 

performance comparable to that of back-propagation training 

in ANNs [5] however we chose to train ANNs via back-

propagation on histogram data and to convert the trained 

ANNs to SNNs because of how much more establish this path 

is. For ANN-to-SNN conversion we use a modified version 

of the SNN toolbox as developed by Rueckauer et al. [10]. 

The neuron model used is a standard PyNN current-based 

leaky integrate-and-fire (LIF_curr_exp) neuron model [11] 

with the default parameters given in the SNN toolbox. The 

activation values seen in the ANN models are represented as 

average spike rates in the SNN. The input histograms are 

converted to the rates of Poisson sources corresponding the 

energy channel of the histogram. 

E. Neural Network Architecture 

A simple four layer convolutional neural network was 

designed for the task of radioisotope identification using the 

Keras library [12].  
 

A diagram of the neural network architecture used is 

shown in Figure 6. It is made up of an input layer the size of 

the calibrated input (3238), two one-dimensional 

convolutional layers and a dense output layer. The ANN is 

trained on the continuous histogram data and this input is 

transformed into the spiking domain by using the continuous 

values as the rates of Poisson spike sources in the spiking 

model on SpiNNaker. 

F. SNN Emulation on SpiNNaker 

SpiNNaker is a neuromorphic hardware platform 

designed for the simulation of large-scale spiking neural 

networks at speeds close to biological real-time [13]. In this 

project SpiNNaker is used to run SNNs that are the product 

of ANN-to-SNN conversion using the method described by 

Rueckauer et al. in [10]. The energy efficiency and scale of 

SpiNNaker systems (notably the 1 million core machine in 

Manchester, UK) allows for rapid prototyping of network 

architectures and for parallel optimization algorithms such as 

a genetic algorithms to be used to tune network parameters. 

        

 
Fig. 6. An illustration of the SNN architecture. Input energy histograms are 

encoded to spike trains and then fed into SNN. The input is 3238, and the 

number of neurons in the remaining layers is given by 51696-12896-6. All 

neurons in the network are spiking neurons. 
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Fig. 7. Synaptic microarchitecture [14] 

G. SNN Implementation in Hardware 

Once verified and optimized through model simulation on 

SpiNNaker, the SNN architecture is then implemented on a 

Field-Programmable Gate Array (FPGA).  

In many SNN implementation methods, high precision 

(e.g. 32-bit) neurons and synapses are applied to provide 

continuous derivatives and support incremental changes to 

network state [15][16]. However [14] reported that such high 

precision is not necessary due to the redundancy of networks. 

Its experimental results on the MNIST dataset also 

demonstrated that both the refractory period and alpha-

function-shaped post-synaptic current are not compulsory to 

achieve high performance inference. Therefore in this work, 

this fashion is followed. Besides as shown in Fig. 7, a digital 

manner of the post-synaptic current input is applied to save 

power and cost. The 𝑥(𝑛) represents either the presence (1) 

or absence (0) of a spike.  



 

H. Design Verification and Performance Test 

Due to the long development path, a tiny mismatch in the 

functionality in the initial design implementation may cause 

a large potential loss in performance in the final 

implementation. The debug process in this workflow could 

be very expensive and could significantly increase the time-

to-market. For these reasons, design verification during 

implementation is crucial. 

The implementation should be verified by functional and 

random tests at the block level, such as in the LIF Neuron 

Model block, and also through integration tests at the system 

level. The verification process is complete when all the tests 

are passed and both the functional and code coverage are 

closed. 

Once the functionality of the implementation is fully 

verified, the performance tests with test dataset as stimuli are 

then run to check whether the accuracy of the radioisotope 

identification is as anticipated. 

IV. RESULTS 

An ANN model was built based on the architecture 

outlined in Figure 6. The weights were trained by 

backpropagation on a cut-down dataset of 6 classes: 5 

industrial radioisotopes (241Am, 133Ba, 60Co, 137Cs, 152Eu) and 

background. The resulting ANN gave a testing accuracy of 

100% on a test set of 100 examples and 99.94% on 1692 test 

examples. The dataset used for ANN training was continuous 

histogram data that was transformed into Poisson rates for 

SNN evaluation in the spiking domain. The SNN returned an 

accuracy of 85% on a test set of 100 examples. 

V. DISCUSSION 

The experiments carried out here are limited in both their 

dataset and the conversion accuracy. A degradation in 

performance is seen in the conversion of the ANN to SNN    

most likely due to sub-optimal SNN neuron model 

parameters and the limited presentation duration: how long 

the inputs are applied to the network. 

The experiments carried out were on a limited dataset in 

which the test data were statistically very similar to the 

training data. In future work we will use more data and will 

look at synthesising data to make approaches robust to noise, 

variations in background radiation, source intensity and 

distance between source and detector. 

VI. CONCLUSION 

The power overhead associated with a frame-based 

radioisotope identification process has been identified and a 

low power event-based substitute has been proposed. This 

paper has detailed the design flow, discussed the relevant 

implementation details of this approach and presented some 

preliminary results.  

At an early stage, the results represent a proof of principle 

in the application of SNNs converted from ANNs to the task 

of radioisotope identification.  

To achieve the ultimate goal of an ultra-low power design, 

considerations in data pre-processing, SNN architecture and 

the hardware implementation method need to be taken. 

Therefore our further work will focus on more efficient data 

pre-processing techniques, the use of optimization methods 

to tune the SNNs to be more robust and applicable to real-

world application and their power efficient hardware 

implementation methods. 
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